1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
|
//===- SpillUtils.cpp - Utilities for checking for spills ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Coroutines/SpillUtils.h"
#include "CoroInternal.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
namespace llvm {
namespace coro {
namespace {
typedef SmallPtrSet<BasicBlock *, 8> VisitedBlocksSet;
static bool isNonSpilledIntrinsic(Instruction &I) {
// Structural coroutine intrinsics that should not be spilled into the
// coroutine frame.
return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I);
}
/// Does control flow starting at the given block ever reach a suspend
/// instruction before reaching a block in VisitedOrFreeBBs?
static bool isSuspendReachableFrom(BasicBlock *From,
VisitedBlocksSet &VisitedOrFreeBBs) {
// Eagerly try to add this block to the visited set. If it's already
// there, stop recursing; this path doesn't reach a suspend before
// either looping or reaching a freeing block.
if (!VisitedOrFreeBBs.insert(From).second)
return false;
// We assume that we'll already have split suspends into their own blocks.
if (coro::isSuspendBlock(From))
return true;
// Recurse on the successors.
for (auto *Succ : successors(From)) {
if (isSuspendReachableFrom(Succ, VisitedOrFreeBBs))
return true;
}
return false;
}
/// Is the given alloca "local", i.e. bounded in lifetime to not cross a
/// suspend point?
static bool isLocalAlloca(CoroAllocaAllocInst *AI) {
// Seed the visited set with all the basic blocks containing a free
// so that we won't pass them up.
VisitedBlocksSet VisitedOrFreeBBs;
for (auto *User : AI->users()) {
if (auto FI = dyn_cast<CoroAllocaFreeInst>(User))
VisitedOrFreeBBs.insert(FI->getParent());
}
return !isSuspendReachableFrom(AI->getParent(), VisitedOrFreeBBs);
}
/// Turn the given coro.alloca.alloc call into a dynamic allocation.
/// This happens during the all-instructions iteration, so it must not
/// delete the call.
static Instruction *
lowerNonLocalAlloca(CoroAllocaAllocInst *AI, const coro::Shape &Shape,
SmallVectorImpl<Instruction *> &DeadInsts) {
IRBuilder<> Builder(AI);
auto Alloc = Shape.emitAlloc(Builder, AI->getSize(), nullptr);
for (User *U : AI->users()) {
if (isa<CoroAllocaGetInst>(U)) {
U->replaceAllUsesWith(Alloc);
} else {
auto FI = cast<CoroAllocaFreeInst>(U);
Builder.SetInsertPoint(FI);
Shape.emitDealloc(Builder, Alloc, nullptr);
}
DeadInsts.push_back(cast<Instruction>(U));
}
// Push this on last so that it gets deleted after all the others.
DeadInsts.push_back(AI);
// Return the new allocation value so that we can check for needed spills.
return cast<Instruction>(Alloc);
}
// We need to make room to insert a spill after initial PHIs, but before
// catchswitch instruction. Placing it before violates the requirement that
// catchswitch, like all other EHPads must be the first nonPHI in a block.
//
// Split away catchswitch into a separate block and insert in its place:
//
// cleanuppad <InsertPt> cleanupret.
//
// cleanupret instruction will act as an insert point for the spill.
static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) {
BasicBlock *CurrentBlock = CatchSwitch->getParent();
BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch);
CurrentBlock->getTerminator()->eraseFromParent();
auto *CleanupPad =
CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock);
auto *CleanupRet =
CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock);
return CleanupRet;
}
// We use a pointer use visitor to track how an alloca is being used.
// The goal is to be able to answer the following three questions:
// 1. Should this alloca be allocated on the frame instead.
// 2. Could the content of the alloca be modified prior to CoroBegin, which
// would require copying the data from the alloca to the frame after
// CoroBegin.
// 3. Are there any aliases created for this alloca prior to CoroBegin, but
// used after CoroBegin. In that case, we will need to recreate the alias
// after CoroBegin based off the frame.
//
// To answer question 1, we track two things:
// A. List of all BasicBlocks that use this alloca or any of the aliases of
// the alloca. In the end, we check if there exists any two basic blocks that
// cross suspension points. If so, this alloca must be put on the frame.
// B. Whether the alloca or any alias of the alloca is escaped at some point,
// either by storing the address somewhere, or the address is used in a
// function call that might capture. If it's ever escaped, this alloca must be
// put on the frame conservatively.
//
// To answer quetion 2, we track through the variable MayWriteBeforeCoroBegin.
// Whenever a potential write happens, either through a store instruction, a
// function call or any of the memory intrinsics, we check whether this
// instruction is prior to CoroBegin.
//
// To answer question 3, we track the offsets of all aliases created for the
// alloca prior to CoroBegin but used after CoroBegin. std::optional is used to
// be able to represent the case when the offset is unknown (e.g. when you have
// a PHINode that takes in different offset values). We cannot handle unknown
// offsets and will assert. This is the potential issue left out. An ideal
// solution would likely require a significant redesign.
namespace {
struct AllocaUseVisitor : PtrUseVisitor<AllocaUseVisitor> {
using Base = PtrUseVisitor<AllocaUseVisitor>;
AllocaUseVisitor(const DataLayout &DL, const DominatorTree &DT,
const coro::Shape &CoroShape,
const SuspendCrossingInfo &Checker,
bool ShouldUseLifetimeStartInfo)
: PtrUseVisitor(DL), DT(DT), CoroShape(CoroShape), Checker(Checker),
ShouldUseLifetimeStartInfo(ShouldUseLifetimeStartInfo) {
for (AnyCoroSuspendInst *SuspendInst : CoroShape.CoroSuspends)
CoroSuspendBBs.insert(SuspendInst->getParent());
}
void visit(Instruction &I) {
Users.insert(&I);
Base::visit(I);
// If the pointer is escaped prior to CoroBegin, we have to assume it would
// be written into before CoroBegin as well.
if (PI.isEscaped() &&
!DT.dominates(CoroShape.CoroBegin, PI.getEscapingInst())) {
MayWriteBeforeCoroBegin = true;
}
}
// We need to provide this overload as PtrUseVisitor uses a pointer based
// visiting function.
void visit(Instruction *I) { return visit(*I); }
void visitPHINode(PHINode &I) {
enqueueUsers(I);
handleAlias(I);
}
void visitSelectInst(SelectInst &I) {
enqueueUsers(I);
handleAlias(I);
}
void visitStoreInst(StoreInst &SI) {
// Regardless whether the alias of the alloca is the value operand or the
// pointer operand, we need to assume the alloca is been written.
handleMayWrite(SI);
if (SI.getValueOperand() != U->get())
return;
// We are storing the pointer into a memory location, potentially escaping.
// As an optimization, we try to detect simple cases where it doesn't
// actually escape, for example:
// %ptr = alloca ..
// %addr = alloca ..
// store %ptr, %addr
// %x = load %addr
// ..
// If %addr is only used by loading from it, we could simply treat %x as
// another alias of %ptr, and not considering %ptr being escaped.
auto IsSimpleStoreThenLoad = [&]() {
auto *AI = dyn_cast<AllocaInst>(SI.getPointerOperand());
// If the memory location we are storing to is not an alloca, it
// could be an alias of some other memory locations, which is difficult
// to analyze.
if (!AI)
return false;
// StoreAliases contains aliases of the memory location stored into.
SmallVector<Instruction *, 4> StoreAliases = {AI};
while (!StoreAliases.empty()) {
Instruction *I = StoreAliases.pop_back_val();
for (User *U : I->users()) {
// If we are loading from the memory location, we are creating an
// alias of the original pointer.
if (auto *LI = dyn_cast<LoadInst>(U)) {
enqueueUsers(*LI);
handleAlias(*LI);
continue;
}
// If we are overriding the memory location, the pointer certainly
// won't escape.
if (auto *S = dyn_cast<StoreInst>(U))
if (S->getPointerOperand() == I)
continue;
if (isa<LifetimeIntrinsic>(U))
continue;
// BitCastInst creats aliases of the memory location being stored
// into.
if (auto *BI = dyn_cast<BitCastInst>(U)) {
StoreAliases.push_back(BI);
continue;
}
return false;
}
}
return true;
};
if (!IsSimpleStoreThenLoad())
PI.setEscaped(&SI);
}
// All mem intrinsics modify the data.
void visitMemIntrinsic(MemIntrinsic &MI) { handleMayWrite(MI); }
void visitBitCastInst(BitCastInst &BC) {
Base::visitBitCastInst(BC);
handleAlias(BC);
}
void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
Base::visitAddrSpaceCastInst(ASC);
handleAlias(ASC);
}
void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
// The base visitor will adjust Offset accordingly.
Base::visitGetElementPtrInst(GEPI);
handleAlias(GEPI);
}
void visitIntrinsicInst(IntrinsicInst &II) {
// When we found the lifetime markers refers to a
// subrange of the original alloca, ignore the lifetime
// markers to avoid misleading the analysis.
if (!IsOffsetKnown || !Offset.isZero())
return Base::visitIntrinsicInst(II);
switch (II.getIntrinsicID()) {
default:
return Base::visitIntrinsicInst(II);
case Intrinsic::lifetime_start:
LifetimeStarts.insert(&II);
LifetimeStartBBs.push_back(II.getParent());
break;
case Intrinsic::lifetime_end:
LifetimeEndBBs.insert(II.getParent());
break;
}
}
void visitCallBase(CallBase &CB) {
for (unsigned Op = 0, OpCount = CB.arg_size(); Op < OpCount; ++Op)
if (U->get() == CB.getArgOperand(Op) && !CB.doesNotCapture(Op))
PI.setEscaped(&CB);
handleMayWrite(CB);
}
bool getShouldLiveOnFrame() const {
if (!ShouldLiveOnFrame)
ShouldLiveOnFrame = computeShouldLiveOnFrame();
return *ShouldLiveOnFrame;
}
bool getMayWriteBeforeCoroBegin() const { return MayWriteBeforeCoroBegin; }
DenseMap<Instruction *, std::optional<APInt>> getAliasesCopy() const {
assert(getShouldLiveOnFrame() && "This method should only be called if the "
"alloca needs to live on the frame.");
for (const auto &P : AliasOffetMap)
if (!P.second)
report_fatal_error("Unable to handle an alias with unknown offset "
"created before CoroBegin.");
return AliasOffetMap;
}
private:
const DominatorTree &DT;
const coro::Shape &CoroShape;
const SuspendCrossingInfo &Checker;
// All alias to the original AllocaInst, created before CoroBegin and used
// after CoroBegin. Each entry contains the instruction and the offset in the
// original Alloca. They need to be recreated after CoroBegin off the frame.
DenseMap<Instruction *, std::optional<APInt>> AliasOffetMap{};
SmallPtrSet<Instruction *, 4> Users{};
SmallPtrSet<IntrinsicInst *, 2> LifetimeStarts{};
SmallVector<BasicBlock *> LifetimeStartBBs{};
SmallPtrSet<BasicBlock *, 2> LifetimeEndBBs{};
SmallPtrSet<const BasicBlock *, 2> CoroSuspendBBs{};
bool MayWriteBeforeCoroBegin{false};
bool ShouldUseLifetimeStartInfo{true};
mutable std::optional<bool> ShouldLiveOnFrame{};
bool computeShouldLiveOnFrame() const {
// If lifetime information is available, we check it first since it's
// more precise. We look at every pair of lifetime.start intrinsic and
// every basic block that uses the pointer to see if they cross suspension
// points. The uses cover both direct uses as well as indirect uses.
if (ShouldUseLifetimeStartInfo && !LifetimeStarts.empty()) {
// If there is no explicit lifetime.end, then assume the address can
// cross suspension points.
if (LifetimeEndBBs.empty())
return true;
// If there is a path from a lifetime.start to a suspend without a
// corresponding lifetime.end, then the alloca's lifetime persists
// beyond that suspension point and the alloca must go on the frame.
llvm::SmallVector<BasicBlock *> Worklist(LifetimeStartBBs);
if (isManyPotentiallyReachableFromMany(Worklist, CoroSuspendBBs,
&LifetimeEndBBs, &DT))
return true;
// Addresses are guaranteed to be identical after every lifetime.start so
// we cannot use the local stack if the address escaped and there is a
// suspend point between lifetime markers. This should also cover the
// case of a single lifetime.start intrinsic in a loop with suspend point.
if (PI.isEscaped()) {
for (auto *A : LifetimeStarts) {
for (auto *B : LifetimeStarts) {
if (Checker.hasPathOrLoopCrossingSuspendPoint(A->getParent(),
B->getParent()))
return true;
}
}
}
return false;
}
// FIXME: Ideally the isEscaped check should come at the beginning.
// However there are a few loose ends that need to be fixed first before
// we can do that. We need to make sure we are not over-conservative, so
// that the data accessed in-between await_suspend and symmetric transfer
// is always put on the stack, and also data accessed after coro.end is
// always put on the stack (esp the return object). To fix that, we need
// to:
// 1) Potentially treat sret as nocapture in calls
// 2) Special handle the return object and put it on the stack
// 3) Utilize lifetime.end intrinsic
if (PI.isEscaped())
return true;
for (auto *U1 : Users)
for (auto *U2 : Users)
if (Checker.isDefinitionAcrossSuspend(*U1, U2))
return true;
return false;
}
void handleMayWrite(const Instruction &I) {
if (!DT.dominates(CoroShape.CoroBegin, &I))
MayWriteBeforeCoroBegin = true;
}
bool usedAfterCoroBegin(Instruction &I) {
for (auto &U : I.uses())
if (DT.dominates(CoroShape.CoroBegin, U))
return true;
return false;
}
void handleAlias(Instruction &I) {
// We track all aliases created prior to CoroBegin but used after.
// These aliases may need to be recreated after CoroBegin if the alloca
// need to live on the frame.
if (DT.dominates(CoroShape.CoroBegin, &I) || !usedAfterCoroBegin(I))
return;
if (!IsOffsetKnown) {
AliasOffetMap[&I].reset();
} else {
auto [Itr, Inserted] = AliasOffetMap.try_emplace(&I, Offset);
if (!Inserted && Itr->second && *Itr->second != Offset) {
// If we have seen two different possible values for this alias, we set
// it to empty.
Itr->second.reset();
}
}
}
};
} // namespace
static void collectFrameAlloca(AllocaInst *AI, const coro::Shape &Shape,
const SuspendCrossingInfo &Checker,
SmallVectorImpl<AllocaInfo> &Allocas,
const DominatorTree &DT) {
if (Shape.CoroSuspends.empty())
return;
// The PromiseAlloca will be specially handled since it needs to be in a
// fixed position in the frame.
if (AI == Shape.SwitchLowering.PromiseAlloca)
return;
// The __coro_gro alloca should outlive the promise, make sure we
// keep it outside the frame.
if (AI->hasMetadata(LLVMContext::MD_coro_outside_frame))
return;
// The code that uses lifetime.start intrinsic does not work for functions
// with loops without exit. Disable it on ABIs we know to generate such
// code.
bool ShouldUseLifetimeStartInfo =
(Shape.ABI != coro::ABI::Async && Shape.ABI != coro::ABI::Retcon &&
Shape.ABI != coro::ABI::RetconOnce);
AllocaUseVisitor Visitor{AI->getDataLayout(), DT, Shape, Checker,
ShouldUseLifetimeStartInfo};
Visitor.visitPtr(*AI);
if (!Visitor.getShouldLiveOnFrame())
return;
Allocas.emplace_back(AI, Visitor.getAliasesCopy(),
Visitor.getMayWriteBeforeCoroBegin());
}
} // namespace
void collectSpillsFromArgs(SpillInfo &Spills, Function &F,
const SuspendCrossingInfo &Checker) {
// Collect the spills for arguments and other not-materializable values.
for (Argument &A : F.args())
for (User *U : A.users())
if (Checker.isDefinitionAcrossSuspend(A, U))
Spills[&A].push_back(cast<Instruction>(U));
}
void collectSpillsAndAllocasFromInsts(
SpillInfo &Spills, SmallVector<AllocaInfo, 8> &Allocas,
SmallVector<Instruction *, 4> &DeadInstructions,
SmallVector<CoroAllocaAllocInst *, 4> &LocalAllocas, Function &F,
const SuspendCrossingInfo &Checker, const DominatorTree &DT,
const coro::Shape &Shape) {
for (Instruction &I : instructions(F)) {
// Values returned from coroutine structure intrinsics should not be part
// of the Coroutine Frame.
if (isNonSpilledIntrinsic(I) || &I == Shape.CoroBegin)
continue;
// Handle alloca.alloc specially here.
if (auto AI = dyn_cast<CoroAllocaAllocInst>(&I)) {
// Check whether the alloca's lifetime is bounded by suspend points.
if (isLocalAlloca(AI)) {
LocalAllocas.push_back(AI);
continue;
}
// If not, do a quick rewrite of the alloca and then add spills of
// the rewritten value. The rewrite doesn't invalidate anything in
// Spills because the other alloca intrinsics have no other operands
// besides AI, and it doesn't invalidate the iteration because we delay
// erasing AI.
auto Alloc = lowerNonLocalAlloca(AI, Shape, DeadInstructions);
for (User *U : Alloc->users()) {
if (Checker.isDefinitionAcrossSuspend(*Alloc, U))
Spills[Alloc].push_back(cast<Instruction>(U));
}
continue;
}
// Ignore alloca.get; we process this as part of coro.alloca.alloc.
if (isa<CoroAllocaGetInst>(I))
continue;
if (auto *AI = dyn_cast<AllocaInst>(&I)) {
collectFrameAlloca(AI, Shape, Checker, Allocas, DT);
continue;
}
for (User *U : I.users())
if (Checker.isDefinitionAcrossSuspend(I, U)) {
// We cannot spill a token.
if (I.getType()->isTokenTy())
report_fatal_error(
"token definition is separated from the use by a suspend point");
Spills[&I].push_back(cast<Instruction>(U));
}
}
}
void collectSpillsFromDbgInfo(SpillInfo &Spills, Function &F,
const SuspendCrossingInfo &Checker) {
// We don't want the layout of coroutine frame to be affected
// by debug information. So we only choose to salvage DbgValueInst for
// whose value is already in the frame.
// We would handle the dbg.values for allocas specially
for (auto &Iter : Spills) {
auto *V = Iter.first;
SmallVector<DbgValueInst *, 16> DVIs;
SmallVector<DbgVariableRecord *, 16> DVRs;
findDbgValues(DVIs, V, &DVRs);
for (DbgValueInst *DVI : DVIs)
if (Checker.isDefinitionAcrossSuspend(*V, DVI))
Spills[V].push_back(DVI);
// Add the instructions which carry debug info that is in the frame.
for (DbgVariableRecord *DVR : DVRs)
if (Checker.isDefinitionAcrossSuspend(*V, DVR->Marker->MarkedInstr))
Spills[V].push_back(DVR->Marker->MarkedInstr);
}
}
/// Async and Retcon{Once} conventions assume that all spill uses can be sunk
/// after the coro.begin intrinsic.
void sinkSpillUsesAfterCoroBegin(const DominatorTree &Dom,
CoroBeginInst *CoroBegin,
coro::SpillInfo &Spills,
SmallVectorImpl<coro::AllocaInfo> &Allocas) {
SmallSetVector<Instruction *, 32> ToMove;
SmallVector<Instruction *, 32> Worklist;
// Collect all users that precede coro.begin.
auto collectUsers = [&](Value *Def) {
for (User *U : Def->users()) {
auto Inst = cast<Instruction>(U);
if (Inst->getParent() != CoroBegin->getParent() ||
Dom.dominates(CoroBegin, Inst))
continue;
if (ToMove.insert(Inst))
Worklist.push_back(Inst);
}
};
for (auto &I : Spills)
collectUsers(I.first);
for (auto &I : Allocas)
collectUsers(I.Alloca);
// Recursively collect users before coro.begin.
while (!Worklist.empty()) {
auto *Def = Worklist.pop_back_val();
for (User *U : Def->users()) {
auto Inst = cast<Instruction>(U);
if (Dom.dominates(CoroBegin, Inst))
continue;
if (ToMove.insert(Inst))
Worklist.push_back(Inst);
}
}
// Sort by dominance.
SmallVector<Instruction *, 64> InsertionList(ToMove.begin(), ToMove.end());
llvm::sort(InsertionList, [&Dom](Instruction *A, Instruction *B) -> bool {
// If a dominates b it should precede (<) b.
return Dom.dominates(A, B);
});
Instruction *InsertPt = CoroBegin->getNextNode();
for (Instruction *Inst : InsertionList)
Inst->moveBefore(InsertPt->getIterator());
}
BasicBlock::iterator getSpillInsertionPt(const coro::Shape &Shape, Value *Def,
const DominatorTree &DT) {
BasicBlock::iterator InsertPt;
if (auto *Arg = dyn_cast<Argument>(Def)) {
// For arguments, we will place the store instruction right after
// the coroutine frame pointer instruction, i.e. coro.begin.
InsertPt = Shape.getInsertPtAfterFramePtr();
// If we're spilling an Argument, make sure we clear 'captures'
// from the coroutine function.
Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::Captures);
} else if (auto *CSI = dyn_cast<AnyCoroSuspendInst>(Def)) {
// Don't spill immediately after a suspend; splitting assumes
// that the suspend will be followed by a branch.
InsertPt = CSI->getParent()->getSingleSuccessor()->getFirstNonPHIIt();
} else {
auto *I = cast<Instruction>(Def);
if (!DT.dominates(Shape.CoroBegin, I)) {
// If it is not dominated by CoroBegin, then spill should be
// inserted immediately after CoroFrame is computed.
InsertPt = Shape.getInsertPtAfterFramePtr();
} else if (auto *II = dyn_cast<InvokeInst>(I)) {
// If we are spilling the result of the invoke instruction, split
// the normal edge and insert the spill in the new block.
auto *NewBB = SplitEdge(II->getParent(), II->getNormalDest());
InsertPt = NewBB->getTerminator()->getIterator();
} else if (isa<PHINode>(I)) {
// Skip the PHINodes and EH pads instructions.
BasicBlock *DefBlock = I->getParent();
if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator()))
InsertPt = splitBeforeCatchSwitch(CSI)->getIterator();
else
InsertPt = DefBlock->getFirstInsertionPt();
} else {
assert(!I->isTerminator() && "unexpected terminator");
// For all other values, the spill is placed immediately after
// the definition.
InsertPt = I->getNextNode()->getIterator();
}
}
return InsertPt;
}
} // End namespace coro.
} // End namespace llvm.
|