1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
//===- NVVMIntrRange.cpp - Set range attributes for NVVM intrinsics -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass adds appropriate range attributes for calls to NVVM
// intrinsics that return a limited range of values.
//
//===----------------------------------------------------------------------===//
#include "NVPTX.h"
#include "NVPTXUtilities.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/PassManager.h"
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "nvvm-intr-range"
namespace {
class NVVMIntrRange : public FunctionPass {
public:
static char ID;
NVVMIntrRange() : FunctionPass(ID) {}
bool runOnFunction(Function &) override;
};
} // namespace
FunctionPass *llvm::createNVVMIntrRangePass() { return new NVVMIntrRange(); }
char NVVMIntrRange::ID = 0;
INITIALIZE_PASS(NVVMIntrRange, "nvvm-intr-range",
"Add !range metadata to NVVM intrinsics.", false, false)
// Adds the passed-in [Low,High) range information as metadata to the
// passed-in call instruction.
static bool addRangeAttr(uint64_t Low, uint64_t High, IntrinsicInst *II) {
if (II->getMetadata(LLVMContext::MD_range))
return false;
const uint64_t BitWidth = II->getType()->getIntegerBitWidth();
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High));
if (auto CurrentRange = II->getRange())
Range = Range.intersectWith(CurrentRange.value());
II->addRangeRetAttr(Range);
return true;
}
static bool runNVVMIntrRange(Function &F) {
struct Vector3 {
unsigned X, Y, Z;
};
// All these annotations are only valid for kernel functions.
if (!isKernelFunction(F))
return false;
const auto OverallReqNTID = getOverallReqNTID(F);
const auto OverallMaxNTID = getOverallMaxNTID(F);
const auto OverallClusterRank = getOverallClusterRank(F);
// If this function lacks any range information, do nothing.
if (!(OverallReqNTID || OverallMaxNTID || OverallClusterRank))
return false;
const unsigned FunctionNTID = OverallReqNTID.value_or(
OverallMaxNTID.value_or(std::numeric_limits<unsigned>::max()));
const unsigned FunctionClusterRank =
OverallClusterRank.value_or(std::numeric_limits<unsigned>::max());
const Vector3 MaxBlockSize{std::min(1024u, FunctionNTID),
std::min(1024u, FunctionNTID),
std::min(64u, FunctionNTID)};
// We conservatively use the maximum grid size as an upper bound for the
// cluster rank.
const Vector3 MaxClusterRank{std::min(0x7fffffffu, FunctionClusterRank),
std::min(0xffffu, FunctionClusterRank),
std::min(0xffffu, FunctionClusterRank)};
const auto ProccessIntrinsic = [&](IntrinsicInst *II) -> bool {
switch (II->getIntrinsicID()) {
// Index within block
case Intrinsic::nvvm_read_ptx_sreg_tid_x:
return addRangeAttr(0, MaxBlockSize.X, II);
case Intrinsic::nvvm_read_ptx_sreg_tid_y:
return addRangeAttr(0, MaxBlockSize.Y, II);
case Intrinsic::nvvm_read_ptx_sreg_tid_z:
return addRangeAttr(0, MaxBlockSize.Z, II);
// Block size
case Intrinsic::nvvm_read_ptx_sreg_ntid_x:
return addRangeAttr(1, MaxBlockSize.X + 1, II);
case Intrinsic::nvvm_read_ptx_sreg_ntid_y:
return addRangeAttr(1, MaxBlockSize.Y + 1, II);
case Intrinsic::nvvm_read_ptx_sreg_ntid_z:
return addRangeAttr(1, MaxBlockSize.Z + 1, II);
// Cluster size
case Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_x:
return addRangeAttr(0, MaxClusterRank.X, II);
case Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_y:
return addRangeAttr(0, MaxClusterRank.Y, II);
case Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_z:
return addRangeAttr(0, MaxClusterRank.Z, II);
case Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_x:
return addRangeAttr(1, MaxClusterRank.X + 1, II);
case Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_y:
return addRangeAttr(1, MaxClusterRank.Y + 1, II);
case Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_z:
return addRangeAttr(1, MaxClusterRank.Z + 1, II);
case Intrinsic::nvvm_read_ptx_sreg_cluster_ctarank:
if (OverallClusterRank)
return addRangeAttr(0, FunctionClusterRank, II);
break;
case Intrinsic::nvvm_read_ptx_sreg_cluster_nctarank:
if (OverallClusterRank)
return addRangeAttr(1, FunctionClusterRank + 1, II);
break;
default:
return false;
}
return false;
};
// Go through the calls in this function.
bool Changed = false;
for (Instruction &I : instructions(F))
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
Changed |= ProccessIntrinsic(II);
return Changed;
}
bool NVVMIntrRange::runOnFunction(Function &F) { return runNVVMIntrRange(F); }
PreservedAnalyses NVVMIntrRangePass::run(Function &F,
FunctionAnalysisManager &AM) {
return runNVVMIntrRange(F) ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
|