1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
//===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// INPUT CFG: The blocks H and B form an irreducible cycle with two headers.
//
// Entry
// / \
// v v
// H ----> B
// ^ /|
// `----' |
// v
// Exit
//
// OUTPUT CFG: Converted to a natural loop with a new header N.
//
// Entry
// |
// v
// N <---.
// / \ \
// / \ |
// v v /
// H --> B --'
// |
// v
// Exit
//
// To convert an irreducible cycle C to a natural loop L:
//
// 1. Add a new node N to C.
// 2. Redirect all external incoming edges through N.
// 3. Redirect all edges incident on header H through N.
//
// This is sufficient to ensure that:
//
// a. Every closed path in C also exists in L, with the modification that any
// path passing through H now passes through N before reaching H.
// b. Every external path incident on any entry of C is now incident on N and
// then redirected to the entry.
//
// Thus, L is a strongly connected component dominated by N, and hence L is a
// natural loop with header N.
//
// When an irreducible cycle C with header H is transformed into a loop, the
// following invariants hold:
//
// 1. No new subcycles are "discovered" in the set (C-H). The only internal
// edges that are redirected by the transform are incident on H. Any subcycle
// S in (C-H), already existed prior to this transform, and is already in the
// list of children for this cycle C.
//
// 2. Subcycles of C are not modified by the transform. For some subcycle S of
// C, edges incident on the entries of S are either internal to C, or they
// are now redirected through N, which is outside of S. So the list of
// entries to S does not change. Since the transform only adds a block
// outside S, and redirects edges that are not internal to S, the list of
// blocks in S does not change.
//
// 3. Similarly, any natural loop L included in C is not affected, with one
// exception: L is "destroyed" by the transform iff its header is H. The
// backedges of such a loop are now redirected to N instead, and hence the
// body of this loop gets merged into the new loop with header N.
//
// The actual transformation is handled by the ControlFlowHub, which redirects
// specified control flow edges through a set of guard blocks. This also moves
// every PHINode in an outgoing block to the hub. Since the hub dominates all
// the outgoing blocks, each such PHINode continues to dominate its uses. Since
// every header in an SCC has at least two predecessors, every value used in the
// header (or later) but defined in a predecessor (or earlier) is represented by
// a PHINode in a header. Hence the above handling of PHINodes is sufficient and
// no further processing is required to restore SSA.
//
// Limitation: The pass cannot handle switch statements and indirect
// branches. Both must be lowered to plain branches first.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/FixIrreducible.h"
#include "llvm/Analysis/CycleAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ControlFlowUtils.h"
#define DEBUG_TYPE "fix-irreducible"
using namespace llvm;
namespace {
struct FixIrreducible : public FunctionPass {
static char ID;
FixIrreducible() : FunctionPass(ID) {
initializeFixIrreduciblePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<CycleInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<CycleInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
}
bool runOnFunction(Function &F) override;
};
} // namespace
char FixIrreducible::ID = 0;
FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); }
INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible",
"Convert irreducible control-flow into natural loops",
false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible",
"Convert irreducible control-flow into natural loops",
false /* Only looks at CFG */, false /* Analysis Pass */)
// When a new loop is created, existing children of the parent loop may now be
// fully inside the new loop. Reconnect these as children of the new loop.
static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop,
BasicBlock *OldHeader) {
auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector()
: LI.getTopLevelLoopsVector();
// Any candidate is a child iff its header is owned by the new loop. Move all
// the children to a new vector.
auto FirstChild = llvm::partition(CandidateLoops, [&](Loop *L) {
return NewLoop == L || !NewLoop->contains(L->getHeader());
});
SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end());
CandidateLoops.erase(FirstChild, CandidateLoops.end());
for (Loop *Child : ChildLoops) {
LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName()
<< "\n");
// A child loop whose header was the old cycle header gets destroyed since
// its backedges are removed.
if (Child->getHeader() == OldHeader) {
for (auto *BB : Child->blocks()) {
if (LI.getLoopFor(BB) != Child)
continue;
LI.changeLoopFor(BB, NewLoop);
LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName()
<< "\n");
}
std::vector<Loop *> GrandChildLoops;
std::swap(GrandChildLoops, Child->getSubLoopsVector());
for (auto *GrandChildLoop : GrandChildLoops) {
GrandChildLoop->setParentLoop(nullptr);
NewLoop->addChildLoop(GrandChildLoop);
}
LI.destroy(Child);
LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n");
continue;
}
Child->setParentLoop(nullptr);
NewLoop->addChildLoop(Child);
LLVM_DEBUG(dbgs() << "added child loop to new loop\n");
}
}
static void updateLoopInfo(LoopInfo &LI, Cycle &C,
ArrayRef<BasicBlock *> GuardBlocks) {
// The parent loop is a natural loop L mapped to the cycle header H as long as
// H is not also the header of L. In the latter case, L is destroyed and we
// seek its parent instead.
BasicBlock *CycleHeader = C.getHeader();
Loop *ParentLoop = LI.getLoopFor(CycleHeader);
if (ParentLoop && ParentLoop->getHeader() == CycleHeader)
ParentLoop = ParentLoop->getParentLoop();
// Create a new loop from the now-transformed cycle
auto *NewLoop = LI.AllocateLoop();
if (ParentLoop) {
ParentLoop->addChildLoop(NewLoop);
} else {
LI.addTopLevelLoop(NewLoop);
}
// Add the guard blocks to the new loop. The first guard block is
// the head of all the backedges, and it is the first to be inserted
// in the loop. This ensures that it is recognized as the
// header. Since the new loop is already in LoopInfo, the new blocks
// are also propagated up the chain of parent loops.
for (auto *G : GuardBlocks) {
LLVM_DEBUG(dbgs() << "added guard block to loop: " << G->getName() << "\n");
NewLoop->addBasicBlockToLoop(G, LI);
}
for (auto *BB : C.blocks()) {
NewLoop->addBlockEntry(BB);
if (LI.getLoopFor(BB) == ParentLoop) {
LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName()
<< "\n");
LI.changeLoopFor(BB, NewLoop);
} else {
LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n");
}
}
LLVM_DEBUG(dbgs() << "header for new loop: "
<< NewLoop->getHeader()->getName() << "\n");
reconnectChildLoops(LI, ParentLoop, NewLoop, C.getHeader());
LLVM_DEBUG(dbgs() << "Verify new loop.\n"; NewLoop->print(dbgs()));
NewLoop->verifyLoop();
if (ParentLoop) {
LLVM_DEBUG(dbgs() << "Verify parent loop.\n"; ParentLoop->print(dbgs()));
ParentLoop->verifyLoop();
}
}
// Given a set of blocks and headers in an irreducible SCC, convert it into a
// natural loop. Also insert this new loop at its appropriate place in the
// hierarchy of loops.
static bool fixIrreducible(Cycle &C, CycleInfo &CI, DominatorTree &DT,
LoopInfo *LI) {
if (C.isReducible())
return false;
LLVM_DEBUG(dbgs() << "Processing cycle:\n" << CI.print(&C) << "\n";);
ControlFlowHub CHub;
SetVector<BasicBlock *> Predecessors;
// Redirect internal edges incident on the header.
BasicBlock *Header = C.getHeader();
for (BasicBlock *P : predecessors(Header)) {
if (C.contains(P))
Predecessors.insert(P);
}
for (BasicBlock *P : Predecessors) {
auto *Branch = cast<BranchInst>(P->getTerminator());
// Exactly one of the two successors is the header.
BasicBlock *Succ0 = Branch->getSuccessor(0) == Header ? Header : nullptr;
BasicBlock *Succ1 = Succ0 ? nullptr : Header;
if (!Succ0)
assert(Branch->getSuccessor(1) == Header);
assert(Succ0 || Succ1);
CHub.addBranch(P, Succ0, Succ1);
LLVM_DEBUG(dbgs() << "Added internal branch: " << P->getName() << " -> "
<< (Succ0 ? Succ0->getName() : "") << " "
<< (Succ1 ? Succ1->getName() : "") << "\n");
}
// Redirect external incoming edges. This includes the edges on the header.
Predecessors.clear();
for (BasicBlock *E : C.entries()) {
for (BasicBlock *P : predecessors(E)) {
if (!C.contains(P))
Predecessors.insert(P);
}
}
for (BasicBlock *P : Predecessors) {
auto *Branch = cast<BranchInst>(P->getTerminator());
BasicBlock *Succ0 = Branch->getSuccessor(0);
Succ0 = C.contains(Succ0) ? Succ0 : nullptr;
BasicBlock *Succ1 =
Branch->isUnconditional() ? nullptr : Branch->getSuccessor(1);
Succ1 = Succ1 && C.contains(Succ1) ? Succ1 : nullptr;
CHub.addBranch(P, Succ0, Succ1);
LLVM_DEBUG(dbgs() << "Added external branch: " << P->getName() << " -> "
<< (Succ0 ? Succ0->getName() : "") << " "
<< (Succ1 ? Succ1->getName() : "") << "\n");
}
// Redirect all the backedges through a "hub" consisting of a series
// of guard blocks that manage the flow of control from the
// predecessors to the headers.
SmallVector<BasicBlock *> GuardBlocks;
// Minor optimization: The cycle entries are discovered in an order that is
// the opposite of the order in which these blocks appear as branch targets.
// This results in a lot of condition inversions in the control flow out of
// the new ControlFlowHub, which can be mitigated if the orders match. So we
// reverse the entries when adding them to the hub.
SetVector<BasicBlock *> Entries;
Entries.insert(C.entry_rbegin(), C.entry_rend());
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
CHub.finalize(&DTU, GuardBlocks, "irr");
#if defined(EXPENSIVE_CHECKS)
assert(DT.verify(DominatorTree::VerificationLevel::Full));
#else
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif
// If we are updating LoopInfo, do that now before modifying the cycle. This
// ensures that the first guard block is the header of a new natural loop.
if (LI)
updateLoopInfo(*LI, C, GuardBlocks);
for (auto *G : GuardBlocks) {
LLVM_DEBUG(dbgs() << "added guard block to cycle: " << G->getName()
<< "\n");
CI.addBlockToCycle(G, &C);
}
C.setSingleEntry(GuardBlocks[0]);
C.verifyCycle();
if (Cycle *Parent = C.getParentCycle())
Parent->verifyCycle();
LLVM_DEBUG(dbgs() << "Finished one cycle:\n"; CI.print(dbgs()););
return true;
}
static bool FixIrreducibleImpl(Function &F, CycleInfo &CI, DominatorTree &DT,
LoopInfo *LI) {
LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: "
<< F.getName() << "\n");
assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator.");
bool Changed = false;
for (Cycle *TopCycle : CI.toplevel_cycles()) {
for (Cycle *C : depth_first(TopCycle)) {
Changed |= fixIrreducible(*C, CI, DT, LI);
}
}
if (!Changed)
return false;
#if defined(EXPENSIVE_CHECKS)
CI.verify();
if (LI) {
LI->verify(DT);
}
#endif // EXPENSIVE_CHECKS
return true;
}
bool FixIrreducible::runOnFunction(Function &F) {
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
auto &CI = getAnalysis<CycleInfoWrapperPass>().getResult();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return FixIrreducibleImpl(F, CI, DT, LI);
}
PreservedAnalyses FixIrreduciblePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
auto &CI = AM.getResult<CycleAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!FixIrreducibleImpl(F, CI, DT, LI))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<LoopAnalysis>();
PA.preserve<CycleAnalysis>();
PA.preserve<DominatorTreeAnalysis>();
return PA;
}
|