1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
//===-- HexagonRegisterInfo.cpp - Hexagon Register Information ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Hexagon implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//
#include "HexagonRegisterInfo.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#define GET_REGINFO_TARGET_DESC
#include "HexagonGenRegisterInfo.inc"
using namespace llvm;
static cl::opt<unsigned> FrameIndexSearchRange(
"hexagon-frame-index-search-range", cl::init(32), cl::Hidden,
cl::desc("Limit on instruction search range in frame index elimination"));
static cl::opt<unsigned> FrameIndexReuseLimit(
"hexagon-frame-index-reuse-limit", cl::init(~0), cl::Hidden,
cl::desc("Limit on the number of reused registers in frame index "
"elimination"));
HexagonRegisterInfo::HexagonRegisterInfo(unsigned HwMode)
: HexagonGenRegisterInfo(Hexagon::R31, 0/*DwarfFlavor*/, 0/*EHFlavor*/,
0/*PC*/, HwMode) {}
bool HexagonRegisterInfo::isEHReturnCalleeSaveReg(Register R) const {
return R == Hexagon::R0 || R == Hexagon::R1 || R == Hexagon::R2 ||
R == Hexagon::R3 || R == Hexagon::D0 || R == Hexagon::D1;
}
const MCPhysReg *
HexagonRegisterInfo::getCallerSavedRegs(const MachineFunction *MF,
const TargetRegisterClass *RC) const {
using namespace Hexagon;
static const MCPhysReg Int32[] = {
R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, 0
};
static const MCPhysReg Int64[] = {
D0, D1, D2, D3, D4, D5, D6, D7, 0
};
static const MCPhysReg Pred[] = {
P0, P1, P2, P3, 0
};
static const MCPhysReg VecSgl[] = {
V0, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13,
V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27,
V28, V29, V30, V31, 0
};
static const MCPhysReg VecDbl[] = {
W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15, 0
};
static const MCPhysReg VecPred[] = {
Q0, Q1, Q2, Q3, 0
};
switch (RC->getID()) {
case IntRegsRegClassID:
return Int32;
case DoubleRegsRegClassID:
return Int64;
case PredRegsRegClassID:
return Pred;
case HvxVRRegClassID:
return VecSgl;
case HvxWRRegClassID:
return VecDbl;
case HvxQRRegClassID:
return VecPred;
default:
break;
}
static const MCPhysReg Empty[] = { 0 };
#ifndef NDEBUG
dbgs() << "Register class: " << getRegClassName(RC) << "\n";
#endif
llvm_unreachable("Unexpected register class");
return Empty;
}
const MCPhysReg *
HexagonRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
static const MCPhysReg CalleeSavedRegsV3[] = {
Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23,
Hexagon::R24, Hexagon::R25, Hexagon::R26, Hexagon::R27, 0
};
// Functions that contain a call to __builtin_eh_return also save the first 4
// parameter registers.
static const MCPhysReg CalleeSavedRegsV3EHReturn[] = {
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3,
Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23,
Hexagon::R24, Hexagon::R25, Hexagon::R26, Hexagon::R27, 0
};
bool HasEHReturn = MF->getInfo<HexagonMachineFunctionInfo>()->hasEHReturn();
return HasEHReturn ? CalleeSavedRegsV3EHReturn : CalleeSavedRegsV3;
}
const uint32_t *HexagonRegisterInfo::getCallPreservedMask(
const MachineFunction &MF, CallingConv::ID) const {
return HexagonCSR_RegMask;
}
BitVector HexagonRegisterInfo::getReservedRegs(const MachineFunction &MF)
const {
BitVector Reserved(getNumRegs());
Reserved.set(Hexagon::R29);
Reserved.set(Hexagon::R30);
Reserved.set(Hexagon::R31);
Reserved.set(Hexagon::VTMP);
// Guest registers.
Reserved.set(Hexagon::GELR); // G0
Reserved.set(Hexagon::GSR); // G1
Reserved.set(Hexagon::GOSP); // G2
Reserved.set(Hexagon::G3); // G3
// Control registers.
Reserved.set(Hexagon::SA0); // C0
Reserved.set(Hexagon::LC0); // C1
Reserved.set(Hexagon::SA1); // C2
Reserved.set(Hexagon::LC1); // C3
Reserved.set(Hexagon::P3_0); // C4
Reserved.set(Hexagon::USR); // C8
Reserved.set(Hexagon::PC); // C9
Reserved.set(Hexagon::UGP); // C10
Reserved.set(Hexagon::GP); // C11
Reserved.set(Hexagon::CS0); // C12
Reserved.set(Hexagon::CS1); // C13
Reserved.set(Hexagon::UPCYCLELO); // C14
Reserved.set(Hexagon::UPCYCLEHI); // C15
Reserved.set(Hexagon::FRAMELIMIT); // C16
Reserved.set(Hexagon::FRAMEKEY); // C17
Reserved.set(Hexagon::PKTCOUNTLO); // C18
Reserved.set(Hexagon::PKTCOUNTHI); // C19
Reserved.set(Hexagon::UTIMERLO); // C30
Reserved.set(Hexagon::UTIMERHI); // C31
// Out of the control registers, only C8 is explicitly defined in
// HexagonRegisterInfo.td. If others are defined, make sure to add
// them here as well.
Reserved.set(Hexagon::C8);
Reserved.set(Hexagon::USR_OVF);
// Leveraging these registers will require more work to recognize
// the new semantics posed, Hi/LoVec patterns, etc.
// Note well: if enabled, they should be restricted to only
// where `HST.useHVXOps() && HST.hasV67Ops()` is true.
for (auto Reg : Hexagon_MC::GetVectRegRev())
Reserved.set(Reg);
if (MF.getSubtarget<HexagonSubtarget>().hasReservedR19())
Reserved.set(Hexagon::R19);
Register AP =
MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg();
if (AP.isValid())
Reserved.set(AP);
for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x))
markSuperRegs(Reserved, x);
return Reserved;
}
bool HexagonRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, unsigned FIOp,
RegScavenger *RS) const {
static unsigned ReuseCount = 0;
//
// Hexagon_TODO: Do we need to enforce this for Hexagon?
assert(SPAdj == 0 && "Unexpected");
MachineInstr &MI = *II;
MachineBasicBlock &MB = *MI.getParent();
MachineFunction &MF = *MB.getParent();
auto &HST = MF.getSubtarget<HexagonSubtarget>();
auto &HII = *HST.getInstrInfo();
auto &HFI = *HST.getFrameLowering();
Register BP;
int FI = MI.getOperand(FIOp).getIndex();
// Select the base pointer (BP) and calculate the actual offset from BP
// to the beginning of the object at index FI.
int Offset = HFI.getFrameIndexReference(MF, FI, BP).getFixed();
// Add the offset from the instruction.
int RealOffset = Offset + MI.getOperand(FIOp+1).getImm();
unsigned Opc = MI.getOpcode();
switch (Opc) {
case Hexagon::PS_fia:
MI.setDesc(HII.get(Hexagon::A2_addi));
MI.getOperand(FIOp).ChangeToImmediate(RealOffset);
MI.removeOperand(FIOp+1);
return false;
case Hexagon::PS_fi:
// Set up the instruction for updating below.
MI.setDesc(HII.get(Hexagon::A2_addi));
break;
}
if (!HII.isValidOffset(Opc, RealOffset, this)) {
// If the offset is not valid, calculate the address in a temporary
// register and use it with offset 0.
int InstOffset = 0;
// The actual base register (BP) is typically shared between many
// instructions where frame indices are being replaced. In scalar
// instructions the offset range is large, and the need for an extra
// add instruction is infrequent. Vector loads/stores, however, have
// a much smaller offset range: [-8, 7), or #s4. In those cases it
// makes sense to "standardize" the immediate in the "addi" instruction
// so that multiple loads/stores could be based on it.
bool IsPair = false;
switch (MI.getOpcode()) {
// All of these instructions have the same format: base+#s4.
case Hexagon::PS_vloadrw_ai:
case Hexagon::PS_vloadrw_nt_ai:
case Hexagon::PS_vstorerw_ai:
case Hexagon::PS_vstorerw_nt_ai:
IsPair = true;
[[fallthrough]];
case Hexagon::PS_vloadrv_ai:
case Hexagon::PS_vloadrv_nt_ai:
case Hexagon::PS_vstorerv_ai:
case Hexagon::PS_vstorerv_nt_ai:
case Hexagon::V6_vL32b_ai:
case Hexagon::V6_vS32b_ai: {
unsigned HwLen = HST.getVectorLength();
if (RealOffset % HwLen == 0) {
int VecOffset = RealOffset / HwLen;
// Rewrite the offset as "base + [-8, 7)".
VecOffset += 8;
// Pairs are expanded into two instructions: make sure that both
// can use the same base (i.e. VecOffset+1 is not a different
// multiple of 16 than VecOffset).
if (!IsPair || (VecOffset + 1) % 16 != 0) {
RealOffset = (VecOffset & -16) * HwLen;
InstOffset = (VecOffset % 16 - 8) * HwLen;
}
}
}
}
// Search backwards in the block for "Reg = A2_addi BP, RealOffset".
// This will give us a chance to avoid creating a new register.
Register ReuseBP;
if (ReuseCount < FrameIndexReuseLimit) {
unsigned SearchCount = 0, SearchRange = FrameIndexSearchRange;
SmallSet<Register,2> SeenVRegs;
bool PassedCall = false;
LiveRegUnits Defs(*this), Uses(*this);
for (auto I = std::next(II.getReverse()), E = MB.rend(); I != E; ++I) {
if (SearchCount == SearchRange)
break;
++SearchCount;
const MachineInstr &BI = *I;
LiveRegUnits::accumulateUsedDefed(BI, Defs, Uses, this);
PassedCall |= BI.isCall();
for (const MachineOperand &Op : BI.operands()) {
if (SeenVRegs.size() > 1)
break;
if (Op.isReg() && Op.getReg().isVirtual())
SeenVRegs.insert(Op.getReg());
}
if (BI.getOpcode() != Hexagon::A2_addi)
continue;
if (BI.getOperand(1).getReg() != BP)
continue;
const auto &Op2 = BI.getOperand(2);
if (!Op2.isImm() || Op2.getImm() != RealOffset)
continue;
Register R = BI.getOperand(0).getReg();
if (R.isPhysical()) {
if (Defs.available(R))
ReuseBP = R;
} else if (R.isVirtual()) {
// Extending a range of a virtual register can be dangerous,
// since the scavenger will need to find a physical register
// for it. Avoid extending the range past a function call,
// and avoid overlapping it with another virtual register.
if (!PassedCall && SeenVRegs.size() <= 1)
ReuseBP = R;
}
break;
}
if (ReuseBP)
++ReuseCount;
}
auto &MRI = MF.getRegInfo();
if (!ReuseBP) {
ReuseBP = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
const DebugLoc &DL = MI.getDebugLoc();
BuildMI(MB, II, DL, HII.get(Hexagon::A2_addi), ReuseBP)
.addReg(BP)
.addImm(RealOffset);
}
BP = ReuseBP;
RealOffset = InstOffset;
}
MI.getOperand(FIOp).ChangeToRegister(BP, false, false, false);
MI.getOperand(FIOp+1).ChangeToImmediate(RealOffset);
return false;
}
bool HexagonRegisterInfo::shouldCoalesce(MachineInstr *MI,
const TargetRegisterClass *SrcRC, unsigned SubReg,
const TargetRegisterClass *DstRC, unsigned DstSubReg,
const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
// Coalescing will extend the live interval of the destination register.
// If the destination register is a vector pair, avoid introducing function
// calls into the interval, since it could result in a spilling of a pair
// instead of a single vector.
MachineFunction &MF = *MI->getParent()->getParent();
const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
if (!HST.useHVXOps() || NewRC->getID() != Hexagon::HvxWRRegClass.getID())
return true;
bool SmallSrc = SrcRC->getID() == Hexagon::HvxVRRegClass.getID();
bool SmallDst = DstRC->getID() == Hexagon::HvxVRRegClass.getID();
if (!SmallSrc && !SmallDst)
return true;
Register DstReg = MI->getOperand(0).getReg();
Register SrcReg = MI->getOperand(1).getReg();
const SlotIndexes &Indexes = *LIS.getSlotIndexes();
auto HasCall = [&Indexes] (const LiveInterval::Segment &S) {
for (SlotIndex I = S.start.getBaseIndex(), E = S.end.getBaseIndex();
I != E; I = I.getNextIndex()) {
if (const MachineInstr *MI = Indexes.getInstructionFromIndex(I))
if (MI->isCall())
return true;
}
return false;
};
if (SmallSrc == SmallDst) {
// Both must be true, because the case for both being false was
// checked earlier. Both registers will be coalesced into a register
// of a wider class (HvxWR), and we don't want its live range to
// span over calls.
return !any_of(LIS.getInterval(DstReg), HasCall) &&
!any_of(LIS.getInterval(SrcReg), HasCall);
}
// If one register is large (HvxWR) and the other is small (HvxVR), then
// coalescing is ok if the large is already live across a function call,
// or if the small one is not.
Register SmallReg = SmallSrc ? SrcReg : DstReg;
Register LargeReg = SmallSrc ? DstReg : SrcReg;
return any_of(LIS.getInterval(LargeReg), HasCall) ||
!any_of(LIS.getInterval(SmallReg), HasCall);
}
Register HexagonRegisterInfo::getFrameRegister(const MachineFunction
&MF) const {
const HexagonFrameLowering *TFI = getFrameLowering(MF);
if (TFI->hasFP(MF))
return getFrameRegister();
return getStackRegister();
}
Register HexagonRegisterInfo::getFrameRegister() const {
return Hexagon::R30;
}
Register HexagonRegisterInfo::getStackRegister() const {
return Hexagon::R29;
}
unsigned HexagonRegisterInfo::getHexagonSubRegIndex(
const TargetRegisterClass &RC, unsigned GenIdx) const {
assert(GenIdx == Hexagon::ps_sub_lo || GenIdx == Hexagon::ps_sub_hi);
static const unsigned ISub[] = { Hexagon::isub_lo, Hexagon::isub_hi };
static const unsigned VSub[] = { Hexagon::vsub_lo, Hexagon::vsub_hi };
static const unsigned WSub[] = { Hexagon::wsub_lo, Hexagon::wsub_hi };
switch (RC.getID()) {
case Hexagon::CtrRegs64RegClassID:
case Hexagon::DoubleRegsRegClassID:
return ISub[GenIdx];
case Hexagon::HvxWRRegClassID:
return VSub[GenIdx];
case Hexagon::HvxVQRRegClassID:
return WSub[GenIdx];
}
if (!RC.superclasses().empty())
return getHexagonSubRegIndex(*getRegClass(*RC.superclasses().begin()),
GenIdx);
llvm_unreachable("Invalid register class");
}
bool HexagonRegisterInfo::useFPForScavengingIndex(const MachineFunction &MF)
const {
return MF.getSubtarget<HexagonSubtarget>().getFrameLowering()->hasFP(MF);
}
const TargetRegisterClass *
HexagonRegisterInfo::getPointerRegClass(const MachineFunction &MF,
unsigned Kind) const {
return &Hexagon::IntRegsRegClass;
}
|