1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
//===--------------- IRNormalizer.cpp - IR Normalizer ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the IRNormalizer class which aims to transform LLVM
/// Modules into a normal form by reordering and renaming instructions while
/// preserving the same semantics. The normalizer makes it easier to spot
/// semantic differences while diffing two modules which have undergone
/// different passes.
///
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/IRNormalizer.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Pass.h"
#include <stack>
#define DEBUG_TYPE "normalize"
using namespace llvm;
namespace {
/// IRNormalizer aims to transform LLVM IR into normal form.
class IRNormalizer {
public:
bool runOnFunction(Function &F);
IRNormalizer(IRNormalizerOptions Options) : Options(Options) {}
private:
const IRNormalizerOptions Options;
// Random constant for hashing, so the state isn't zero.
const uint64_t MagicHashConstant = 0x6acaa36bef8325c5ULL;
DenseSet<const Instruction *> NamedInstructions;
SmallVector<Instruction *, 16> Outputs;
/// \name Naming.
/// @{
void nameFunctionArguments(Function &F) const;
void nameBasicBlocks(Function &F) const;
void nameInstruction(Instruction *I);
void nameAsInitialInstruction(Instruction *I) const;
void nameAsRegularInstruction(Instruction *I);
void foldInstructionName(Instruction *I) const;
/// @}
/// \name Reordering.
/// @{
void reorderInstructions(Function &F) const;
void reorderDefinition(Instruction *Definition,
std::stack<Instruction *> &TopologicalSort,
SmallPtrSet<const Instruction *, 32> &Visited) const;
void reorderInstructionOperandsByNames(Instruction *I) const;
void reorderPHIIncomingValues(PHINode *Phi) const;
/// @}
/// \name Utility methods.
/// @{
template <typename T>
void sortCommutativeOperands(Instruction *I, T &Operands) const;
SmallVector<Instruction *, 16> collectOutputInstructions(Function &F) const;
bool isOutput(const Instruction *I) const;
bool isInitialInstruction(const Instruction *I) const;
bool hasOnlyImmediateOperands(const Instruction *I) const;
SetVector<int>
getOutputFootprint(Instruction *I,
SmallPtrSet<const Instruction *, 32> &Visited) const;
/// @}
};
} // namespace
/// Entry method to the IRNormalizer.
///
/// \param F Function to normalize.
bool IRNormalizer::runOnFunction(Function &F) {
nameFunctionArguments(F);
nameBasicBlocks(F);
Outputs = collectOutputInstructions(F);
if (!Options.PreserveOrder)
reorderInstructions(F);
// TODO: Reorder basic blocks via a topological sort.
for (auto &I : Outputs)
nameInstruction(I);
for (auto &I : instructions(F)) {
if (!Options.PreserveOrder) {
if (Options.ReorderOperands)
reorderInstructionOperandsByNames(&I);
if (auto *Phi = dyn_cast<PHINode>(&I))
reorderPHIIncomingValues(Phi);
}
foldInstructionName(&I);
}
return true;
}
/// Numbers arguments.
///
/// \param F Function whose arguments will be renamed.
void IRNormalizer::nameFunctionArguments(Function &F) const {
int ArgumentCounter = 0;
for (auto &A : F.args()) {
if (Options.RenameAll || A.getName().empty()) {
A.setName("a" + Twine(ArgumentCounter));
ArgumentCounter += 1;
}
}
}
/// Names basic blocks using a generated hash for each basic block in
/// a function considering the opcode and the order of output instructions.
///
/// \param F Function containing basic blocks to rename.
void IRNormalizer::nameBasicBlocks(Function &F) const {
for (auto &B : F) {
// Initialize to a magic constant, so the state isn't zero.
uint64_t Hash = MagicHashConstant;
// Hash considering output instruction opcodes.
for (auto &I : B)
if (isOutput(&I))
Hash = hashing::detail::hash_16_bytes(Hash, I.getOpcode());
if (Options.RenameAll || B.getName().empty()) {
// Name basic block. Substring hash to make diffs more readable.
B.setName("bb" + std::to_string(Hash).substr(0, 5));
}
}
}
/// Names instructions graphically (recursive) in accordance with the
/// def-use tree, starting from the initial instructions (defs), finishing at
/// the output (top-most user) instructions (depth-first).
///
/// \param I Instruction to be renamed.
void IRNormalizer::nameInstruction(Instruction *I) {
// Ensure instructions are not renamed. This is done
// to prevent situation where instructions are used
// before their definition (in phi nodes)
if (NamedInstructions.contains(I))
return;
NamedInstructions.insert(I);
if (isInitialInstruction(I)) {
nameAsInitialInstruction(I);
} else {
// This must be a regular instruction.
nameAsRegularInstruction(I);
}
}
template <typename T>
void IRNormalizer::sortCommutativeOperands(Instruction *I, T &Operands) const {
if (!(I->isCommutative() && Operands.size() >= 2))
return;
auto CommutativeEnd = Operands.begin();
std::advance(CommutativeEnd, 2);
llvm::sort(Operands.begin(), CommutativeEnd);
}
/// Names instruction following the scheme:
/// vl00000Callee(Operands)
///
/// Where 00000 is a hash calculated considering instruction's opcode and output
/// footprint. Callee's name is only included when instruction's type is
/// CallInst. In cases where instruction is commutative, operands list is also
/// sorted.
///
/// Renames instruction only when RenameAll flag is raised or instruction is
/// unnamed.
///
/// \see getOutputFootprint()
/// \param I Instruction to be renamed.
void IRNormalizer::nameAsInitialInstruction(Instruction *I) const {
if (I->getType()->isVoidTy())
return;
if (!(I->getName().empty() || Options.RenameAll))
return;
LLVM_DEBUG(dbgs() << "Naming initial instruction: " << *I << "\n");
// Instruction operands for further sorting.
SmallVector<SmallString<64>, 4> Operands;
// Collect operands.
for (auto &Op : I->operands()) {
if (!isa<Function>(Op)) {
std::string TextRepresentation;
raw_string_ostream Stream(TextRepresentation);
Op->printAsOperand(Stream, false);
Operands.push_back(StringRef(Stream.str()));
}
}
sortCommutativeOperands(I, Operands);
// Initialize to a magic constant, so the state isn't zero.
uint64_t Hash = MagicHashConstant;
// Consider instruction's opcode in the hash.
Hash = hashing::detail::hash_16_bytes(Hash, I->getOpcode());
SmallPtrSet<const Instruction *, 32> Visited;
// Get output footprint for I.
SetVector<int> OutputFootprint = getOutputFootprint(I, Visited);
// Consider output footprint in the hash.
for (const int &Output : OutputFootprint)
Hash = hashing::detail::hash_16_bytes(Hash, Output);
// Base instruction name.
SmallString<256> Name;
Name.append("vl" + std::to_string(Hash).substr(0, 5));
// In case of CallInst, consider callee in the instruction name.
if (const auto *CI = dyn_cast<CallInst>(I)) {
Function *F = CI->getCalledFunction();
if (F != nullptr)
Name.append(F->getName());
}
Name.append("(");
for (size_t i = 0; i < Operands.size(); ++i) {
Name.append(Operands[i]);
if (i < Operands.size() - 1)
Name.append(", ");
}
Name.append(")");
I->setName(Name);
}
/// Names instruction following the scheme:
/// op00000Callee(Operands)
///
/// Where 00000 is a hash calculated considering instruction's opcode, its
/// operands' opcodes and order. Callee's name is only included when
/// instruction's type is CallInst. In cases where instruction is commutative,
/// operand list is also sorted.
///
/// Names instructions recursively in accordance with the def-use tree,
/// starting from the initial instructions (defs), finishing at
/// the output (top-most user) instructions (depth-first).
///
/// Renames instruction only when RenameAll flag is raised or instruction is
/// unnamed.
///
/// \see getOutputFootprint()
/// \param I Instruction to be renamed.
void IRNormalizer::nameAsRegularInstruction(Instruction *I) {
LLVM_DEBUG(dbgs() << "Naming regular instruction: " << *I << "\n");
// Instruction operands for further sorting.
SmallVector<SmallString<128>, 4> Operands;
// The name of a regular instruction depends
// on the names of its operands. Hence, all
// operands must be named first in the use-def
// walk.
// Collect operands.
for (auto &Op : I->operands()) {
if (auto *I = dyn_cast<Instruction>(Op)) {
// Walk down the use-def chain.
nameInstruction(I);
Operands.push_back(I->getName());
} else if (!isa<Function>(Op)) {
// This must be an immediate value.
std::string TextRepresentation;
raw_string_ostream Stream(TextRepresentation);
Op->printAsOperand(Stream, false);
Operands.push_back(StringRef(Stream.str()));
}
}
sortCommutativeOperands(I, Operands);
// Initialize to a magic constant, so the state isn't zero.
uint64_t Hash = MagicHashConstant;
// Consider instruction opcode in the hash.
Hash = hashing::detail::hash_16_bytes(Hash, I->getOpcode());
// Operand opcodes for further sorting (commutative).
SmallVector<int, 4> OperandsOpcodes;
// Collect operand opcodes for hashing.
for (auto &Op : I->operands())
if (auto *I = dyn_cast<Instruction>(Op))
OperandsOpcodes.push_back(I->getOpcode());
sortCommutativeOperands(I, OperandsOpcodes);
// Consider operand opcodes in the hash.
for (const int Code : OperandsOpcodes)
Hash = hashing::detail::hash_16_bytes(Hash, Code);
// Base instruction name.
SmallString<512> Name;
Name.append("op" + std::to_string(Hash).substr(0, 5));
// In case of CallInst, consider callee in the instruction name.
if (const auto *CI = dyn_cast<CallInst>(I))
if (const Function *F = CI->getCalledFunction())
Name.append(F->getName());
Name.append("(");
for (size_t i = 0; i < Operands.size(); ++i) {
Name.append(Operands[i]);
if (i < Operands.size() - 1)
Name.append(", ");
}
Name.append(")");
if ((I->getName().empty() || Options.RenameAll) && !I->getType()->isVoidTy())
I->setName(Name);
}
/// Shortens instruction's name. This method removes called function name from
/// the instruction name and substitutes the call chain with a corresponding
/// list of operands.
///
/// Examples:
/// op00000Callee(op00001Callee(...), vl00000Callee(1, 2), ...) ->
/// op00000(op00001, vl00000, ...) vl00000Callee(1, 2) -> vl00000(1, 2)
///
/// This method omits output instructions and pre-output (instructions directly
/// used by an output instruction) instructions (by default). By default it also
/// does not affect user named instructions.
///
/// \param I Instruction whose name will be folded.
void IRNormalizer::foldInstructionName(Instruction *I) const {
// If this flag is raised, fold all regular
// instructions (including pre-outputs).
if (!Options.FoldPreOutputs) {
// Don't fold if one of the users is an output instruction.
for (auto *U : I->users())
if (auto *IU = dyn_cast<Instruction>(U))
if (isOutput(IU))
return;
}
// Don't fold if it is an output instruction or has no op prefix.
if (isOutput(I) || !I->getName().starts_with("op"))
return;
// Instruction operands.
SmallVector<SmallString<64>, 4> Operands;
for (auto &Op : I->operands()) {
if (const auto *I = dyn_cast<Instruction>(Op)) {
bool HasNormalName =
I->getName().starts_with("op") || I->getName().starts_with("vl");
Operands.push_back(HasNormalName ? I->getName().substr(0, 7)
: I->getName());
}
}
sortCommutativeOperands(I, Operands);
SmallString<256> Name;
Name.append(I->getName().substr(0, 7));
Name.append("(");
for (size_t i = 0; i < Operands.size(); ++i) {
Name.append(Operands[i]);
if (i < Operands.size() - 1)
Name.append(", ");
}
Name.append(")");
I->setName(Name);
}
/// Reorders instructions by walking up the tree from each operand of an output
/// instruction and reducing the def-use distance.
/// This method assumes that output instructions were collected top-down,
/// otherwise the def-use chain may be broken.
/// This method is a wrapper for recursive reorderInstruction().
///
/// \see reorderInstruction()
void IRNormalizer::reorderInstructions(Function &F) const {
for (auto &BB : F) {
LLVM_DEBUG(dbgs() << "Reordering instructions in basic block: "
<< BB.getName() << "\n");
// Find the source nodes of the DAG of instructions in this basic block.
// Source nodes are instructions that have side effects, are terminators, or
// don't have a parent in the DAG of instructions.
//
// We must iterate from the first to the last instruction otherwise side
// effecting instructions could be reordered.
std::stack<Instruction *> TopologicalSort;
SmallPtrSet<const Instruction *, 32> Visited;
for (auto &I : BB) {
// First process side effecting and terminating instructions.
if (!(isOutput(&I) || I.isTerminator()))
continue;
LLVM_DEBUG(dbgs() << "\tReordering from source effecting instruction: ";
I.dump());
reorderDefinition(&I, TopologicalSort, Visited);
}
for (auto &I : BB) {
// Process the remaining instructions.
//
// TODO: Do more a intelligent sorting of these instructions. For example,
// seperate between dead instructinos and instructions used in another
// block. Use properties of the CFG the order instructions that are used
// in another block.
if (Visited.contains(&I))
continue;
LLVM_DEBUG(dbgs() << "\tReordering from source instruction: "; I.dump());
reorderDefinition(&I, TopologicalSort, Visited);
}
LLVM_DEBUG(dbgs() << "Inserting instructions into: " << BB.getName()
<< "\n");
// Reorder based on the topological sort.
while (!TopologicalSort.empty()) {
auto *Instruction = TopologicalSort.top();
auto FirstNonPHIOrDbgOrAlloca = BB.getFirstNonPHIOrDbgOrAlloca();
if (auto *Call = dyn_cast<CallInst>(&*FirstNonPHIOrDbgOrAlloca)) {
if (Call->getIntrinsicID() ==
Intrinsic::experimental_convergence_entry ||
Call->getIntrinsicID() == Intrinsic::experimental_convergence_loop)
FirstNonPHIOrDbgOrAlloca++;
}
Instruction->moveBefore(FirstNonPHIOrDbgOrAlloca);
TopologicalSort.pop();
}
}
}
void IRNormalizer::reorderDefinition(
Instruction *Definition, std::stack<Instruction *> &TopologicalSort,
SmallPtrSet<const Instruction *, 32> &Visited) const {
if (Visited.contains(Definition))
return;
Visited.insert(Definition);
{
const auto *BasicBlock = Definition->getParent();
const auto FirstNonPHIOrDbgOrAlloca =
BasicBlock->getFirstNonPHIOrDbgOrAlloca();
if (FirstNonPHIOrDbgOrAlloca == BasicBlock->end())
return; // TODO: Is this necessary?
if (Definition->comesBefore(&*FirstNonPHIOrDbgOrAlloca))
return; // TODO: Do some kind of ordering for these instructions.
}
for (auto &Operand : Definition->operands()) {
if (auto *Op = dyn_cast<Instruction>(Operand)) {
if (Op->getParent() != Definition->getParent())
continue; // Only reorder instruction within the same basic block
reorderDefinition(Op, TopologicalSort, Visited);
}
}
LLVM_DEBUG(dbgs() << "\t\tNext in topological sort: "; Definition->dump());
if (Definition->isTerminator())
return;
if (auto *Call = dyn_cast<CallInst>(Definition)) {
if (Call->isMustTailCall())
return;
if (Call->getIntrinsicID() == Intrinsic::experimental_deoptimize)
return;
if (Call->getIntrinsicID() == Intrinsic::experimental_convergence_entry)
return;
if (Call->getIntrinsicID() == Intrinsic::experimental_convergence_loop)
return;
}
if (auto *BitCast = dyn_cast<BitCastInst>(Definition)) {
if (auto *Call = dyn_cast<CallInst>(BitCast->getOperand(0))) {
if (Call->isMustTailCall())
return;
}
}
TopologicalSort.emplace(Definition);
}
/// Reorders instruction's operands alphabetically. This method assumes
/// that passed instruction is commutative. Changing the operand order
/// in other instructions may change the semantics.
///
/// \param I Instruction whose operands will be reordered.
void IRNormalizer::reorderInstructionOperandsByNames(Instruction *I) const {
// This method assumes that passed I is commutative,
// changing the order of operands in other instructions
// may change the semantics.
// Instruction operands for further sorting.
SmallVector<std::pair<std::string, Value *>, 4> Operands;
// Collect operands.
for (auto &Op : I->operands()) {
if (auto *V = dyn_cast<Value>(Op)) {
if (isa<Instruction>(V)) {
// This is an an instruction.
Operands.push_back(std::pair<std::string, Value *>(V->getName(), V));
} else {
std::string TextRepresentation;
raw_string_ostream Stream(TextRepresentation);
Op->printAsOperand(Stream, false);
Operands.push_back(std::pair<std::string, Value *>(Stream.str(), V));
}
}
}
// Sort operands.
sortCommutativeOperands(I, Operands);
// Reorder operands.
unsigned Position = 0;
for (auto &Op : I->operands()) {
Op.set(Operands[Position].second);
Position += 1;
}
}
/// Reorders PHI node's values according to the names of corresponding basic
/// blocks.
///
/// \param Phi PHI node to normalize.
void IRNormalizer::reorderPHIIncomingValues(PHINode *Phi) const {
// Values for further sorting.
SmallVector<std::pair<Value *, BasicBlock *>, 2> Values;
// Collect blocks and corresponding values.
for (auto &BB : Phi->blocks()) {
Value *V = Phi->getIncomingValueForBlock(BB);
Values.push_back(std::pair<Value *, BasicBlock *>(V, BB));
}
// Sort values according to the name of a basic block.
llvm::sort(Values, [](const std::pair<Value *, BasicBlock *> &LHS,
const std::pair<Value *, BasicBlock *> &RHS) {
return LHS.second->getName() < RHS.second->getName();
});
// Swap.
for (unsigned i = 0; i < Values.size(); ++i) {
Phi->setIncomingBlock(i, Values[i].second);
Phi->setIncomingValue(i, Values[i].first);
}
}
/// Returns a vector of output instructions. An output is an instruction which
/// has side-effects or is ReturnInst. Uses isOutput().
///
/// \see isOutput()
/// \param F Function to collect outputs from.
SmallVector<Instruction *, 16>
IRNormalizer::collectOutputInstructions(Function &F) const {
// Output instructions are collected top-down in each function,
// any change may break the def-use chain in reordering methods.
SmallVector<Instruction *, 16> Outputs;
for (auto &I : instructions(F))
if (isOutput(&I))
Outputs.push_back(&I);
return Outputs;
}
/// Helper method checking whether the instruction may have side effects or is
/// ReturnInst.
///
/// \param I Considered instruction.
bool IRNormalizer::isOutput(const Instruction *I) const {
// Outputs are such instructions which may have side effects or is ReturnInst.
return I->mayHaveSideEffects() || isa<ReturnInst>(I);
}
/// Helper method checking whether the instruction has users and only
/// immediate operands.
///
/// \param I Considered instruction.
bool IRNormalizer::isInitialInstruction(const Instruction *I) const {
// Initial instructions are such instructions whose values are used by
// other instructions, yet they only depend on immediate values.
return !I->user_empty() && hasOnlyImmediateOperands(I);
}
/// Helper method checking whether the instruction has only immediate operands.
///
/// \param I Considered instruction.
bool IRNormalizer::hasOnlyImmediateOperands(const Instruction *I) const {
for (const auto &Op : I->operands())
if (isa<Instruction>(Op))
return false; // Found non-immediate operand (instruction).
return true;
}
/// Helper method returning indices (distance from the beginning of the basic
/// block) of outputs using the \p I (eliminates repetitions). Walks down the
/// def-use tree recursively.
///
/// \param I Considered instruction.
/// \param Visited Set of visited instructions.
SetVector<int> IRNormalizer::getOutputFootprint(
Instruction *I, SmallPtrSet<const Instruction *, 32> &Visited) const {
// Vector containing indexes of outputs (no repetitions),
// which use I in the order of walking down the def-use tree.
SetVector<int> Outputs;
if (!Visited.count(I)) {
Visited.insert(I);
if (isOutput(I)) {
// Gets output instruction's parent function.
Function *Func = I->getParent()->getParent();
// Finds and inserts the index of the output to the vector.
unsigned Count = 0;
for (const auto &B : *Func) {
for (const auto &E : B) {
if (&E == I)
Outputs.insert(Count);
Count += 1;
}
}
// Returns to the used instruction.
return Outputs;
}
for (auto *U : I->users()) {
if (auto *UI = dyn_cast<Instruction>(U)) {
// Vector for outputs which use UI.
SetVector<int> OutputsUsingUI = getOutputFootprint(UI, Visited);
// Insert the indexes of outputs using UI.
Outputs.insert_range(OutputsUsingUI);
}
}
}
// Return to the used instruction.
return Outputs;
}
PreservedAnalyses IRNormalizerPass::run(Function &F,
FunctionAnalysisManager &AM) const {
IRNormalizer(Options).runOnFunction(F);
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
|