1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
|
//===-- RISCVRegisterInfo.cpp - RISC-V Register Information -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISC-V implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "RISCVRegisterInfo.h"
#include "RISCV.h"
#include "RISCVSubtarget.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/Support/ErrorHandling.h"
#define GET_REGINFO_TARGET_DESC
#include "RISCVGenRegisterInfo.inc"
using namespace llvm;
static cl::opt<bool> DisableCostPerUse("riscv-disable-cost-per-use",
cl::init(false), cl::Hidden);
static cl::opt<bool>
DisableRegAllocHints("riscv-disable-regalloc-hints", cl::Hidden,
cl::init(false),
cl::desc("Disable two address hints for register "
"allocation"));
static_assert(RISCV::X1 == RISCV::X0 + 1, "Register list not consecutive");
static_assert(RISCV::X31 == RISCV::X0 + 31, "Register list not consecutive");
static_assert(RISCV::F1_H == RISCV::F0_H + 1, "Register list not consecutive");
static_assert(RISCV::F31_H == RISCV::F0_H + 31,
"Register list not consecutive");
static_assert(RISCV::F1_F == RISCV::F0_F + 1, "Register list not consecutive");
static_assert(RISCV::F31_F == RISCV::F0_F + 31,
"Register list not consecutive");
static_assert(RISCV::F1_D == RISCV::F0_D + 1, "Register list not consecutive");
static_assert(RISCV::F31_D == RISCV::F0_D + 31,
"Register list not consecutive");
static_assert(RISCV::F1_Q == RISCV::F0_Q + 1, "Register list not consecutive");
static_assert(RISCV::F31_Q == RISCV::F0_Q + 31,
"Register list not consecutive");
static_assert(RISCV::V1 == RISCV::V0 + 1, "Register list not consecutive");
static_assert(RISCV::V31 == RISCV::V0 + 31, "Register list not consecutive");
RISCVRegisterInfo::RISCVRegisterInfo(unsigned HwMode)
: RISCVGenRegisterInfo(RISCV::X1, /*DwarfFlavour*/0, /*EHFlavor*/0,
/*PC*/0, HwMode) {}
const MCPhysReg *
RISCVRegisterInfo::getIPRACSRegs(const MachineFunction *MF) const {
return CSR_IPRA_SaveList;
}
const MCPhysReg *
RISCVRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
auto &Subtarget = MF->getSubtarget<RISCVSubtarget>();
if (MF->getFunction().getCallingConv() == CallingConv::GHC)
return CSR_NoRegs_SaveList;
if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
return Subtarget.hasStdExtE() ? CSR_RT_MostRegs_RVE_SaveList
: CSR_RT_MostRegs_SaveList;
if (MF->getFunction().hasFnAttribute("interrupt")) {
if (Subtarget.hasVInstructions()) {
if (Subtarget.hasStdExtD())
return Subtarget.hasStdExtE() ? CSR_XLEN_F64_V_Interrupt_RVE_SaveList
: CSR_XLEN_F64_V_Interrupt_SaveList;
if (Subtarget.hasStdExtF())
return Subtarget.hasStdExtE() ? CSR_XLEN_F32_V_Interrupt_RVE_SaveList
: CSR_XLEN_F32_V_Interrupt_SaveList;
return Subtarget.hasStdExtE() ? CSR_XLEN_V_Interrupt_RVE_SaveList
: CSR_XLEN_V_Interrupt_SaveList;
}
if (Subtarget.hasStdExtD())
return Subtarget.hasStdExtE() ? CSR_XLEN_F64_Interrupt_RVE_SaveList
: CSR_XLEN_F64_Interrupt_SaveList;
if (Subtarget.hasStdExtF())
return Subtarget.hasStdExtE() ? CSR_XLEN_F32_Interrupt_RVE_SaveList
: CSR_XLEN_F32_Interrupt_SaveList;
return Subtarget.hasStdExtE() ? CSR_Interrupt_RVE_SaveList
: CSR_Interrupt_SaveList;
}
bool HasVectorCSR =
MF->getFunction().getCallingConv() == CallingConv::RISCV_VectorCall &&
Subtarget.hasVInstructions();
switch (Subtarget.getTargetABI()) {
default:
llvm_unreachable("Unrecognized ABI");
case RISCVABI::ABI_ILP32E:
case RISCVABI::ABI_LP64E:
return CSR_ILP32E_LP64E_SaveList;
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_LP64:
if (HasVectorCSR)
return CSR_ILP32_LP64_V_SaveList;
return CSR_ILP32_LP64_SaveList;
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_LP64F:
if (HasVectorCSR)
return CSR_ILP32F_LP64F_V_SaveList;
return CSR_ILP32F_LP64F_SaveList;
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64D:
if (HasVectorCSR)
return CSR_ILP32D_LP64D_V_SaveList;
return CSR_ILP32D_LP64D_SaveList;
}
}
BitVector RISCVRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
const RISCVFrameLowering *TFI = getFrameLowering(MF);
BitVector Reserved(getNumRegs());
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
for (size_t Reg = 0; Reg < getNumRegs(); Reg++) {
// Mark any GPRs requested to be reserved as such
if (Subtarget.isRegisterReservedByUser(Reg))
markSuperRegs(Reserved, Reg);
// Mark all the registers defined as constant in TableGen as reserved.
if (isConstantPhysReg(Reg))
markSuperRegs(Reserved, Reg);
}
// Use markSuperRegs to ensure any register aliases are also reserved
markSuperRegs(Reserved, RISCV::X2_H); // sp
markSuperRegs(Reserved, RISCV::X3_H); // gp
markSuperRegs(Reserved, RISCV::X4_H); // tp
if (TFI->hasFP(MF))
markSuperRegs(Reserved, RISCV::X8_H); // fp
// Reserve the base register if we need to realign the stack and allocate
// variable-sized objects at runtime.
if (TFI->hasBP(MF))
markSuperRegs(Reserved, RISCVABI::getBPReg()); // bp
// Additionally reserve dummy register used to form the register pair
// beginning with 'x0' for instructions that take register pairs.
markSuperRegs(Reserved, RISCV::DUMMY_REG_PAIR_WITH_X0);
// There are only 16 GPRs for RVE.
if (Subtarget.hasStdExtE())
for (MCPhysReg Reg = RISCV::X16_H; Reg <= RISCV::X31_H; Reg++)
markSuperRegs(Reserved, Reg);
// V registers for code generation. We handle them manually.
markSuperRegs(Reserved, RISCV::VL);
markSuperRegs(Reserved, RISCV::VTYPE);
markSuperRegs(Reserved, RISCV::VXSAT);
markSuperRegs(Reserved, RISCV::VXRM);
// Floating point environment registers.
markSuperRegs(Reserved, RISCV::FRM);
markSuperRegs(Reserved, RISCV::FFLAGS);
// SiFive VCIX state registers.
markSuperRegs(Reserved, RISCV::SF_VCIX_STATE);
if (MF.getFunction().getCallingConv() == CallingConv::GRAAL) {
if (Subtarget.hasStdExtE())
report_fatal_error("Graal reserved registers do not exist in RVE");
markSuperRegs(Reserved, RISCV::X23_H);
markSuperRegs(Reserved, RISCV::X27_H);
}
// Shadow stack pointer.
markSuperRegs(Reserved, RISCV::SSP);
assert(checkAllSuperRegsMarked(Reserved));
return Reserved;
}
bool RISCVRegisterInfo::isAsmClobberable(const MachineFunction &MF,
MCRegister PhysReg) const {
return !MF.getSubtarget().isRegisterReservedByUser(PhysReg);
}
const uint32_t *RISCVRegisterInfo::getNoPreservedMask() const {
return CSR_NoRegs_RegMask;
}
void RISCVRegisterInfo::adjustReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator II,
const DebugLoc &DL, Register DestReg,
Register SrcReg, StackOffset Offset,
MachineInstr::MIFlag Flag,
MaybeAlign RequiredAlign) const {
if (DestReg == SrcReg && !Offset.getFixed() && !Offset.getScalable())
return;
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = ST.getInstrInfo();
// Optimize compile time offset case
if (Offset.getScalable()) {
if (auto VLEN = ST.getRealVLen()) {
// 1. Multiply the number of v-slots by the (constant) length of register
const int64_t VLENB = *VLEN / 8;
assert(Offset.getScalable() % RISCV::RVVBytesPerBlock == 0 &&
"Reserve the stack by the multiple of one vector size.");
const int64_t NumOfVReg = Offset.getScalable() / 8;
const int64_t FixedOffset = NumOfVReg * VLENB;
if (!isInt<32>(FixedOffset)) {
report_fatal_error(
"Frame size outside of the signed 32-bit range not supported");
}
Offset = StackOffset::getFixed(FixedOffset + Offset.getFixed());
}
}
bool KillSrcReg = false;
if (Offset.getScalable()) {
unsigned ScalableAdjOpc = RISCV::ADD;
int64_t ScalableValue = Offset.getScalable();
if (ScalableValue < 0) {
ScalableValue = -ScalableValue;
ScalableAdjOpc = RISCV::SUB;
}
// Get vlenb and multiply vlen with the number of vector registers.
Register ScratchReg = DestReg;
if (DestReg == SrcReg)
ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
assert(ScalableValue > 0 && "There is no need to get VLEN scaled value.");
assert(ScalableValue % RISCV::RVVBytesPerBlock == 0 &&
"Reserve the stack by the multiple of one vector size.");
assert(isInt<32>(ScalableValue / RISCV::RVVBytesPerBlock) &&
"Expect the number of vector registers within 32-bits.");
uint32_t NumOfVReg = ScalableValue / RISCV::RVVBytesPerBlock;
// Only use vsetvli rather than vlenb if adjusting in the prologue or
// epilogue, otherwise it may disturb the VTYPE and VL status.
bool IsPrologueOrEpilogue =
Flag == MachineInstr::FrameSetup || Flag == MachineInstr::FrameDestroy;
bool UseVsetvliRatherThanVlenb =
IsPrologueOrEpilogue && ST.preferVsetvliOverReadVLENB();
if (UseVsetvliRatherThanVlenb && (NumOfVReg == 1 || NumOfVReg == 2 ||
NumOfVReg == 4 || NumOfVReg == 8)) {
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENBViaVSETVLIX0),
ScratchReg)
.addImm(NumOfVReg)
.setMIFlag(Flag);
BuildMI(MBB, II, DL, TII->get(ScalableAdjOpc), DestReg)
.addReg(SrcReg)
.addReg(ScratchReg, RegState::Kill)
.setMIFlag(Flag);
} else {
if (UseVsetvliRatherThanVlenb)
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENBViaVSETVLIX0),
ScratchReg)
.addImm(1)
.setMIFlag(Flag);
else
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), ScratchReg)
.setMIFlag(Flag);
if (ScalableAdjOpc == RISCV::ADD && ST.hasStdExtZba() &&
(NumOfVReg == 2 || NumOfVReg == 4 || NumOfVReg == 8)) {
unsigned Opc = NumOfVReg == 2
? RISCV::SH1ADD
: (NumOfVReg == 4 ? RISCV::SH2ADD : RISCV::SH3ADD);
BuildMI(MBB, II, DL, TII->get(Opc), DestReg)
.addReg(ScratchReg, RegState::Kill)
.addReg(SrcReg)
.setMIFlag(Flag);
} else {
TII->mulImm(MF, MBB, II, DL, ScratchReg, NumOfVReg, Flag);
BuildMI(MBB, II, DL, TII->get(ScalableAdjOpc), DestReg)
.addReg(SrcReg)
.addReg(ScratchReg, RegState::Kill)
.setMIFlag(Flag);
}
}
SrcReg = DestReg;
KillSrcReg = true;
}
int64_t Val = Offset.getFixed();
if (DestReg == SrcReg && Val == 0)
return;
const uint64_t Align = RequiredAlign.valueOrOne().value();
if (isInt<12>(Val)) {
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), DestReg)
.addReg(SrcReg, getKillRegState(KillSrcReg))
.addImm(Val)
.setMIFlag(Flag);
return;
}
// Use the QC_E_ADDI instruction from the Xqcilia extension that can take a
// signed 26-bit immediate.
if (ST.hasVendorXqcilia() && isInt<26>(Val)) {
// The one case where using this instruction is sub-optimal is if Val can be
// materialized with a single compressible LUI and following add/sub is also
// compressible. Avoid doing this if that is the case.
int Hi20 = (Val & 0xFFFFF000) >> 12;
bool IsCompressLUI =
((Val & 0xFFF) == 0) && (Hi20 != 0) &&
(isUInt<5>(Hi20) || (Hi20 >= 0xfffe0 && Hi20 <= 0xfffff));
bool IsCompressAddSub =
(SrcReg == DestReg) &&
((Val > 0 && RISCV::GPRNoX0RegClass.contains(SrcReg)) ||
(Val < 0 && RISCV::GPRCRegClass.contains(SrcReg)));
if (!(IsCompressLUI && IsCompressAddSub)) {
BuildMI(MBB, II, DL, TII->get(RISCV::QC_E_ADDI), DestReg)
.addReg(SrcReg, getKillRegState(KillSrcReg))
.addImm(Val)
.setMIFlag(Flag);
return;
}
}
// Try to split the offset across two ADDIs. We need to keep the intermediate
// result aligned after each ADDI. We need to determine the maximum value we
// can put in each ADDI. In the negative direction, we can use -2048 which is
// always sufficiently aligned. In the positive direction, we need to find the
// largest 12-bit immediate that is aligned. Exclude -4096 since it can be
// created with LUI.
assert(Align < 2048 && "Required alignment too large");
int64_t MaxPosAdjStep = 2048 - Align;
if (Val > -4096 && Val <= (2 * MaxPosAdjStep)) {
int64_t FirstAdj = Val < 0 ? -2048 : MaxPosAdjStep;
Val -= FirstAdj;
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), DestReg)
.addReg(SrcReg, getKillRegState(KillSrcReg))
.addImm(FirstAdj)
.setMIFlag(Flag);
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), DestReg)
.addReg(DestReg, RegState::Kill)
.addImm(Val)
.setMIFlag(Flag);
return;
}
// Use shNadd if doing so lets us materialize a 12 bit immediate with a single
// instruction. This saves 1 instruction over the full lui/addi+add fallback
// path. We avoid anything which can be done with a single lui as it might
// be compressible. Note that the sh1add case is fully covered by the 2x addi
// case just above and is thus omitted.
if (ST.hasStdExtZba() && (Val & 0xFFF) != 0) {
unsigned Opc = 0;
if (isShiftedInt<12, 3>(Val)) {
Opc = RISCV::SH3ADD;
Val = Val >> 3;
} else if (isShiftedInt<12, 2>(Val)) {
Opc = RISCV::SH2ADD;
Val = Val >> 2;
}
if (Opc) {
Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
TII->movImm(MBB, II, DL, ScratchReg, Val, Flag);
BuildMI(MBB, II, DL, TII->get(Opc), DestReg)
.addReg(ScratchReg, RegState::Kill)
.addReg(SrcReg, getKillRegState(KillSrcReg))
.setMIFlag(Flag);
return;
}
}
unsigned Opc = RISCV::ADD;
if (Val < 0) {
Val = -Val;
Opc = RISCV::SUB;
}
Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
TII->movImm(MBB, II, DL, ScratchReg, Val, Flag);
BuildMI(MBB, II, DL, TII->get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrcReg))
.addReg(ScratchReg, RegState::Kill)
.setMIFlag(Flag);
}
// Split a VSPILLx_Mx pseudo into multiple whole register stores separated by
// LMUL*VLENB bytes.
void RISCVRegisterInfo::lowerVSPILL(MachineBasicBlock::iterator II) const {
DebugLoc DL = II->getDebugLoc();
MachineBasicBlock &MBB = *II->getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
const TargetInstrInfo *TII = STI.getInstrInfo();
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
auto ZvlssegInfo = RISCV::isRVVSpillForZvlsseg(II->getOpcode());
unsigned NF = ZvlssegInfo->first;
unsigned LMUL = ZvlssegInfo->second;
assert(NF * LMUL <= 8 && "Invalid NF/LMUL combinations.");
unsigned Opcode, SubRegIdx;
switch (LMUL) {
default:
llvm_unreachable("LMUL must be 1, 2, or 4.");
case 1:
Opcode = RISCV::VS1R_V;
SubRegIdx = RISCV::sub_vrm1_0;
break;
case 2:
Opcode = RISCV::VS2R_V;
SubRegIdx = RISCV::sub_vrm2_0;
break;
case 4:
Opcode = RISCV::VS4R_V;
SubRegIdx = RISCV::sub_vrm4_0;
break;
}
static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
"Unexpected subreg numbering");
static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
"Unexpected subreg numbering");
static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
"Unexpected subreg numbering");
Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
// Optimize for constant VLEN.
if (auto VLEN = STI.getRealVLen()) {
const int64_t VLENB = *VLEN / 8;
int64_t Offset = VLENB * LMUL;
STI.getInstrInfo()->movImm(MBB, II, DL, VL, Offset);
} else {
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL);
uint32_t ShiftAmount = Log2_32(LMUL);
if (ShiftAmount != 0)
BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
.addReg(VL)
.addImm(ShiftAmount);
}
Register SrcReg = II->getOperand(0).getReg();
Register Base = II->getOperand(1).getReg();
bool IsBaseKill = II->getOperand(1).isKill();
Register NewBase = MRI.createVirtualRegister(&RISCV::GPRRegClass);
auto *OldMMO = *(II->memoperands_begin());
LocationSize OldLoc = OldMMO->getSize();
assert(OldLoc.isPrecise() && OldLoc.getValue().isKnownMultipleOf(NF));
TypeSize NewSize = OldLoc.getValue().divideCoefficientBy(NF);
auto *NewMMO = MF.getMachineMemOperand(OldMMO, OldMMO->getOffset(), NewSize);
for (unsigned I = 0; I < NF; ++I) {
// Adding implicit-use of super register to describe we are using part of
// super register, that prevents machine verifier complaining when part of
// subreg is undef, see comment in MachineVerifier::checkLiveness for more
// detail.
BuildMI(MBB, II, DL, TII->get(Opcode))
.addReg(TRI->getSubReg(SrcReg, SubRegIdx + I))
.addReg(Base, getKillRegState(I == NF - 1))
.addMemOperand(NewMMO)
.addReg(SrcReg, RegState::Implicit);
if (I != NF - 1)
BuildMI(MBB, II, DL, TII->get(RISCV::ADD), NewBase)
.addReg(Base, getKillRegState(I != 0 || IsBaseKill))
.addReg(VL, getKillRegState(I == NF - 2));
Base = NewBase;
}
II->eraseFromParent();
}
// Split a VSPILLx_Mx pseudo into multiple whole register loads separated by
// LMUL*VLENB bytes.
void RISCVRegisterInfo::lowerVRELOAD(MachineBasicBlock::iterator II) const {
DebugLoc DL = II->getDebugLoc();
MachineBasicBlock &MBB = *II->getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
const TargetInstrInfo *TII = STI.getInstrInfo();
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
auto ZvlssegInfo = RISCV::isRVVSpillForZvlsseg(II->getOpcode());
unsigned NF = ZvlssegInfo->first;
unsigned LMUL = ZvlssegInfo->second;
assert(NF * LMUL <= 8 && "Invalid NF/LMUL combinations.");
unsigned Opcode, SubRegIdx;
switch (LMUL) {
default:
llvm_unreachable("LMUL must be 1, 2, or 4.");
case 1:
Opcode = RISCV::VL1RE8_V;
SubRegIdx = RISCV::sub_vrm1_0;
break;
case 2:
Opcode = RISCV::VL2RE8_V;
SubRegIdx = RISCV::sub_vrm2_0;
break;
case 4:
Opcode = RISCV::VL4RE8_V;
SubRegIdx = RISCV::sub_vrm4_0;
break;
}
static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
"Unexpected subreg numbering");
static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
"Unexpected subreg numbering");
static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
"Unexpected subreg numbering");
Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
// Optimize for constant VLEN.
if (auto VLEN = STI.getRealVLen()) {
const int64_t VLENB = *VLEN / 8;
int64_t Offset = VLENB * LMUL;
STI.getInstrInfo()->movImm(MBB, II, DL, VL, Offset);
} else {
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL);
uint32_t ShiftAmount = Log2_32(LMUL);
if (ShiftAmount != 0)
BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
.addReg(VL)
.addImm(ShiftAmount);
}
Register DestReg = II->getOperand(0).getReg();
Register Base = II->getOperand(1).getReg();
bool IsBaseKill = II->getOperand(1).isKill();
Register NewBase = MRI.createVirtualRegister(&RISCV::GPRRegClass);
auto *OldMMO = *(II->memoperands_begin());
LocationSize OldLoc = OldMMO->getSize();
assert(OldLoc.isPrecise() && OldLoc.getValue().isKnownMultipleOf(NF));
TypeSize NewSize = OldLoc.getValue().divideCoefficientBy(NF);
auto *NewMMO = MF.getMachineMemOperand(OldMMO, OldMMO->getOffset(), NewSize);
for (unsigned I = 0; I < NF; ++I) {
BuildMI(MBB, II, DL, TII->get(Opcode),
TRI->getSubReg(DestReg, SubRegIdx + I))
.addReg(Base, getKillRegState(I == NF - 1))
.addMemOperand(NewMMO);
if (I != NF - 1)
BuildMI(MBB, II, DL, TII->get(RISCV::ADD), NewBase)
.addReg(Base, getKillRegState(I != 0 || IsBaseKill))
.addReg(VL, getKillRegState(I == NF - 2));
Base = NewBase;
}
II->eraseFromParent();
}
bool RISCVRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected non-zero SPAdj value");
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI.getDebugLoc();
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
Register FrameReg;
StackOffset Offset =
getFrameLowering(MF)->getFrameIndexReference(MF, FrameIndex, FrameReg);
bool IsRVVSpill = RISCV::isRVVSpill(MI);
if (!IsRVVSpill)
Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
if (!isInt<32>(Offset.getFixed())) {
report_fatal_error(
"Frame offsets outside of the signed 32-bit range not supported");
}
if (!IsRVVSpill) {
int64_t Val = Offset.getFixed();
int64_t Lo12 = SignExtend64<12>(Val);
unsigned Opc = MI.getOpcode();
if (Opc == RISCV::ADDI && !isInt<12>(Val)) {
// We chose to emit the canonical immediate sequence rather than folding
// the offset into the using add under the theory that doing so doesn't
// save dynamic instruction count and some target may fuse the canonical
// 32 bit immediate sequence. We still need to clear the portion of the
// offset encoded in the immediate.
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0);
} else if ((Opc == RISCV::PREFETCH_I || Opc == RISCV::PREFETCH_R ||
Opc == RISCV::PREFETCH_W) &&
(Lo12 & 0b11111) != 0) {
// Prefetch instructions require the offset to be 32 byte aligned.
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0);
} else if ((Opc == RISCV::PseudoRV32ZdinxLD ||
Opc == RISCV::PseudoRV32ZdinxSD) &&
Lo12 >= 2044) {
// This instruction will be split into 2 instructions. The second
// instruction will add 4 to the immediate. If that would overflow 12
// bits, we can't fold the offset.
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0);
} else {
// We can encode an add with 12 bit signed immediate in the immediate
// operand of our user instruction. As a result, the remaining
// offset can by construction, at worst, a LUI and a ADD.
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Lo12);
Offset = StackOffset::get((uint64_t)Val - (uint64_t)Lo12,
Offset.getScalable());
}
}
if (Offset.getScalable() || Offset.getFixed()) {
Register DestReg;
if (MI.getOpcode() == RISCV::ADDI)
DestReg = MI.getOperand(0).getReg();
else
DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
adjustReg(*II->getParent(), II, DL, DestReg, FrameReg, Offset,
MachineInstr::NoFlags, std::nullopt);
MI.getOperand(FIOperandNum).ChangeToRegister(DestReg, /*IsDef*/false,
/*IsImp*/false,
/*IsKill*/true);
} else {
MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, /*IsDef*/false,
/*IsImp*/false,
/*IsKill*/false);
}
// If after materializing the adjustment, we have a pointless ADDI, remove it
if (MI.getOpcode() == RISCV::ADDI &&
MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
MI.getOperand(2).getImm() == 0) {
MI.eraseFromParent();
return true;
}
// Handle spill/fill of synthetic register classes for segment operations to
// ensure correctness in the edge case one gets spilled. There are many
// possible optimizations here, but given the extreme rarity of such spills,
// we prefer simplicity of implementation for now.
switch (MI.getOpcode()) {
case RISCV::PseudoVSPILL2_M1:
case RISCV::PseudoVSPILL2_M2:
case RISCV::PseudoVSPILL2_M4:
case RISCV::PseudoVSPILL3_M1:
case RISCV::PseudoVSPILL3_M2:
case RISCV::PseudoVSPILL4_M1:
case RISCV::PseudoVSPILL4_M2:
case RISCV::PseudoVSPILL5_M1:
case RISCV::PseudoVSPILL6_M1:
case RISCV::PseudoVSPILL7_M1:
case RISCV::PseudoVSPILL8_M1:
lowerVSPILL(II);
return true;
case RISCV::PseudoVRELOAD2_M1:
case RISCV::PseudoVRELOAD2_M2:
case RISCV::PseudoVRELOAD2_M4:
case RISCV::PseudoVRELOAD3_M1:
case RISCV::PseudoVRELOAD3_M2:
case RISCV::PseudoVRELOAD4_M1:
case RISCV::PseudoVRELOAD4_M2:
case RISCV::PseudoVRELOAD5_M1:
case RISCV::PseudoVRELOAD6_M1:
case RISCV::PseudoVRELOAD7_M1:
case RISCV::PseudoVRELOAD8_M1:
lowerVRELOAD(II);
return true;
}
return false;
}
bool RISCVRegisterInfo::requiresVirtualBaseRegisters(
const MachineFunction &MF) const {
return true;
}
// Returns true if the instruction's frame index reference would be better
// served by a base register other than FP or SP.
// Used by LocalStackSlotAllocation pass to determine which frame index
// references it should create new base registers for.
bool RISCVRegisterInfo::needsFrameBaseReg(MachineInstr *MI,
int64_t Offset) const {
unsigned FIOperandNum = 0;
for (; !MI->getOperand(FIOperandNum).isFI(); FIOperandNum++)
assert(FIOperandNum < MI->getNumOperands() &&
"Instr doesn't have FrameIndex operand");
// For RISC-V, The machine instructions that include a FrameIndex operand
// are load/store, ADDI instructions.
unsigned MIFrm = RISCVII::getFormat(MI->getDesc().TSFlags);
if (MIFrm != RISCVII::InstFormatI && MIFrm != RISCVII::InstFormatS)
return false;
// We only generate virtual base registers for loads and stores, so
// return false for everything else.
if (!MI->mayLoad() && !MI->mayStore())
return false;
const MachineFunction &MF = *MI->getMF();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const RISCVFrameLowering *TFI = getFrameLowering(MF);
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (TFI->hasFP(MF) && !shouldRealignStack(MF)) {
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
// Estimate the stack size used to store callee saved registers(
// excludes reserved registers).
unsigned CalleeSavedSize = 0;
for (const MCPhysReg *R = MRI.getCalleeSavedRegs(); MCPhysReg Reg = *R;
++R) {
if (Subtarget.isRegisterReservedByUser(Reg))
continue;
if (RISCV::GPRRegClass.contains(Reg))
CalleeSavedSize += getSpillSize(RISCV::GPRRegClass);
else if (RISCV::FPR64RegClass.contains(Reg))
CalleeSavedSize += getSpillSize(RISCV::FPR64RegClass);
else if (RISCV::FPR32RegClass.contains(Reg))
CalleeSavedSize += getSpillSize(RISCV::FPR32RegClass);
// Ignore vector registers.
}
int64_t MaxFPOffset = Offset - CalleeSavedSize;
return !isFrameOffsetLegal(MI, RISCV::X8, MaxFPOffset);
}
// Assume 128 bytes spill slots size to estimate the maximum possible
// offset relative to the stack pointer.
// FIXME: The 128 is copied from ARM. We should run some statistics and pick a
// real one for RISC-V.
int64_t MaxSPOffset = Offset + 128;
MaxSPOffset += MFI.getLocalFrameSize();
return !isFrameOffsetLegal(MI, RISCV::X2, MaxSPOffset);
}
// Determine whether a given base register plus offset immediate is
// encodable to resolve a frame index.
bool RISCVRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
Register BaseReg,
int64_t Offset) const {
unsigned FIOperandNum = 0;
while (!MI->getOperand(FIOperandNum).isFI()) {
FIOperandNum++;
assert(FIOperandNum < MI->getNumOperands() &&
"Instr does not have a FrameIndex operand!");
}
Offset += getFrameIndexInstrOffset(MI, FIOperandNum);
return isInt<12>(Offset);
}
// Insert defining instruction(s) for a pointer to FrameIdx before
// insertion point I.
// Return materialized frame pointer.
Register RISCVRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
int FrameIdx,
int64_t Offset) const {
MachineBasicBlock::iterator MBBI = MBB->begin();
DebugLoc DL;
if (MBBI != MBB->end())
DL = MBBI->getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MFI = MF->getRegInfo();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
Register BaseReg = MFI.createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(*MBB, MBBI, DL, TII->get(RISCV::ADDI), BaseReg)
.addFrameIndex(FrameIdx)
.addImm(Offset);
return BaseReg;
}
// Resolve a frame index operand of an instruction to reference the
// indicated base register plus offset instead.
void RISCVRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
int64_t Offset) const {
unsigned FIOperandNum = 0;
while (!MI.getOperand(FIOperandNum).isFI()) {
FIOperandNum++;
assert(FIOperandNum < MI.getNumOperands() &&
"Instr does not have a FrameIndex operand!");
}
Offset += getFrameIndexInstrOffset(&MI, FIOperandNum);
// FrameIndex Operands are always represented as a
// register followed by an immediate.
MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
}
// Get the offset from the referenced frame index in the instruction,
// if there is one.
int64_t RISCVRegisterInfo::getFrameIndexInstrOffset(const MachineInstr *MI,
int Idx) const {
assert((RISCVII::getFormat(MI->getDesc().TSFlags) == RISCVII::InstFormatI ||
RISCVII::getFormat(MI->getDesc().TSFlags) == RISCVII::InstFormatS) &&
"The MI must be I or S format.");
assert(MI->getOperand(Idx).isFI() && "The Idx'th operand of MI is not a "
"FrameIndex operand");
return MI->getOperand(Idx + 1).getImm();
}
Register RISCVRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = getFrameLowering(MF);
return TFI->hasFP(MF) ? RISCV::X8 : RISCV::X2;
}
StringRef RISCVRegisterInfo::getRegAsmName(MCRegister Reg) const {
if (Reg == RISCV::SF_VCIX_STATE)
return "sf.vcix_state";
return TargetRegisterInfo::getRegAsmName(Reg);
}
const uint32_t *
RISCVRegisterInfo::getCallPreservedMask(const MachineFunction & MF,
CallingConv::ID CC) const {
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
if (CC == CallingConv::GHC)
return CSR_NoRegs_RegMask;
RISCVABI::ABI ABI = Subtarget.getTargetABI();
if (CC == CallingConv::PreserveMost) {
if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E)
return CSR_RT_MostRegs_RVE_RegMask;
return CSR_RT_MostRegs_RegMask;
}
switch (ABI) {
default:
llvm_unreachable("Unrecognized ABI");
case RISCVABI::ABI_ILP32E:
case RISCVABI::ABI_LP64E:
return CSR_ILP32E_LP64E_RegMask;
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_LP64:
if (CC == CallingConv::RISCV_VectorCall)
return CSR_ILP32_LP64_V_RegMask;
return CSR_ILP32_LP64_RegMask;
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_LP64F:
if (CC == CallingConv::RISCV_VectorCall)
return CSR_ILP32F_LP64F_V_RegMask;
return CSR_ILP32F_LP64F_RegMask;
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64D:
if (CC == CallingConv::RISCV_VectorCall)
return CSR_ILP32D_LP64D_V_RegMask;
return CSR_ILP32D_LP64D_RegMask;
}
}
const TargetRegisterClass *
RISCVRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
const MachineFunction &) const {
if (RC == &RISCV::VMV0RegClass)
return &RISCV::VRRegClass;
if (RC == &RISCV::VRNoV0RegClass)
return &RISCV::VRRegClass;
if (RC == &RISCV::VRM2NoV0RegClass)
return &RISCV::VRM2RegClass;
if (RC == &RISCV::VRM4NoV0RegClass)
return &RISCV::VRM4RegClass;
if (RC == &RISCV::VRM8NoV0RegClass)
return &RISCV::VRM8RegClass;
return RC;
}
void RISCVRegisterInfo::getOffsetOpcodes(const StackOffset &Offset,
SmallVectorImpl<uint64_t> &Ops) const {
// VLENB is the length of a vector register in bytes. We use <vscale x 8 x i8>
// to represent one vector register. The dwarf offset is
// VLENB * scalable_offset / 8.
assert(Offset.getScalable() % 8 == 0 && "Invalid frame offset");
// Add fixed-sized offset using existing DIExpression interface.
DIExpression::appendOffset(Ops, Offset.getFixed());
unsigned VLENB = getDwarfRegNum(RISCV::VLENB, true);
int64_t VLENBSized = Offset.getScalable() / 8;
if (VLENBSized > 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(VLENBSized);
Ops.append({dwarf::DW_OP_bregx, VLENB, 0ULL});
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_plus);
} else if (VLENBSized < 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(-VLENBSized);
Ops.append({dwarf::DW_OP_bregx, VLENB, 0ULL});
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_minus);
}
}
unsigned
RISCVRegisterInfo::getRegisterCostTableIndex(const MachineFunction &MF) const {
return MF.getSubtarget<RISCVSubtarget>().hasStdExtZca() && !DisableCostPerUse
? 1
: 0;
}
float RISCVRegisterInfo::getSpillWeightScaleFactor(
const TargetRegisterClass *RC) const {
return getRegClassWeight(RC).RegWeight;
}
// Add two address hints to improve chances of being able to use a compressed
// instruction.
bool RISCVRegisterInfo::getRegAllocationHints(
Register VirtReg, ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
const MachineRegisterInfo *MRI = &MF.getRegInfo();
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
VirtReg, Order, Hints, MF, VRM, Matrix);
if (!VRM || DisableRegAllocHints)
return BaseImplRetVal;
// Add any two address hints after any copy hints.
SmallSet<Register, 4> TwoAddrHints;
auto tryAddHint = [&](const MachineOperand &VRRegMO, const MachineOperand &MO,
bool NeedGPRC) -> void {
Register Reg = MO.getReg();
Register PhysReg = Reg.isPhysical() ? Reg : Register(VRM->getPhys(Reg));
// TODO: Support GPRPair subregisters? Need to be careful with even/odd
// registers. If the virtual register is an odd register of a pair and the
// physical register is even (or vice versa), we should not add the hint.
if (PhysReg && (!NeedGPRC || RISCV::GPRCRegClass.contains(PhysReg)) &&
!MO.getSubReg() && !VRRegMO.getSubReg()) {
if (!MRI->isReserved(PhysReg) && !is_contained(Hints, PhysReg))
TwoAddrHints.insert(PhysReg);
}
};
// This is all of the compressible binary instructions. If an instruction
// needs GPRC register class operands \p NeedGPRC will be set to true.
auto isCompressible = [&Subtarget](const MachineInstr &MI, bool &NeedGPRC) {
NeedGPRC = false;
switch (MI.getOpcode()) {
default:
return false;
case RISCV::AND:
case RISCV::OR:
case RISCV::XOR:
case RISCV::SUB:
case RISCV::ADDW:
case RISCV::SUBW:
NeedGPRC = true;
return true;
case RISCV::ANDI: {
NeedGPRC = true;
if (!MI.getOperand(2).isImm())
return false;
int64_t Imm = MI.getOperand(2).getImm();
if (isInt<6>(Imm))
return true;
// c.zext.b
return Subtarget.hasStdExtZcb() && Imm == 255;
}
case RISCV::SRAI:
case RISCV::SRLI:
NeedGPRC = true;
return true;
case RISCV::ADD:
case RISCV::SLLI:
return true;
case RISCV::ADDI:
case RISCV::ADDIW:
return MI.getOperand(2).isImm() && isInt<6>(MI.getOperand(2).getImm());
case RISCV::MUL:
case RISCV::SEXT_B:
case RISCV::SEXT_H:
case RISCV::ZEXT_H_RV32:
case RISCV::ZEXT_H_RV64:
// c.mul, c.sext.b, c.sext.h, c.zext.h
NeedGPRC = true;
return Subtarget.hasStdExtZcb();
case RISCV::ADD_UW:
// c.zext.w
NeedGPRC = true;
return Subtarget.hasStdExtZcb() && MI.getOperand(2).isReg() &&
MI.getOperand(2).getReg() == RISCV::X0;
case RISCV::XORI:
// c.not
NeedGPRC = true;
return Subtarget.hasStdExtZcb() && MI.getOperand(2).isImm() &&
MI.getOperand(2).getImm() == -1;
}
};
// Returns true if this operand is compressible. For non-registers it always
// returns true. Immediate range was already checked in isCompressible.
// For registers, it checks if the register is a GPRC register. reg-reg
// instructions that require GPRC need all register operands to be GPRC.
auto isCompressibleOpnd = [&](const MachineOperand &MO) {
if (!MO.isReg())
return true;
Register Reg = MO.getReg();
Register PhysReg = Reg.isPhysical() ? Reg : Register(VRM->getPhys(Reg));
return PhysReg && RISCV::GPRCRegClass.contains(PhysReg);
};
for (auto &MO : MRI->reg_nodbg_operands(VirtReg)) {
const MachineInstr &MI = *MO.getParent();
unsigned OpIdx = MO.getOperandNo();
bool NeedGPRC;
if (isCompressible(MI, NeedGPRC)) {
if (OpIdx == 0 && MI.getOperand(1).isReg()) {
if (!NeedGPRC || MI.getNumExplicitOperands() < 3 ||
MI.getOpcode() == RISCV::ADD_UW ||
isCompressibleOpnd(MI.getOperand(2)))
tryAddHint(MO, MI.getOperand(1), NeedGPRC);
if (MI.isCommutable() && MI.getOperand(2).isReg() &&
(!NeedGPRC || isCompressibleOpnd(MI.getOperand(1))))
tryAddHint(MO, MI.getOperand(2), NeedGPRC);
} else if (OpIdx == 1 && (!NeedGPRC || MI.getNumExplicitOperands() < 3 ||
isCompressibleOpnd(MI.getOperand(2)))) {
tryAddHint(MO, MI.getOperand(0), NeedGPRC);
} else if (MI.isCommutable() && OpIdx == 2 &&
(!NeedGPRC || isCompressibleOpnd(MI.getOperand(1)))) {
tryAddHint(MO, MI.getOperand(0), NeedGPRC);
}
}
// Add a hint if it would allow auipc/lui+addi(w) fusion.
if ((MI.getOpcode() == RISCV::ADDIW || MI.getOpcode() == RISCV::ADDI) &&
MI.getOperand(1).isReg()) {
const MachineBasicBlock &MBB = *MI.getParent();
MachineBasicBlock::const_iterator I = MI.getIterator();
// Is the previous instruction a LUI or AUIPC that can be fused?
if (I != MBB.begin()) {
I = skipDebugInstructionsBackward(std::prev(I), MBB.begin());
if (((I->getOpcode() == RISCV::LUI && Subtarget.hasLUIADDIFusion()) ||
(I->getOpcode() == RISCV::AUIPC &&
Subtarget.hasAUIPCADDIFusion())) &&
I->getOperand(0).getReg() == MI.getOperand(1).getReg()) {
if (OpIdx == 0)
tryAddHint(MO, MI.getOperand(1), /*NeedGPRC=*/false);
else
tryAddHint(MO, MI.getOperand(0), /*NeedGPRC=*/false);
}
}
}
}
for (MCPhysReg OrderReg : Order)
if (TwoAddrHints.count(OrderReg))
Hints.push_back(OrderReg);
return BaseImplRetVal;
}
|