1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
|
//===-------- LoopIdiomVectorize.cpp - Loop idiom vectorization -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a pass that recognizes certain loop idioms and
// transforms them into more optimized versions of the same loop. In cases
// where this happens, it can be a significant performance win.
//
// We currently support two loops:
//
// 1. A loop that finds the first mismatched byte in an array and returns the
// index, i.e. something like:
//
// while (++i != n) {
// if (a[i] != b[i])
// break;
// }
//
// In this example we can actually vectorize the loop despite the early exit,
// although the loop vectorizer does not support it. It requires some extra
// checks to deal with the possibility of faulting loads when crossing page
// boundaries. However, even with these checks it is still profitable to do the
// transformation.
//
// TODO List:
//
// * Add support for the inverse case where we scan for a matching element.
// * Permit 64-bit induction variable types.
// * Recognize loops that increment the IV *after* comparing bytes.
// * Allow 32-bit sign-extends of the IV used by the GEP.
//
// 2. A loop that finds the first matching character in an array among a set of
// possible matches, e.g.:
//
// for (; first != last; ++first)
// for (s_it = s_first; s_it != s_last; ++s_it)
// if (*first == *s_it)
// return first;
// return last;
//
// This corresponds to std::find_first_of (for arrays of bytes) from the C++
// standard library. This function can be implemented efficiently for targets
// that support @llvm.experimental.vector.match. For example, on AArch64 targets
// that implement SVE2, this lower to a MATCH instruction, which enables us to
// perform up to 16x16=256 comparisons in one go. This can lead to very
// significant speedups.
//
// TODO:
//
// * Add support for `find_first_not_of' loops (i.e. with not-equal comparison).
// * Make VF a configurable parameter (right now we assume 128-bit vectors).
// * Potentially adjust the cost model to let the transformation kick-in even if
// @llvm.experimental.vector.match doesn't have direct support in hardware.
//
//===----------------------------------------------------------------------===//
//
// NOTE: This Pass matches really specific loop patterns because it's only
// supposed to be a temporary solution until our LoopVectorizer is powerful
// enough to vectorize them automatically.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/LoopIdiomVectorize.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "loop-idiom-vectorize"
static cl::opt<bool> DisableAll("disable-loop-idiom-vectorize-all", cl::Hidden,
cl::init(false),
cl::desc("Disable Loop Idiom Vectorize Pass."));
static cl::opt<LoopIdiomVectorizeStyle>
LITVecStyle("loop-idiom-vectorize-style", cl::Hidden,
cl::desc("The vectorization style for loop idiom transform."),
cl::values(clEnumValN(LoopIdiomVectorizeStyle::Masked, "masked",
"Use masked vector intrinsics"),
clEnumValN(LoopIdiomVectorizeStyle::Predicated,
"predicated", "Use VP intrinsics")),
cl::init(LoopIdiomVectorizeStyle::Masked));
static cl::opt<bool>
DisableByteCmp("disable-loop-idiom-vectorize-bytecmp", cl::Hidden,
cl::init(false),
cl::desc("Proceed with Loop Idiom Vectorize Pass, but do "
"not convert byte-compare loop(s)."));
static cl::opt<unsigned>
ByteCmpVF("loop-idiom-vectorize-bytecmp-vf", cl::Hidden,
cl::desc("The vectorization factor for byte-compare patterns."),
cl::init(16));
static cl::opt<bool>
DisableFindFirstByte("disable-loop-idiom-vectorize-find-first-byte",
cl::Hidden, cl::init(false),
cl::desc("Do not convert find-first-byte loop(s)."));
static cl::opt<bool>
VerifyLoops("loop-idiom-vectorize-verify", cl::Hidden, cl::init(false),
cl::desc("Verify loops generated Loop Idiom Vectorize Pass."));
namespace {
class LoopIdiomVectorize {
LoopIdiomVectorizeStyle VectorizeStyle;
unsigned ByteCompareVF;
Loop *CurLoop = nullptr;
DominatorTree *DT;
LoopInfo *LI;
const TargetTransformInfo *TTI;
const DataLayout *DL;
// Blocks that will be used for inserting vectorized code.
BasicBlock *EndBlock = nullptr;
BasicBlock *VectorLoopPreheaderBlock = nullptr;
BasicBlock *VectorLoopStartBlock = nullptr;
BasicBlock *VectorLoopMismatchBlock = nullptr;
BasicBlock *VectorLoopIncBlock = nullptr;
public:
LoopIdiomVectorize(LoopIdiomVectorizeStyle S, unsigned VF, DominatorTree *DT,
LoopInfo *LI, const TargetTransformInfo *TTI,
const DataLayout *DL)
: VectorizeStyle(S), ByteCompareVF(VF), DT(DT), LI(LI), TTI(TTI), DL(DL) {
}
bool run(Loop *L);
private:
/// \name Countable Loop Idiom Handling
/// @{
bool runOnCountableLoop();
bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
SmallVectorImpl<BasicBlock *> &ExitBlocks);
bool recognizeByteCompare();
Value *expandFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
Instruction *Index, Value *Start, Value *MaxLen);
Value *createMaskedFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart,
Value *ExtEnd);
Value *createPredicatedFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart,
Value *ExtEnd);
void transformByteCompare(GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
PHINode *IndPhi, Value *MaxLen, Instruction *Index,
Value *Start, bool IncIdx, BasicBlock *FoundBB,
BasicBlock *EndBB);
bool recognizeFindFirstByte();
Value *expandFindFirstByte(IRBuilder<> &Builder, DomTreeUpdater &DTU,
unsigned VF, Type *CharTy, BasicBlock *ExitSucc,
BasicBlock *ExitFail, Value *SearchStart,
Value *SearchEnd, Value *NeedleStart,
Value *NeedleEnd);
void transformFindFirstByte(PHINode *IndPhi, unsigned VF, Type *CharTy,
BasicBlock *ExitSucc, BasicBlock *ExitFail,
Value *SearchStart, Value *SearchEnd,
Value *NeedleStart, Value *NeedleEnd);
/// @}
};
} // anonymous namespace
PreservedAnalyses LoopIdiomVectorizePass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &) {
if (DisableAll)
return PreservedAnalyses::all();
const auto *DL = &L.getHeader()->getDataLayout();
LoopIdiomVectorizeStyle VecStyle = VectorizeStyle;
if (LITVecStyle.getNumOccurrences())
VecStyle = LITVecStyle;
unsigned BCVF = ByteCompareVF;
if (ByteCmpVF.getNumOccurrences())
BCVF = ByteCmpVF;
LoopIdiomVectorize LIV(VecStyle, BCVF, &AR.DT, &AR.LI, &AR.TTI, DL);
if (!LIV.run(&L))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
//===----------------------------------------------------------------------===//
//
// Implementation of LoopIdiomVectorize
//
//===----------------------------------------------------------------------===//
bool LoopIdiomVectorize::run(Loop *L) {
CurLoop = L;
Function &F = *L->getHeader()->getParent();
if (DisableAll || F.hasOptSize())
return false;
if (F.hasFnAttribute(Attribute::NoImplicitFloat)) {
LLVM_DEBUG(dbgs() << DEBUG_TYPE << " is disabled on " << F.getName()
<< " due to its NoImplicitFloat attribute");
return false;
}
// If the loop could not be converted to canonical form, it must have an
// indirectbr in it, just give up.
if (!L->getLoopPreheader())
return false;
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" << F.getName() << "] Loop %"
<< CurLoop->getHeader()->getName() << "\n");
if (recognizeByteCompare())
return true;
if (recognizeFindFirstByte())
return true;
return false;
}
bool LoopIdiomVectorize::recognizeByteCompare() {
// Currently the transformation only works on scalable vector types, although
// there is no fundamental reason why it cannot be made to work for fixed
// width too.
// We also need to know the minimum page size for the target in order to
// generate runtime memory checks to ensure the vector version won't fault.
if (!TTI->supportsScalableVectors() || !TTI->getMinPageSize().has_value() ||
DisableByteCmp)
return false;
BasicBlock *Header = CurLoop->getHeader();
// In LoopIdiomVectorize::run we have already checked that the loop
// has a preheader so we can assume it's in a canonical form.
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 2)
return false;
PHINode *PN = dyn_cast<PHINode>(&Header->front());
if (!PN || PN->getNumIncomingValues() != 2)
return false;
auto LoopBlocks = CurLoop->getBlocks();
// The first block in the loop should contain only 4 instructions, e.g.
//
// while.cond:
// %res.phi = phi i32 [ %start, %ph ], [ %inc, %while.body ]
// %inc = add i32 %res.phi, 1
// %cmp.not = icmp eq i32 %inc, %n
// br i1 %cmp.not, label %while.end, label %while.body
//
if (LoopBlocks[0]->sizeWithoutDebug() > 4)
return false;
// The second block should contain 7 instructions, e.g.
//
// while.body:
// %idx = zext i32 %inc to i64
// %idx.a = getelementptr inbounds i8, ptr %a, i64 %idx
// %load.a = load i8, ptr %idx.a
// %idx.b = getelementptr inbounds i8, ptr %b, i64 %idx
// %load.b = load i8, ptr %idx.b
// %cmp.not.ld = icmp eq i8 %load.a, %load.b
// br i1 %cmp.not.ld, label %while.cond, label %while.end
//
if (LoopBlocks[1]->sizeWithoutDebug() > 7)
return false;
// The incoming value to the PHI node from the loop should be an add of 1.
Value *StartIdx = nullptr;
Instruction *Index = nullptr;
if (!CurLoop->contains(PN->getIncomingBlock(0))) {
StartIdx = PN->getIncomingValue(0);
Index = dyn_cast<Instruction>(PN->getIncomingValue(1));
} else {
StartIdx = PN->getIncomingValue(1);
Index = dyn_cast<Instruction>(PN->getIncomingValue(0));
}
// Limit to 32-bit types for now
if (!Index || !Index->getType()->isIntegerTy(32) ||
!match(Index, m_c_Add(m_Specific(PN), m_One())))
return false;
// If we match the pattern, PN and Index will be replaced with the result of
// the cttz.elts intrinsic. If any other instructions are used outside of
// the loop, we cannot replace it.
for (BasicBlock *BB : LoopBlocks)
for (Instruction &I : *BB)
if (&I != PN && &I != Index)
for (User *U : I.users())
if (!CurLoop->contains(cast<Instruction>(U)))
return false;
// Match the branch instruction for the header
Value *MaxLen;
BasicBlock *EndBB, *WhileBB;
if (!match(Header->getTerminator(),
m_Br(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(Index),
m_Value(MaxLen)),
m_BasicBlock(EndBB), m_BasicBlock(WhileBB))) ||
!CurLoop->contains(WhileBB))
return false;
// WhileBB should contain the pattern of load & compare instructions. Match
// the pattern and find the GEP instructions used by the loads.
BasicBlock *FoundBB;
BasicBlock *TrueBB;
Value *LoadA, *LoadB;
if (!match(WhileBB->getTerminator(),
m_Br(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(LoadA),
m_Value(LoadB)),
m_BasicBlock(TrueBB), m_BasicBlock(FoundBB))) ||
!CurLoop->contains(TrueBB))
return false;
Value *A, *B;
if (!match(LoadA, m_Load(m_Value(A))) || !match(LoadB, m_Load(m_Value(B))))
return false;
LoadInst *LoadAI = cast<LoadInst>(LoadA);
LoadInst *LoadBI = cast<LoadInst>(LoadB);
if (!LoadAI->isSimple() || !LoadBI->isSimple())
return false;
GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(A);
GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(B);
if (!GEPA || !GEPB)
return false;
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
// Check we are loading i8 values from two loop invariant pointers
if (!CurLoop->isLoopInvariant(PtrA) || !CurLoop->isLoopInvariant(PtrB) ||
!GEPA->getResultElementType()->isIntegerTy(8) ||
!GEPB->getResultElementType()->isIntegerTy(8) ||
!LoadAI->getType()->isIntegerTy(8) ||
!LoadBI->getType()->isIntegerTy(8) || PtrA == PtrB)
return false;
// Check that the index to the GEPs is the index we found earlier
if (GEPA->getNumIndices() > 1 || GEPB->getNumIndices() > 1)
return false;
Value *IdxA = GEPA->getOperand(GEPA->getNumIndices());
Value *IdxB = GEPB->getOperand(GEPB->getNumIndices());
if (IdxA != IdxB || !match(IdxA, m_ZExt(m_Specific(Index))))
return false;
// We only ever expect the pre-incremented index value to be used inside the
// loop.
if (!PN->hasOneUse())
return false;
// Ensure that when the Found and End blocks are identical the PHIs have the
// supported format. We don't currently allow cases like this:
// while.cond:
// ...
// br i1 %cmp.not, label %while.end, label %while.body
//
// while.body:
// ...
// br i1 %cmp.not2, label %while.cond, label %while.end
//
// while.end:
// %final_ptr = phi ptr [ %c, %while.body ], [ %d, %while.cond ]
//
// Where the incoming values for %final_ptr are unique and from each of the
// loop blocks, but not actually defined in the loop. This requires extra
// work setting up the byte.compare block, i.e. by introducing a select to
// choose the correct value.
// TODO: We could add support for this in future.
if (FoundBB == EndBB) {
for (PHINode &EndPN : EndBB->phis()) {
Value *WhileCondVal = EndPN.getIncomingValueForBlock(Header);
Value *WhileBodyVal = EndPN.getIncomingValueForBlock(WhileBB);
// The value of the index when leaving the while.cond block is always the
// same as the end value (MaxLen) so we permit either. The value when
// leaving the while.body block should only be the index. Otherwise for
// any other values we only allow ones that are same for both blocks.
if (WhileCondVal != WhileBodyVal &&
((WhileCondVal != Index && WhileCondVal != MaxLen) ||
(WhileBodyVal != Index)))
return false;
}
}
LLVM_DEBUG(dbgs() << "FOUND IDIOM IN LOOP: \n"
<< *(EndBB->getParent()) << "\n\n");
// The index is incremented before the GEP/Load pair so we need to
// add 1 to the start value.
transformByteCompare(GEPA, GEPB, PN, MaxLen, Index, StartIdx, /*IncIdx=*/true,
FoundBB, EndBB);
return true;
}
Value *LoopIdiomVectorize::createMaskedFindMismatch(
IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart, Value *ExtEnd) {
Type *I64Type = Builder.getInt64Ty();
Type *ResType = Builder.getInt32Ty();
Type *LoadType = Builder.getInt8Ty();
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
ScalableVectorType *PredVTy =
ScalableVectorType::get(Builder.getInt1Ty(), ByteCompareVF);
Value *InitialPred = Builder.CreateIntrinsic(
Intrinsic::get_active_lane_mask, {PredVTy, I64Type}, {ExtStart, ExtEnd});
Value *VecLen = Builder.CreateVScale(I64Type);
VecLen =
Builder.CreateMul(VecLen, ConstantInt::get(I64Type, ByteCompareVF), "",
/*HasNUW=*/true, /*HasNSW=*/true);
Value *PFalse = Builder.CreateVectorSplat(PredVTy->getElementCount(),
Builder.getInt1(false));
BranchInst *JumpToVectorLoop = BranchInst::Create(VectorLoopStartBlock);
Builder.Insert(JumpToVectorLoop);
DTU.applyUpdates({{DominatorTree::Insert, VectorLoopPreheaderBlock,
VectorLoopStartBlock}});
// Set up the first vector loop block by creating the PHIs, doing the vector
// loads and comparing the vectors.
Builder.SetInsertPoint(VectorLoopStartBlock);
PHINode *LoopPred = Builder.CreatePHI(PredVTy, 2, "mismatch_vec_loop_pred");
LoopPred->addIncoming(InitialPred, VectorLoopPreheaderBlock);
PHINode *VectorIndexPhi = Builder.CreatePHI(I64Type, 2, "mismatch_vec_index");
VectorIndexPhi->addIncoming(ExtStart, VectorLoopPreheaderBlock);
Type *VectorLoadType =
ScalableVectorType::get(Builder.getInt8Ty(), ByteCompareVF);
Value *Passthru = ConstantInt::getNullValue(VectorLoadType);
Value *VectorLhsGep =
Builder.CreateGEP(LoadType, PtrA, VectorIndexPhi, "", GEPA->isInBounds());
Value *VectorLhsLoad = Builder.CreateMaskedLoad(VectorLoadType, VectorLhsGep,
Align(1), LoopPred, Passthru);
Value *VectorRhsGep =
Builder.CreateGEP(LoadType, PtrB, VectorIndexPhi, "", GEPB->isInBounds());
Value *VectorRhsLoad = Builder.CreateMaskedLoad(VectorLoadType, VectorRhsGep,
Align(1), LoopPred, Passthru);
Value *VectorMatchCmp = Builder.CreateICmpNE(VectorLhsLoad, VectorRhsLoad);
VectorMatchCmp = Builder.CreateSelect(LoopPred, VectorMatchCmp, PFalse);
Value *VectorMatchHasActiveLanes = Builder.CreateOrReduce(VectorMatchCmp);
BranchInst *VectorEarlyExit = BranchInst::Create(
VectorLoopMismatchBlock, VectorLoopIncBlock, VectorMatchHasActiveLanes);
Builder.Insert(VectorEarlyExit);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopMismatchBlock},
{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopIncBlock}});
// Increment the index counter and calculate the predicate for the next
// iteration of the loop. We branch back to the start of the loop if there
// is at least one active lane.
Builder.SetInsertPoint(VectorLoopIncBlock);
Value *NewVectorIndexPhi =
Builder.CreateAdd(VectorIndexPhi, VecLen, "",
/*HasNUW=*/true, /*HasNSW=*/true);
VectorIndexPhi->addIncoming(NewVectorIndexPhi, VectorLoopIncBlock);
Value *NewPred =
Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
{PredVTy, I64Type}, {NewVectorIndexPhi, ExtEnd});
LoopPred->addIncoming(NewPred, VectorLoopIncBlock);
Value *PredHasActiveLanes =
Builder.CreateExtractElement(NewPred, uint64_t(0));
BranchInst *VectorLoopBranchBack =
BranchInst::Create(VectorLoopStartBlock, EndBlock, PredHasActiveLanes);
Builder.Insert(VectorLoopBranchBack);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopIncBlock, VectorLoopStartBlock},
{DominatorTree::Insert, VectorLoopIncBlock, EndBlock}});
// If we found a mismatch then we need to calculate which lane in the vector
// had a mismatch and add that on to the current loop index.
Builder.SetInsertPoint(VectorLoopMismatchBlock);
PHINode *FoundPred = Builder.CreatePHI(PredVTy, 1, "mismatch_vec_found_pred");
FoundPred->addIncoming(VectorMatchCmp, VectorLoopStartBlock);
PHINode *LastLoopPred =
Builder.CreatePHI(PredVTy, 1, "mismatch_vec_last_loop_pred");
LastLoopPred->addIncoming(LoopPred, VectorLoopStartBlock);
PHINode *VectorFoundIndex =
Builder.CreatePHI(I64Type, 1, "mismatch_vec_found_index");
VectorFoundIndex->addIncoming(VectorIndexPhi, VectorLoopStartBlock);
Value *PredMatchCmp = Builder.CreateAnd(LastLoopPred, FoundPred);
Value *Ctz = Builder.CreateCountTrailingZeroElems(ResType, PredMatchCmp);
Ctz = Builder.CreateZExt(Ctz, I64Type);
Value *VectorLoopRes64 = Builder.CreateAdd(VectorFoundIndex, Ctz, "",
/*HasNUW=*/true, /*HasNSW=*/true);
return Builder.CreateTrunc(VectorLoopRes64, ResType);
}
Value *LoopIdiomVectorize::createPredicatedFindMismatch(
IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Value *ExtStart, Value *ExtEnd) {
Type *I64Type = Builder.getInt64Ty();
Type *I32Type = Builder.getInt32Ty();
Type *ResType = I32Type;
Type *LoadType = Builder.getInt8Ty();
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
auto *JumpToVectorLoop = BranchInst::Create(VectorLoopStartBlock);
Builder.Insert(JumpToVectorLoop);
DTU.applyUpdates({{DominatorTree::Insert, VectorLoopPreheaderBlock,
VectorLoopStartBlock}});
// Set up the first Vector loop block by creating the PHIs, doing the vector
// loads and comparing the vectors.
Builder.SetInsertPoint(VectorLoopStartBlock);
auto *VectorIndexPhi = Builder.CreatePHI(I64Type, 2, "mismatch_vector_index");
VectorIndexPhi->addIncoming(ExtStart, VectorLoopPreheaderBlock);
// Calculate AVL by subtracting the vector loop index from the trip count
Value *AVL = Builder.CreateSub(ExtEnd, VectorIndexPhi, "avl", /*HasNUW=*/true,
/*HasNSW=*/true);
auto *VectorLoadType = ScalableVectorType::get(LoadType, ByteCompareVF);
auto *VF = ConstantInt::get(I32Type, ByteCompareVF);
Value *VL = Builder.CreateIntrinsic(Intrinsic::experimental_get_vector_length,
{I64Type}, {AVL, VF, Builder.getTrue()});
Value *GepOffset = VectorIndexPhi;
Value *VectorLhsGep =
Builder.CreateGEP(LoadType, PtrA, GepOffset, "", GEPA->isInBounds());
VectorType *TrueMaskTy =
VectorType::get(Builder.getInt1Ty(), VectorLoadType->getElementCount());
Value *AllTrueMask = Constant::getAllOnesValue(TrueMaskTy);
Value *VectorLhsLoad = Builder.CreateIntrinsic(
Intrinsic::vp_load, {VectorLoadType, VectorLhsGep->getType()},
{VectorLhsGep, AllTrueMask, VL}, nullptr, "lhs.load");
Value *VectorRhsGep =
Builder.CreateGEP(LoadType, PtrB, GepOffset, "", GEPB->isInBounds());
Value *VectorRhsLoad = Builder.CreateIntrinsic(
Intrinsic::vp_load, {VectorLoadType, VectorLhsGep->getType()},
{VectorRhsGep, AllTrueMask, VL}, nullptr, "rhs.load");
StringRef PredicateStr = CmpInst::getPredicateName(CmpInst::ICMP_NE);
auto *PredicateMDS = MDString::get(VectorLhsLoad->getContext(), PredicateStr);
Value *Pred = MetadataAsValue::get(VectorLhsLoad->getContext(), PredicateMDS);
Value *VectorMatchCmp = Builder.CreateIntrinsic(
Intrinsic::vp_icmp, {VectorLhsLoad->getType()},
{VectorLhsLoad, VectorRhsLoad, Pred, AllTrueMask, VL}, nullptr,
"mismatch.cmp");
Value *CTZ = Builder.CreateIntrinsic(
Intrinsic::vp_cttz_elts, {ResType, VectorMatchCmp->getType()},
{VectorMatchCmp, /*ZeroIsPoison=*/Builder.getInt1(false), AllTrueMask,
VL});
Value *MismatchFound = Builder.CreateICmpNE(CTZ, VL);
auto *VectorEarlyExit = BranchInst::Create(VectorLoopMismatchBlock,
VectorLoopIncBlock, MismatchFound);
Builder.Insert(VectorEarlyExit);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopMismatchBlock},
{DominatorTree::Insert, VectorLoopStartBlock, VectorLoopIncBlock}});
// Increment the index counter and calculate the predicate for the next
// iteration of the loop. We branch back to the start of the loop if there
// is at least one active lane.
Builder.SetInsertPoint(VectorLoopIncBlock);
Value *VL64 = Builder.CreateZExt(VL, I64Type);
Value *NewVectorIndexPhi =
Builder.CreateAdd(VectorIndexPhi, VL64, "",
/*HasNUW=*/true, /*HasNSW=*/true);
VectorIndexPhi->addIncoming(NewVectorIndexPhi, VectorLoopIncBlock);
Value *ExitCond = Builder.CreateICmpNE(NewVectorIndexPhi, ExtEnd);
auto *VectorLoopBranchBack =
BranchInst::Create(VectorLoopStartBlock, EndBlock, ExitCond);
Builder.Insert(VectorLoopBranchBack);
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopIncBlock, VectorLoopStartBlock},
{DominatorTree::Insert, VectorLoopIncBlock, EndBlock}});
// If we found a mismatch then we need to calculate which lane in the vector
// had a mismatch and add that on to the current loop index.
Builder.SetInsertPoint(VectorLoopMismatchBlock);
// Add LCSSA phis for CTZ and VectorIndexPhi.
auto *CTZLCSSAPhi = Builder.CreatePHI(CTZ->getType(), 1, "ctz");
CTZLCSSAPhi->addIncoming(CTZ, VectorLoopStartBlock);
auto *VectorIndexLCSSAPhi =
Builder.CreatePHI(VectorIndexPhi->getType(), 1, "mismatch_vector_index");
VectorIndexLCSSAPhi->addIncoming(VectorIndexPhi, VectorLoopStartBlock);
Value *CTZI64 = Builder.CreateZExt(CTZLCSSAPhi, I64Type);
Value *VectorLoopRes64 = Builder.CreateAdd(VectorIndexLCSSAPhi, CTZI64, "",
/*HasNUW=*/true, /*HasNSW=*/true);
return Builder.CreateTrunc(VectorLoopRes64, ResType);
}
Value *LoopIdiomVectorize::expandFindMismatch(
IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB, Instruction *Index, Value *Start, Value *MaxLen) {
Value *PtrA = GEPA->getPointerOperand();
Value *PtrB = GEPB->getPointerOperand();
// Get the arguments and types for the intrinsic.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
LLVMContext &Ctx = PHBranch->getContext();
Type *LoadType = Type::getInt8Ty(Ctx);
Type *ResType = Builder.getInt32Ty();
// Split block in the original loop preheader.
EndBlock = SplitBlock(Preheader, PHBranch, DT, LI, nullptr, "mismatch_end");
// Create the blocks that we're going to need:
// 1. A block for checking the zero-extended length exceeds 0
// 2. A block to check that the start and end addresses of a given array
// lie on the same page.
// 3. The vector loop preheader.
// 4. The first vector loop block.
// 5. The vector loop increment block.
// 6. A block we can jump to from the vector loop when a mismatch is found.
// 7. The first block of the scalar loop itself, containing PHIs , loads
// and cmp.
// 8. A scalar loop increment block to increment the PHIs and go back
// around the loop.
BasicBlock *MinItCheckBlock = BasicBlock::Create(
Ctx, "mismatch_min_it_check", EndBlock->getParent(), EndBlock);
// Update the terminator added by SplitBlock to branch to the first block
Preheader->getTerminator()->setSuccessor(0, MinItCheckBlock);
BasicBlock *MemCheckBlock = BasicBlock::Create(
Ctx, "mismatch_mem_check", EndBlock->getParent(), EndBlock);
VectorLoopPreheaderBlock = BasicBlock::Create(
Ctx, "mismatch_vec_loop_preheader", EndBlock->getParent(), EndBlock);
VectorLoopStartBlock = BasicBlock::Create(Ctx, "mismatch_vec_loop",
EndBlock->getParent(), EndBlock);
VectorLoopIncBlock = BasicBlock::Create(Ctx, "mismatch_vec_loop_inc",
EndBlock->getParent(), EndBlock);
VectorLoopMismatchBlock = BasicBlock::Create(Ctx, "mismatch_vec_loop_found",
EndBlock->getParent(), EndBlock);
BasicBlock *LoopPreHeaderBlock = BasicBlock::Create(
Ctx, "mismatch_loop_pre", EndBlock->getParent(), EndBlock);
BasicBlock *LoopStartBlock =
BasicBlock::Create(Ctx, "mismatch_loop", EndBlock->getParent(), EndBlock);
BasicBlock *LoopIncBlock = BasicBlock::Create(
Ctx, "mismatch_loop_inc", EndBlock->getParent(), EndBlock);
DTU.applyUpdates({{DominatorTree::Insert, Preheader, MinItCheckBlock},
{DominatorTree::Delete, Preheader, EndBlock}});
// Update LoopInfo with the new vector & scalar loops.
auto VectorLoop = LI->AllocateLoop();
auto ScalarLoop = LI->AllocateLoop();
if (CurLoop->getParentLoop()) {
CurLoop->getParentLoop()->addBasicBlockToLoop(MinItCheckBlock, *LI);
CurLoop->getParentLoop()->addBasicBlockToLoop(MemCheckBlock, *LI);
CurLoop->getParentLoop()->addBasicBlockToLoop(VectorLoopPreheaderBlock,
*LI);
CurLoop->getParentLoop()->addChildLoop(VectorLoop);
CurLoop->getParentLoop()->addBasicBlockToLoop(VectorLoopMismatchBlock, *LI);
CurLoop->getParentLoop()->addBasicBlockToLoop(LoopPreHeaderBlock, *LI);
CurLoop->getParentLoop()->addChildLoop(ScalarLoop);
} else {
LI->addTopLevelLoop(VectorLoop);
LI->addTopLevelLoop(ScalarLoop);
}
// Add the new basic blocks to their associated loops.
VectorLoop->addBasicBlockToLoop(VectorLoopStartBlock, *LI);
VectorLoop->addBasicBlockToLoop(VectorLoopIncBlock, *LI);
ScalarLoop->addBasicBlockToLoop(LoopStartBlock, *LI);
ScalarLoop->addBasicBlockToLoop(LoopIncBlock, *LI);
// Set up some types and constants that we intend to reuse.
Type *I64Type = Builder.getInt64Ty();
// Check the zero-extended iteration count > 0
Builder.SetInsertPoint(MinItCheckBlock);
Value *ExtStart = Builder.CreateZExt(Start, I64Type);
Value *ExtEnd = Builder.CreateZExt(MaxLen, I64Type);
// This check doesn't really cost us very much.
Value *LimitCheck = Builder.CreateICmpULE(Start, MaxLen);
BranchInst *MinItCheckBr =
BranchInst::Create(MemCheckBlock, LoopPreHeaderBlock, LimitCheck);
MinItCheckBr->setMetadata(
LLVMContext::MD_prof,
MDBuilder(MinItCheckBr->getContext()).createBranchWeights(99, 1));
Builder.Insert(MinItCheckBr);
DTU.applyUpdates(
{{DominatorTree::Insert, MinItCheckBlock, MemCheckBlock},
{DominatorTree::Insert, MinItCheckBlock, LoopPreHeaderBlock}});
// For each of the arrays, check the start/end addresses are on the same
// page.
Builder.SetInsertPoint(MemCheckBlock);
// The early exit in the original loop means that when performing vector
// loads we are potentially reading ahead of the early exit. So we could
// fault if crossing a page boundary. Therefore, we create runtime memory
// checks based on the minimum page size as follows:
// 1. Calculate the addresses of the first memory accesses in the loop,
// i.e. LhsStart and RhsStart.
// 2. Get the last accessed addresses in the loop, i.e. LhsEnd and RhsEnd.
// 3. Determine which pages correspond to all the memory accesses, i.e
// LhsStartPage, LhsEndPage, RhsStartPage, RhsEndPage.
// 4. If LhsStartPage == LhsEndPage and RhsStartPage == RhsEndPage, then
// we know we won't cross any page boundaries in the loop so we can
// enter the vector loop! Otherwise we fall back on the scalar loop.
Value *LhsStartGEP = Builder.CreateGEP(LoadType, PtrA, ExtStart);
Value *RhsStartGEP = Builder.CreateGEP(LoadType, PtrB, ExtStart);
Value *RhsStart = Builder.CreatePtrToInt(RhsStartGEP, I64Type);
Value *LhsStart = Builder.CreatePtrToInt(LhsStartGEP, I64Type);
Value *LhsEndGEP = Builder.CreateGEP(LoadType, PtrA, ExtEnd);
Value *RhsEndGEP = Builder.CreateGEP(LoadType, PtrB, ExtEnd);
Value *LhsEnd = Builder.CreatePtrToInt(LhsEndGEP, I64Type);
Value *RhsEnd = Builder.CreatePtrToInt(RhsEndGEP, I64Type);
const uint64_t MinPageSize = TTI->getMinPageSize().value();
const uint64_t AddrShiftAmt = llvm::Log2_64(MinPageSize);
Value *LhsStartPage = Builder.CreateLShr(LhsStart, AddrShiftAmt);
Value *LhsEndPage = Builder.CreateLShr(LhsEnd, AddrShiftAmt);
Value *RhsStartPage = Builder.CreateLShr(RhsStart, AddrShiftAmt);
Value *RhsEndPage = Builder.CreateLShr(RhsEnd, AddrShiftAmt);
Value *LhsPageCmp = Builder.CreateICmpNE(LhsStartPage, LhsEndPage);
Value *RhsPageCmp = Builder.CreateICmpNE(RhsStartPage, RhsEndPage);
Value *CombinedPageCmp = Builder.CreateOr(LhsPageCmp, RhsPageCmp);
BranchInst *CombinedPageCmpCmpBr = BranchInst::Create(
LoopPreHeaderBlock, VectorLoopPreheaderBlock, CombinedPageCmp);
CombinedPageCmpCmpBr->setMetadata(
LLVMContext::MD_prof, MDBuilder(CombinedPageCmpCmpBr->getContext())
.createBranchWeights(10, 90));
Builder.Insert(CombinedPageCmpCmpBr);
DTU.applyUpdates(
{{DominatorTree::Insert, MemCheckBlock, LoopPreHeaderBlock},
{DominatorTree::Insert, MemCheckBlock, VectorLoopPreheaderBlock}});
// Set up the vector loop preheader, i.e. calculate initial loop predicate,
// zero-extend MaxLen to 64-bits, determine the number of vector elements
// processed in each iteration, etc.
Builder.SetInsertPoint(VectorLoopPreheaderBlock);
// At this point we know two things must be true:
// 1. Start <= End
// 2. ExtMaxLen <= MinPageSize due to the page checks.
// Therefore, we know that we can use a 64-bit induction variable that
// starts from 0 -> ExtMaxLen and it will not overflow.
Value *VectorLoopRes = nullptr;
switch (VectorizeStyle) {
case LoopIdiomVectorizeStyle::Masked:
VectorLoopRes =
createMaskedFindMismatch(Builder, DTU, GEPA, GEPB, ExtStart, ExtEnd);
break;
case LoopIdiomVectorizeStyle::Predicated:
VectorLoopRes = createPredicatedFindMismatch(Builder, DTU, GEPA, GEPB,
ExtStart, ExtEnd);
break;
}
Builder.Insert(BranchInst::Create(EndBlock));
DTU.applyUpdates(
{{DominatorTree::Insert, VectorLoopMismatchBlock, EndBlock}});
// Generate code for scalar loop.
Builder.SetInsertPoint(LoopPreHeaderBlock);
Builder.Insert(BranchInst::Create(LoopStartBlock));
DTU.applyUpdates(
{{DominatorTree::Insert, LoopPreHeaderBlock, LoopStartBlock}});
Builder.SetInsertPoint(LoopStartBlock);
PHINode *IndexPhi = Builder.CreatePHI(ResType, 2, "mismatch_index");
IndexPhi->addIncoming(Start, LoopPreHeaderBlock);
// Otherwise compare the values
// Load bytes from each array and compare them.
Value *GepOffset = Builder.CreateZExt(IndexPhi, I64Type);
Value *LhsGep =
Builder.CreateGEP(LoadType, PtrA, GepOffset, "", GEPA->isInBounds());
Value *LhsLoad = Builder.CreateLoad(LoadType, LhsGep);
Value *RhsGep =
Builder.CreateGEP(LoadType, PtrB, GepOffset, "", GEPB->isInBounds());
Value *RhsLoad = Builder.CreateLoad(LoadType, RhsGep);
Value *MatchCmp = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
// If we have a mismatch then exit the loop ...
BranchInst *MatchCmpBr = BranchInst::Create(LoopIncBlock, EndBlock, MatchCmp);
Builder.Insert(MatchCmpBr);
DTU.applyUpdates({{DominatorTree::Insert, LoopStartBlock, LoopIncBlock},
{DominatorTree::Insert, LoopStartBlock, EndBlock}});
// Have we reached the maximum permitted length for the loop?
Builder.SetInsertPoint(LoopIncBlock);
Value *PhiInc = Builder.CreateAdd(IndexPhi, ConstantInt::get(ResType, 1), "",
/*HasNUW=*/Index->hasNoUnsignedWrap(),
/*HasNSW=*/Index->hasNoSignedWrap());
IndexPhi->addIncoming(PhiInc, LoopIncBlock);
Value *IVCmp = Builder.CreateICmpEQ(PhiInc, MaxLen);
BranchInst *IVCmpBr = BranchInst::Create(EndBlock, LoopStartBlock, IVCmp);
Builder.Insert(IVCmpBr);
DTU.applyUpdates({{DominatorTree::Insert, LoopIncBlock, EndBlock},
{DominatorTree::Insert, LoopIncBlock, LoopStartBlock}});
// In the end block we need to insert a PHI node to deal with three cases:
// 1. We didn't find a mismatch in the scalar loop, so we return MaxLen.
// 2. We exitted the scalar loop early due to a mismatch and need to return
// the index that we found.
// 3. We didn't find a mismatch in the vector loop, so we return MaxLen.
// 4. We exitted the vector loop early due to a mismatch and need to return
// the index that we found.
Builder.SetInsertPoint(EndBlock, EndBlock->getFirstInsertionPt());
PHINode *ResPhi = Builder.CreatePHI(ResType, 4, "mismatch_result");
ResPhi->addIncoming(MaxLen, LoopIncBlock);
ResPhi->addIncoming(IndexPhi, LoopStartBlock);
ResPhi->addIncoming(MaxLen, VectorLoopIncBlock);
ResPhi->addIncoming(VectorLoopRes, VectorLoopMismatchBlock);
Value *FinalRes = Builder.CreateTrunc(ResPhi, ResType);
if (VerifyLoops) {
ScalarLoop->verifyLoop();
VectorLoop->verifyLoop();
if (!VectorLoop->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
if (!ScalarLoop->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
return FinalRes;
}
void LoopIdiomVectorize::transformByteCompare(GetElementPtrInst *GEPA,
GetElementPtrInst *GEPB,
PHINode *IndPhi, Value *MaxLen,
Instruction *Index, Value *Start,
bool IncIdx, BasicBlock *FoundBB,
BasicBlock *EndBB) {
// Insert the byte compare code at the end of the preheader block
BasicBlock *Preheader = CurLoop->getLoopPreheader();
BasicBlock *Header = CurLoop->getHeader();
BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
IRBuilder<> Builder(PHBranch);
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
Builder.SetCurrentDebugLocation(PHBranch->getDebugLoc());
// Increment the pointer if this was done before the loads in the loop.
if (IncIdx)
Start = Builder.CreateAdd(Start, ConstantInt::get(Start->getType(), 1));
Value *ByteCmpRes =
expandFindMismatch(Builder, DTU, GEPA, GEPB, Index, Start, MaxLen);
// Replaces uses of index & induction Phi with intrinsic (we already
// checked that the the first instruction of Header is the Phi above).
assert(IndPhi->hasOneUse() && "Index phi node has more than one use!");
Index->replaceAllUsesWith(ByteCmpRes);
assert(PHBranch->isUnconditional() &&
"Expected preheader to terminate with an unconditional branch.");
// If no mismatch was found, we can jump to the end block. Create a
// new basic block for the compare instruction.
auto *CmpBB = BasicBlock::Create(Preheader->getContext(), "byte.compare",
Preheader->getParent());
CmpBB->moveBefore(EndBB);
// Replace the branch in the preheader with an always-true conditional branch.
// This ensures there is still a reference to the original loop.
Builder.CreateCondBr(Builder.getTrue(), CmpBB, Header);
PHBranch->eraseFromParent();
BasicBlock *MismatchEnd = cast<Instruction>(ByteCmpRes)->getParent();
DTU.applyUpdates({{DominatorTree::Insert, MismatchEnd, CmpBB}});
// Create the branch to either the end or found block depending on the value
// returned by the intrinsic.
Builder.SetInsertPoint(CmpBB);
if (FoundBB != EndBB) {
Value *FoundCmp = Builder.CreateICmpEQ(ByteCmpRes, MaxLen);
Builder.CreateCondBr(FoundCmp, EndBB, FoundBB);
DTU.applyUpdates({{DominatorTree::Insert, CmpBB, FoundBB},
{DominatorTree::Insert, CmpBB, EndBB}});
} else {
Builder.CreateBr(FoundBB);
DTU.applyUpdates({{DominatorTree::Insert, CmpBB, FoundBB}});
}
auto fixSuccessorPhis = [&](BasicBlock *SuccBB) {
for (PHINode &PN : SuccBB->phis()) {
// At this point we've already replaced all uses of the result from the
// loop with ByteCmp. Look through the incoming values to find ByteCmp,
// meaning this is a Phi collecting the results of the byte compare.
bool ResPhi = false;
for (Value *Op : PN.incoming_values())
if (Op == ByteCmpRes) {
ResPhi = true;
break;
}
// Any PHI that depended upon the result of the byte compare needs a new
// incoming value from CmpBB. This is because the original loop will get
// deleted.
if (ResPhi)
PN.addIncoming(ByteCmpRes, CmpBB);
else {
// There should be no other outside uses of other values in the
// original loop. Any incoming values should either:
// 1. Be for blocks outside the loop, which aren't interesting. Or ..
// 2. These are from blocks in the loop with values defined outside
// the loop. We should a similar incoming value from CmpBB.
for (BasicBlock *BB : PN.blocks())
if (CurLoop->contains(BB)) {
PN.addIncoming(PN.getIncomingValueForBlock(BB), CmpBB);
break;
}
}
}
};
// Ensure all Phis in the successors of CmpBB have an incoming value from it.
fixSuccessorPhis(EndBB);
if (EndBB != FoundBB)
fixSuccessorPhis(FoundBB);
// The new CmpBB block isn't part of the loop, but will need to be added to
// the outer loop if there is one.
if (!CurLoop->isOutermost())
CurLoop->getParentLoop()->addBasicBlockToLoop(CmpBB, *LI);
if (VerifyLoops && CurLoop->getParentLoop()) {
CurLoop->getParentLoop()->verifyLoop();
if (!CurLoop->getParentLoop()->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
}
bool LoopIdiomVectorize::recognizeFindFirstByte() {
// Currently the transformation only works on scalable vector types, although
// there is no fundamental reason why it cannot be made to work for fixed
// vectors. We also need to know the target's minimum page size in order to
// generate runtime memory checks to ensure the vector version won't fault.
if (!TTI->supportsScalableVectors() || !TTI->getMinPageSize().has_value() ||
DisableFindFirstByte)
return false;
// Define some constants we need throughout.
BasicBlock *Header = CurLoop->getHeader();
LLVMContext &Ctx = Header->getContext();
// We are expecting the four blocks defined below: Header, MatchBB, InnerBB,
// and OuterBB. For now, we will bail our for almost anything else. The Four
// blocks contain one nested loop.
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 4 ||
CurLoop->getSubLoops().size() != 1)
return false;
auto *InnerLoop = CurLoop->getSubLoops().front();
PHINode *IndPhi = dyn_cast<PHINode>(&Header->front());
if (!IndPhi || IndPhi->getNumIncomingValues() != 2)
return false;
// Check instruction counts.
auto LoopBlocks = CurLoop->getBlocks();
if (LoopBlocks[0]->sizeWithoutDebug() > 3 ||
LoopBlocks[1]->sizeWithoutDebug() > 4 ||
LoopBlocks[2]->sizeWithoutDebug() > 3 ||
LoopBlocks[3]->sizeWithoutDebug() > 3)
return false;
// Check that no instruction other than IndPhi has outside uses.
for (BasicBlock *BB : LoopBlocks)
for (Instruction &I : *BB)
if (&I != IndPhi)
for (User *U : I.users())
if (!CurLoop->contains(cast<Instruction>(U)))
return false;
// Match the branch instruction in the header. We are expecting an
// unconditional branch to the inner loop.
//
// Header:
// %14 = phi ptr [ %24, %OuterBB ], [ %3, %Header.preheader ]
// %15 = load i8, ptr %14, align 1
// br label %MatchBB
BasicBlock *MatchBB;
if (!match(Header->getTerminator(), m_UnconditionalBr(MatchBB)) ||
!InnerLoop->contains(MatchBB))
return false;
// MatchBB should be the entrypoint into the inner loop containing the
// comparison between a search element and a needle.
//
// MatchBB:
// %20 = phi ptr [ %7, %Header ], [ %17, %InnerBB ]
// %21 = load i8, ptr %20, align 1
// %22 = icmp eq i8 %15, %21
// br i1 %22, label %ExitSucc, label %InnerBB
BasicBlock *ExitSucc, *InnerBB;
Value *LoadSearch, *LoadNeedle;
CmpPredicate MatchPred;
if (!match(MatchBB->getTerminator(),
m_Br(m_ICmp(MatchPred, m_Value(LoadSearch), m_Value(LoadNeedle)),
m_BasicBlock(ExitSucc), m_BasicBlock(InnerBB))) ||
MatchPred != ICmpInst::ICMP_EQ || !InnerLoop->contains(InnerBB))
return false;
// We expect outside uses of `IndPhi' in ExitSucc (and only there).
for (User *U : IndPhi->users())
if (!CurLoop->contains(cast<Instruction>(U))) {
auto *PN = dyn_cast<PHINode>(U);
if (!PN || PN->getParent() != ExitSucc)
return false;
}
// Match the loads and check they are simple.
Value *Search, *Needle;
if (!match(LoadSearch, m_Load(m_Value(Search))) ||
!match(LoadNeedle, m_Load(m_Value(Needle))) ||
!cast<LoadInst>(LoadSearch)->isSimple() ||
!cast<LoadInst>(LoadNeedle)->isSimple())
return false;
// Check we are loading valid characters.
Type *CharTy = LoadSearch->getType();
if (!CharTy->isIntegerTy() || LoadNeedle->getType() != CharTy)
return false;
// Pick the vectorisation factor based on CharTy, work out the cost of the
// match intrinsic and decide if we should use it.
// Note: For the time being we assume 128-bit vectors.
unsigned VF = 128 / CharTy->getIntegerBitWidth();
SmallVector<Type *> Args = {
ScalableVectorType::get(CharTy, VF), FixedVectorType::get(CharTy, VF),
ScalableVectorType::get(Type::getInt1Ty(Ctx), VF)};
IntrinsicCostAttributes Attrs(Intrinsic::experimental_vector_match, Args[2],
Args);
if (TTI->getIntrinsicInstrCost(Attrs, TTI::TCK_SizeAndLatency) > 4)
return false;
// The loads come from two PHIs, each with two incoming values.
PHINode *PSearch = dyn_cast<PHINode>(Search);
PHINode *PNeedle = dyn_cast<PHINode>(Needle);
if (!PSearch || PSearch->getNumIncomingValues() != 2 || !PNeedle ||
PNeedle->getNumIncomingValues() != 2)
return false;
// One PHI comes from the outer loop (PSearch), the other one from the inner
// loop (PNeedle). PSearch effectively corresponds to IndPhi.
if (InnerLoop->contains(PSearch))
std::swap(PSearch, PNeedle);
if (PSearch != &Header->front() || PNeedle != &MatchBB->front())
return false;
// The incoming values of both PHI nodes should be a gep of 1.
Value *SearchStart = PSearch->getIncomingValue(0);
Value *SearchIndex = PSearch->getIncomingValue(1);
if (CurLoop->contains(PSearch->getIncomingBlock(0)))
std::swap(SearchStart, SearchIndex);
Value *NeedleStart = PNeedle->getIncomingValue(0);
Value *NeedleIndex = PNeedle->getIncomingValue(1);
if (InnerLoop->contains(PNeedle->getIncomingBlock(0)))
std::swap(NeedleStart, NeedleIndex);
// Match the GEPs.
if (!match(SearchIndex, m_GEP(m_Specific(PSearch), m_One())) ||
!match(NeedleIndex, m_GEP(m_Specific(PNeedle), m_One())))
return false;
// Check the GEPs result type matches `CharTy'.
GetElementPtrInst *GEPSearch = cast<GetElementPtrInst>(SearchIndex);
GetElementPtrInst *GEPNeedle = cast<GetElementPtrInst>(NeedleIndex);
if (GEPSearch->getResultElementType() != CharTy ||
GEPNeedle->getResultElementType() != CharTy)
return false;
// InnerBB should increment the address of the needle pointer.
//
// InnerBB:
// %17 = getelementptr inbounds i8, ptr %20, i64 1
// %18 = icmp eq ptr %17, %10
// br i1 %18, label %OuterBB, label %MatchBB
BasicBlock *OuterBB;
Value *NeedleEnd;
if (!match(InnerBB->getTerminator(),
m_Br(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(GEPNeedle),
m_Value(NeedleEnd)),
m_BasicBlock(OuterBB), m_Specific(MatchBB))) ||
!CurLoop->contains(OuterBB))
return false;
// OuterBB should increment the address of the search element pointer.
//
// OuterBB:
// %24 = getelementptr inbounds i8, ptr %14, i64 1
// %25 = icmp eq ptr %24, %6
// br i1 %25, label %ExitFail, label %Header
BasicBlock *ExitFail;
Value *SearchEnd;
if (!match(OuterBB->getTerminator(),
m_Br(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(GEPSearch),
m_Value(SearchEnd)),
m_BasicBlock(ExitFail), m_Specific(Header))))
return false;
if (!CurLoop->isLoopInvariant(SearchStart) ||
!CurLoop->isLoopInvariant(SearchEnd) ||
!CurLoop->isLoopInvariant(NeedleStart) ||
!CurLoop->isLoopInvariant(NeedleEnd))
return false;
LLVM_DEBUG(dbgs() << "Found idiom in loop: \n" << *CurLoop << "\n\n");
transformFindFirstByte(IndPhi, VF, CharTy, ExitSucc, ExitFail, SearchStart,
SearchEnd, NeedleStart, NeedleEnd);
return true;
}
Value *LoopIdiomVectorize::expandFindFirstByte(
IRBuilder<> &Builder, DomTreeUpdater &DTU, unsigned VF, Type *CharTy,
BasicBlock *ExitSucc, BasicBlock *ExitFail, Value *SearchStart,
Value *SearchEnd, Value *NeedleStart, Value *NeedleEnd) {
// Set up some types and constants that we intend to reuse.
auto *PtrTy = Builder.getPtrTy();
auto *I64Ty = Builder.getInt64Ty();
auto *PredVTy = ScalableVectorType::get(Builder.getInt1Ty(), VF);
auto *CharVTy = ScalableVectorType::get(CharTy, VF);
auto *ConstVF = ConstantInt::get(I64Ty, VF);
// Other common arguments.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
LLVMContext &Ctx = Preheader->getContext();
Value *Passthru = ConstantInt::getNullValue(CharVTy);
// Split block in the original loop preheader.
// SPH is the new preheader to the old scalar loop.
BasicBlock *SPH = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
nullptr, "scalar_preheader");
// Create the blocks that we're going to use.
//
// We will have the following loops:
// (O) Outer loop where we iterate over the elements of the search array.
// (I) Inner loop where we iterate over the elements of the needle array.
//
// Overall, the blocks do the following:
// (0) Check if the arrays can't cross page boundaries. If so go to (1),
// otherwise fall back to the original scalar loop.
// (1) Load the search array. Go to (2).
// (2) (a) Load the needle array.
// (b) Splat the first element to the inactive lanes.
// (c) Check if any elements match. If so go to (3), otherwise go to (4).
// (3) Compute the index of the first match and exit.
// (4) Check if we've reached the end of the needle array. If not loop back to
// (2), otherwise go to (5).
// (5) Check if we've reached the end of the search array. If not loop back to
// (1), otherwise exit.
// Blocks (0,3) are not part of any loop. Blocks (1,5) and (2,4) belong to
// the outer and inner loops, respectively.
BasicBlock *BB0 = BasicBlock::Create(Ctx, "mem_check", SPH->getParent(), SPH);
BasicBlock *BB1 =
BasicBlock::Create(Ctx, "find_first_vec_header", SPH->getParent(), SPH);
BasicBlock *BB2 =
BasicBlock::Create(Ctx, "match_check_vec", SPH->getParent(), SPH);
BasicBlock *BB3 =
BasicBlock::Create(Ctx, "calculate_match", SPH->getParent(), SPH);
BasicBlock *BB4 =
BasicBlock::Create(Ctx, "needle_check_vec", SPH->getParent(), SPH);
BasicBlock *BB5 =
BasicBlock::Create(Ctx, "search_check_vec", SPH->getParent(), SPH);
// Update LoopInfo with the new loops.
auto OuterLoop = LI->AllocateLoop();
auto InnerLoop = LI->AllocateLoop();
if (auto ParentLoop = CurLoop->getParentLoop()) {
ParentLoop->addBasicBlockToLoop(BB0, *LI);
ParentLoop->addChildLoop(OuterLoop);
ParentLoop->addBasicBlockToLoop(BB3, *LI);
} else {
LI->addTopLevelLoop(OuterLoop);
}
// Add the inner loop to the outer.
OuterLoop->addChildLoop(InnerLoop);
// Add the new basic blocks to the corresponding loops.
OuterLoop->addBasicBlockToLoop(BB1, *LI);
OuterLoop->addBasicBlockToLoop(BB5, *LI);
InnerLoop->addBasicBlockToLoop(BB2, *LI);
InnerLoop->addBasicBlockToLoop(BB4, *LI);
// Update the terminator added by SplitBlock to branch to the first block.
Preheader->getTerminator()->setSuccessor(0, BB0);
DTU.applyUpdates({{DominatorTree::Delete, Preheader, SPH},
{DominatorTree::Insert, Preheader, BB0}});
// (0) Check if we could be crossing a page boundary; if so, fallback to the
// old scalar loops. Also create a predicate of VF elements to be used in the
// vector loops.
Builder.SetInsertPoint(BB0);
Value *ISearchStart =
Builder.CreatePtrToInt(SearchStart, I64Ty, "search_start_int");
Value *ISearchEnd =
Builder.CreatePtrToInt(SearchEnd, I64Ty, "search_end_int");
Value *INeedleStart =
Builder.CreatePtrToInt(NeedleStart, I64Ty, "needle_start_int");
Value *INeedleEnd =
Builder.CreatePtrToInt(NeedleEnd, I64Ty, "needle_end_int");
Value *PredVF =
Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask, {PredVTy, I64Ty},
{ConstantInt::get(I64Ty, 0), ConstVF});
const uint64_t MinPageSize = TTI->getMinPageSize().value();
const uint64_t AddrShiftAmt = llvm::Log2_64(MinPageSize);
Value *SearchStartPage =
Builder.CreateLShr(ISearchStart, AddrShiftAmt, "search_start_page");
Value *SearchEndPage =
Builder.CreateLShr(ISearchEnd, AddrShiftAmt, "search_end_page");
Value *NeedleStartPage =
Builder.CreateLShr(INeedleStart, AddrShiftAmt, "needle_start_page");
Value *NeedleEndPage =
Builder.CreateLShr(INeedleEnd, AddrShiftAmt, "needle_end_page");
Value *SearchPageCmp =
Builder.CreateICmpNE(SearchStartPage, SearchEndPage, "search_page_cmp");
Value *NeedlePageCmp =
Builder.CreateICmpNE(NeedleStartPage, NeedleEndPage, "needle_page_cmp");
Value *CombinedPageCmp =
Builder.CreateOr(SearchPageCmp, NeedlePageCmp, "combined_page_cmp");
BranchInst *CombinedPageBr = Builder.CreateCondBr(CombinedPageCmp, SPH, BB1);
CombinedPageBr->setMetadata(LLVMContext::MD_prof,
MDBuilder(Ctx).createBranchWeights(10, 90));
DTU.applyUpdates(
{{DominatorTree::Insert, BB0, SPH}, {DominatorTree::Insert, BB0, BB1}});
// (1) Load the search array and branch to the inner loop.
Builder.SetInsertPoint(BB1);
PHINode *Search = Builder.CreatePHI(PtrTy, 2, "psearch");
Value *PredSearch = Builder.CreateIntrinsic(
Intrinsic::get_active_lane_mask, {PredVTy, I64Ty},
{Builder.CreatePtrToInt(Search, I64Ty), ISearchEnd}, nullptr,
"search_pred");
PredSearch = Builder.CreateAnd(PredVF, PredSearch, "search_masked");
Value *LoadSearch = Builder.CreateMaskedLoad(
CharVTy, Search, Align(1), PredSearch, Passthru, "search_load_vec");
Builder.CreateBr(BB2);
DTU.applyUpdates({{DominatorTree::Insert, BB1, BB2}});
// (2) Inner loop.
Builder.SetInsertPoint(BB2);
PHINode *Needle = Builder.CreatePHI(PtrTy, 2, "pneedle");
// (2.a) Load the needle array.
Value *PredNeedle = Builder.CreateIntrinsic(
Intrinsic::get_active_lane_mask, {PredVTy, I64Ty},
{Builder.CreatePtrToInt(Needle, I64Ty), INeedleEnd}, nullptr,
"needle_pred");
PredNeedle = Builder.CreateAnd(PredVF, PredNeedle, "needle_masked");
Value *LoadNeedle = Builder.CreateMaskedLoad(
CharVTy, Needle, Align(1), PredNeedle, Passthru, "needle_load_vec");
// (2.b) Splat the first element to the inactive lanes.
Value *Needle0 =
Builder.CreateExtractElement(LoadNeedle, uint64_t(0), "needle0");
Value *Needle0Splat = Builder.CreateVectorSplat(ElementCount::getScalable(VF),
Needle0, "needle0");
LoadNeedle = Builder.CreateSelect(PredNeedle, LoadNeedle, Needle0Splat,
"needle_splat");
LoadNeedle = Builder.CreateExtractVector(
FixedVectorType::get(CharTy, VF), LoadNeedle, uint64_t(0), "needle_vec");
// (2.c) Test if there's a match.
Value *MatchPred = Builder.CreateIntrinsic(
Intrinsic::experimental_vector_match, {CharVTy, LoadNeedle->getType()},
{LoadSearch, LoadNeedle, PredSearch}, nullptr, "match_pred");
Value *IfAnyMatch = Builder.CreateOrReduce(MatchPred);
Builder.CreateCondBr(IfAnyMatch, BB3, BB4);
DTU.applyUpdates(
{{DominatorTree::Insert, BB2, BB3}, {DominatorTree::Insert, BB2, BB4}});
// (3) We found a match. Compute the index of its location and exit.
Builder.SetInsertPoint(BB3);
PHINode *MatchLCSSA = Builder.CreatePHI(PtrTy, 1, "match_start");
PHINode *MatchPredLCSSA =
Builder.CreatePHI(MatchPred->getType(), 1, "match_vec");
Value *MatchCnt = Builder.CreateIntrinsic(
Intrinsic::experimental_cttz_elts, {I64Ty, MatchPred->getType()},
{MatchPredLCSSA, /*ZeroIsPoison=*/Builder.getInt1(true)}, nullptr,
"match_idx");
Value *MatchVal =
Builder.CreateGEP(CharTy, MatchLCSSA, MatchCnt, "match_res");
Builder.CreateBr(ExitSucc);
DTU.applyUpdates({{DominatorTree::Insert, BB3, ExitSucc}});
// (4) Check if we've reached the end of the needle array.
Builder.SetInsertPoint(BB4);
Value *NextNeedle =
Builder.CreateGEP(CharTy, Needle, ConstVF, "needle_next_vec");
Builder.CreateCondBr(Builder.CreateICmpULT(NextNeedle, NeedleEnd), BB2, BB5);
DTU.applyUpdates(
{{DominatorTree::Insert, BB4, BB2}, {DominatorTree::Insert, BB4, BB5}});
// (5) Check if we've reached the end of the search array.
Builder.SetInsertPoint(BB5);
Value *NextSearch =
Builder.CreateGEP(CharTy, Search, ConstVF, "search_next_vec");
Builder.CreateCondBr(Builder.CreateICmpULT(NextSearch, SearchEnd), BB1,
ExitFail);
DTU.applyUpdates({{DominatorTree::Insert, BB5, BB1},
{DominatorTree::Insert, BB5, ExitFail}});
// Set up the PHI nodes.
Search->addIncoming(SearchStart, BB0);
Search->addIncoming(NextSearch, BB5);
Needle->addIncoming(NeedleStart, BB1);
Needle->addIncoming(NextNeedle, BB4);
// These are needed to retain LCSSA form.
MatchLCSSA->addIncoming(Search, BB2);
MatchPredLCSSA->addIncoming(MatchPred, BB2);
if (VerifyLoops) {
OuterLoop->verifyLoop();
InnerLoop->verifyLoop();
if (!OuterLoop->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
return MatchVal;
}
void LoopIdiomVectorize::transformFindFirstByte(
PHINode *IndPhi, unsigned VF, Type *CharTy, BasicBlock *ExitSucc,
BasicBlock *ExitFail, Value *SearchStart, Value *SearchEnd,
Value *NeedleStart, Value *NeedleEnd) {
// Insert the find first byte code at the end of the preheader block.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
IRBuilder<> Builder(PHBranch);
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
Builder.SetCurrentDebugLocation(PHBranch->getDebugLoc());
Value *MatchVal =
expandFindFirstByte(Builder, DTU, VF, CharTy, ExitSucc, ExitFail,
SearchStart, SearchEnd, NeedleStart, NeedleEnd);
assert(PHBranch->isUnconditional() &&
"Expected preheader to terminate with an unconditional branch.");
// Add new incoming values with the result of the transformation to PHINodes
// of ExitSucc that use IndPhi.
for (auto *U : llvm::make_early_inc_range(IndPhi->users())) {
auto *PN = dyn_cast<PHINode>(U);
if (PN && PN->getParent() == ExitSucc)
PN->addIncoming(MatchVal, cast<Instruction>(MatchVal)->getParent());
}
if (VerifyLoops && CurLoop->getParentLoop()) {
CurLoop->getParentLoop()->verifyLoop();
if (!CurLoop->getParentLoop()->isRecursivelyLCSSAForm(*DT, *LI))
report_fatal_error("Loops must remain in LCSSA form!");
}
}
|