1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
//===-- SIProgramInfo.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The SIProgramInfo tracks resource usage and hardware flags for kernels and
/// entry functions.
//
//===----------------------------------------------------------------------===//
//
#include "SIProgramInfo.h"
#include "GCNSubtarget.h"
#include "SIDefines.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/MC/MCExpr.h"
using namespace llvm;
void SIProgramInfo::reset(const MachineFunction &MF) {
MCContext &Ctx = MF.getContext();
const MCExpr *ZeroExpr = MCConstantExpr::create(0, Ctx);
CodeSizeInBytes.reset();
VGPRBlocks = ZeroExpr;
SGPRBlocks = ZeroExpr;
Priority = 0;
FloatMode = 0;
Priv = 0;
DX10Clamp = 0;
DebugMode = 0;
IEEEMode = 0;
WgpMode = 0;
MemOrdered = 0;
FwdProgress = 0;
RrWgMode = 0;
ScratchSize = ZeroExpr;
LDSBlocks = 0;
ScratchBlocks = ZeroExpr;
ScratchEnable = ZeroExpr;
UserSGPR = 0;
TrapHandlerEnable = 0;
TGIdXEnable = 0;
TGIdYEnable = 0;
TGIdZEnable = 0;
TGSizeEnable = 0;
TIdIGCompCount = 0;
EXCPEnMSB = 0;
LdsSize = 0;
EXCPEnable = 0;
ComputePGMRSrc3 = ZeroExpr;
NumVGPR = ZeroExpr;
NumArchVGPR = ZeroExpr;
NumAccVGPR = ZeroExpr;
AccumOffset = ZeroExpr;
TgSplit = 0;
NumSGPR = ZeroExpr;
SGPRSpill = 0;
VGPRSpill = 0;
LDSSize = 0;
FlatUsed = ZeroExpr;
NumSGPRsForWavesPerEU = ZeroExpr;
NumVGPRsForWavesPerEU = ZeroExpr;
Occupancy = ZeroExpr;
DynamicCallStack = ZeroExpr;
VCCUsed = ZeroExpr;
}
static uint64_t getComputePGMRSrc1Reg(const SIProgramInfo &ProgInfo,
const GCNSubtarget &ST) {
uint64_t Reg = S_00B848_PRIORITY(ProgInfo.Priority) |
S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
S_00B848_PRIV(ProgInfo.Priv) |
S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
S_00B848_WGP_MODE(ProgInfo.WgpMode) |
S_00B848_MEM_ORDERED(ProgInfo.MemOrdered);
if (ST.hasDX10ClampMode())
Reg |= S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp);
if (ST.hasIEEEMode())
Reg |= S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
// TODO: in the long run we will want to enable this unconditionally.
if (ST.getTargetTriple().getOS() == Triple::OSType::AMDHSA)
Reg |= S_00B848_FWD_PROGRESS(ProgInfo.FwdProgress);
if (ST.hasRrWGMode())
Reg |= S_00B848_RR_WG_MODE(ProgInfo.RrWgMode);
return Reg;
}
static uint64_t getPGMRSrc1Reg(const SIProgramInfo &ProgInfo,
CallingConv::ID CC, const GCNSubtarget &ST) {
uint64_t Reg = S_00B848_PRIORITY(ProgInfo.Priority) |
S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
S_00B848_PRIV(ProgInfo.Priv) |
S_00B848_DEBUG_MODE(ProgInfo.DebugMode);
if (ST.hasDX10ClampMode())
Reg |= S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp);
if (ST.hasIEEEMode())
Reg |= S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
if (ST.hasRrWGMode())
Reg |= S_00B848_RR_WG_MODE(ProgInfo.RrWgMode);
switch (CC) {
case CallingConv::AMDGPU_PS:
Reg |= S_00B028_MEM_ORDERED(ProgInfo.MemOrdered);
break;
case CallingConv::AMDGPU_VS:
Reg |= S_00B128_MEM_ORDERED(ProgInfo.MemOrdered);
break;
case CallingConv::AMDGPU_GS:
Reg |= S_00B228_WGP_MODE(ProgInfo.WgpMode) |
S_00B228_MEM_ORDERED(ProgInfo.MemOrdered);
break;
case CallingConv::AMDGPU_HS:
Reg |= S_00B428_WGP_MODE(ProgInfo.WgpMode) |
S_00B428_MEM_ORDERED(ProgInfo.MemOrdered);
break;
default:
break;
}
return Reg;
}
static uint64_t getComputePGMRSrc2Reg(const SIProgramInfo &ProgInfo) {
uint64_t Reg = S_00B84C_USER_SGPR(ProgInfo.UserSGPR) |
S_00B84C_TRAP_HANDLER(ProgInfo.TrapHandlerEnable) |
S_00B84C_TGID_X_EN(ProgInfo.TGIdXEnable) |
S_00B84C_TGID_Y_EN(ProgInfo.TGIdYEnable) |
S_00B84C_TGID_Z_EN(ProgInfo.TGIdZEnable) |
S_00B84C_TG_SIZE_EN(ProgInfo.TGSizeEnable) |
S_00B84C_TIDIG_COMP_CNT(ProgInfo.TIdIGCompCount) |
S_00B84C_EXCP_EN_MSB(ProgInfo.EXCPEnMSB) |
S_00B84C_LDS_SIZE(ProgInfo.LdsSize) |
S_00B84C_EXCP_EN(ProgInfo.EXCPEnable);
return Reg;
}
static const MCExpr *MaskShift(const MCExpr *Val, uint32_t Mask, uint32_t Shift,
MCContext &Ctx) {
if (Mask) {
const MCExpr *MaskExpr = MCConstantExpr::create(Mask, Ctx);
Val = MCBinaryExpr::createAnd(Val, MaskExpr, Ctx);
}
if (Shift) {
const MCExpr *ShiftExpr = MCConstantExpr::create(Shift, Ctx);
Val = MCBinaryExpr::createShl(Val, ShiftExpr, Ctx);
}
return Val;
}
const MCExpr *SIProgramInfo::getComputePGMRSrc1(const GCNSubtarget &ST,
MCContext &Ctx) const {
uint64_t Reg = getComputePGMRSrc1Reg(*this, ST);
const MCExpr *RegExpr = MCConstantExpr::create(Reg, Ctx);
const MCExpr *Res = MCBinaryExpr::createOr(
MaskShift(VGPRBlocks, /*Mask=*/0x3F, /*Shift=*/0, Ctx),
MaskShift(SGPRBlocks, /*Mask=*/0xF, /*Shift=*/6, Ctx), Ctx);
return MCBinaryExpr::createOr(RegExpr, Res, Ctx);
}
const MCExpr *SIProgramInfo::getPGMRSrc1(CallingConv::ID CC,
const GCNSubtarget &ST,
MCContext &Ctx) const {
if (AMDGPU::isCompute(CC)) {
return getComputePGMRSrc1(ST, Ctx);
}
uint64_t Reg = getPGMRSrc1Reg(*this, CC, ST);
const MCExpr *RegExpr = MCConstantExpr::create(Reg, Ctx);
const MCExpr *Res = MCBinaryExpr::createOr(
MaskShift(VGPRBlocks, /*Mask=*/0x3F, /*Shift=*/0, Ctx),
MaskShift(SGPRBlocks, /*Mask=*/0xF, /*Shift=*/6, Ctx), Ctx);
return MCBinaryExpr::createOr(RegExpr, Res, Ctx);
}
const MCExpr *SIProgramInfo::getComputePGMRSrc2(MCContext &Ctx) const {
uint64_t Reg = getComputePGMRSrc2Reg(*this);
const MCExpr *RegExpr = MCConstantExpr::create(Reg, Ctx);
return MCBinaryExpr::createOr(ScratchEnable, RegExpr, Ctx);
}
const MCExpr *SIProgramInfo::getPGMRSrc2(CallingConv::ID CC,
MCContext &Ctx) const {
if (AMDGPU::isCompute(CC))
return getComputePGMRSrc2(Ctx);
return MCConstantExpr::create(0, Ctx);
}
uint64_t SIProgramInfo::getFunctionCodeSize(const MachineFunction &MF,
bool IsLowerBound) {
if (!IsLowerBound && CodeSizeInBytes.has_value())
return *CodeSizeInBytes;
const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
const SIInstrInfo *TII = STM.getInstrInfo();
uint64_t CodeSize = 0;
for (const MachineBasicBlock &MBB : MF) {
// The amount of padding to align code can be both underestimated and
// overestimated. In case of inline asm used getInstSizeInBytes() will
// return a maximum size of a single instruction, where the real size may
// differ. At this point CodeSize may be already off.
if (!IsLowerBound)
CodeSize = alignTo(CodeSize, MBB.getAlignment());
for (const MachineInstr &MI : MBB) {
// TODO: CodeSize should account for multiple functions.
if (MI.isMetaInstruction())
continue;
// We cannot properly estimate inline asm size. It can be as small as zero
// if that is just a comment.
if (IsLowerBound && MI.isInlineAsm())
continue;
CodeSize += TII->getInstSizeInBytes(MI);
}
}
CodeSizeInBytes = CodeSize;
return CodeSize;
}
|