1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
//===- Legality.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/SandboxVectorizer/Legality.h"
#include "llvm/SandboxIR/Instruction.h"
#include "llvm/SandboxIR/Operator.h"
#include "llvm/SandboxIR/Utils.h"
#include "llvm/SandboxIR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Vectorize/SandboxVectorizer/InstrMaps.h"
#include "llvm/Transforms/Vectorize/SandboxVectorizer/VecUtils.h"
namespace llvm::sandboxir {
#ifndef NDEBUG
void ShuffleMask::dump() const {
print(dbgs());
dbgs() << "\n";
}
void LegalityResult::dump() const {
print(dbgs());
dbgs() << "\n";
}
#endif // NDEBUG
std::optional<ResultReason>
LegalityAnalysis::notVectorizableBasedOnOpcodesAndTypes(
ArrayRef<Value *> Bndl) {
auto *I0 = cast<Instruction>(Bndl[0]);
auto Opcode = I0->getOpcode();
// If they have different opcodes, then we cannot form a vector (for now).
if (any_of(drop_begin(Bndl), [Opcode](Value *V) {
return cast<Instruction>(V)->getOpcode() != Opcode;
}))
return ResultReason::DiffOpcodes;
// If not the same scalar type, Pack. This will accept scalars and vectors as
// long as the element type is the same.
Type *ElmTy0 = VecUtils::getElementType(Utils::getExpectedType(I0));
if (any_of(drop_begin(Bndl), [ElmTy0](Value *V) {
return VecUtils::getElementType(Utils::getExpectedType(V)) != ElmTy0;
}))
return ResultReason::DiffTypes;
// TODO: Allow vectorization of instrs with different flags as long as we
// change them to the least common one.
// For now pack if differnt FastMathFlags.
if (isa<FPMathOperator>(I0)) {
FastMathFlags FMF0 = cast<Instruction>(Bndl[0])->getFastMathFlags();
if (any_of(drop_begin(Bndl), [FMF0](auto *V) {
return cast<Instruction>(V)->getFastMathFlags() != FMF0;
}))
return ResultReason::DiffMathFlags;
}
// TODO: Allow vectorization by using common flags.
// For now Pack if they don't have the same wrap flags.
bool CanHaveWrapFlags =
isa<OverflowingBinaryOperator>(I0) || isa<TruncInst>(I0);
if (CanHaveWrapFlags) {
bool NUW0 = I0->hasNoUnsignedWrap();
bool NSW0 = I0->hasNoSignedWrap();
if (any_of(drop_begin(Bndl), [NUW0, NSW0](auto *V) {
return cast<Instruction>(V)->hasNoUnsignedWrap() != NUW0 ||
cast<Instruction>(V)->hasNoSignedWrap() != NSW0;
})) {
return ResultReason::DiffWrapFlags;
}
}
// Now we need to do further checks for specific opcodes.
switch (Opcode) {
case Instruction::Opcode::ZExt:
case Instruction::Opcode::SExt:
case Instruction::Opcode::FPToUI:
case Instruction::Opcode::FPToSI:
case Instruction::Opcode::FPExt:
case Instruction::Opcode::PtrToInt:
case Instruction::Opcode::IntToPtr:
case Instruction::Opcode::SIToFP:
case Instruction::Opcode::UIToFP:
case Instruction::Opcode::Trunc:
case Instruction::Opcode::FPTrunc:
case Instruction::Opcode::BitCast: {
// We have already checked that they are of the same opcode.
assert(all_of(Bndl,
[Opcode](Value *V) {
return cast<Instruction>(V)->getOpcode() == Opcode;
}) &&
"Different opcodes, should have early returned!");
// But for these opcodes we should also check the operand type.
Type *FromTy0 = Utils::getExpectedType(I0->getOperand(0));
if (any_of(drop_begin(Bndl), [FromTy0](Value *V) {
return Utils::getExpectedType(cast<User>(V)->getOperand(0)) !=
FromTy0;
}))
return ResultReason::DiffTypes;
return std::nullopt;
}
case Instruction::Opcode::FCmp:
case Instruction::Opcode::ICmp: {
// We need the same predicate..
auto Pred0 = cast<CmpInst>(I0)->getPredicate();
bool Same = all_of(Bndl, [Pred0](Value *V) {
return cast<CmpInst>(V)->getPredicate() == Pred0;
});
if (Same)
return std::nullopt;
return ResultReason::DiffOpcodes;
}
case Instruction::Opcode::Select: {
auto *Sel0 = cast<SelectInst>(Bndl[0]);
auto *Cond0 = Sel0->getCondition();
if (VecUtils::getNumLanes(Cond0) != VecUtils::getNumLanes(Sel0))
// TODO: For now we don't vectorize if the lanes in the condition don't
// match those of the select instruction.
return ResultReason::Unimplemented;
return std::nullopt;
}
case Instruction::Opcode::FNeg:
case Instruction::Opcode::Add:
case Instruction::Opcode::FAdd:
case Instruction::Opcode::Sub:
case Instruction::Opcode::FSub:
case Instruction::Opcode::Mul:
case Instruction::Opcode::FMul:
case Instruction::Opcode::FRem:
case Instruction::Opcode::UDiv:
case Instruction::Opcode::SDiv:
case Instruction::Opcode::FDiv:
case Instruction::Opcode::URem:
case Instruction::Opcode::SRem:
case Instruction::Opcode::Shl:
case Instruction::Opcode::LShr:
case Instruction::Opcode::AShr:
case Instruction::Opcode::And:
case Instruction::Opcode::Or:
case Instruction::Opcode::Xor:
return std::nullopt;
case Instruction::Opcode::Load:
if (VecUtils::areConsecutive<LoadInst>(Bndl, SE, DL))
return std::nullopt;
return ResultReason::NotConsecutive;
case Instruction::Opcode::Store:
if (VecUtils::areConsecutive<StoreInst>(Bndl, SE, DL))
return std::nullopt;
return ResultReason::NotConsecutive;
case Instruction::Opcode::PHI:
return ResultReason::Unimplemented;
case Instruction::Opcode::Opaque:
return ResultReason::Unimplemented;
case Instruction::Opcode::Br:
case Instruction::Opcode::Ret:
case Instruction::Opcode::AddrSpaceCast:
case Instruction::Opcode::InsertElement:
case Instruction::Opcode::InsertValue:
case Instruction::Opcode::ExtractElement:
case Instruction::Opcode::ExtractValue:
case Instruction::Opcode::ShuffleVector:
case Instruction::Opcode::Call:
case Instruction::Opcode::GetElementPtr:
case Instruction::Opcode::Switch:
return ResultReason::Unimplemented;
case Instruction::Opcode::VAArg:
case Instruction::Opcode::Freeze:
case Instruction::Opcode::Fence:
case Instruction::Opcode::Invoke:
case Instruction::Opcode::CallBr:
case Instruction::Opcode::LandingPad:
case Instruction::Opcode::CatchPad:
case Instruction::Opcode::CleanupPad:
case Instruction::Opcode::CatchRet:
case Instruction::Opcode::CleanupRet:
case Instruction::Opcode::Resume:
case Instruction::Opcode::CatchSwitch:
case Instruction::Opcode::AtomicRMW:
case Instruction::Opcode::AtomicCmpXchg:
case Instruction::Opcode::Alloca:
case Instruction::Opcode::Unreachable:
return ResultReason::Infeasible;
}
return std::nullopt;
}
CollectDescr
LegalityAnalysis::getHowToCollectValues(ArrayRef<Value *> Bndl) const {
SmallVector<CollectDescr::ExtractElementDescr, 4> Vec;
Vec.reserve(Bndl.size());
for (auto [Elm, V] : enumerate(Bndl)) {
if (auto *VecOp = IMaps.getVectorForOrig(V)) {
// If there is a vector containing `V`, then get the lane it came from.
std::optional<int> ExtractIdxOpt = IMaps.getOrigLane(VecOp, V);
// This could be a vector, like <2 x float> in which case the mask needs
// to enumerate all lanes.
for (unsigned Ln = 0, Lanes = VecUtils::getNumLanes(V); Ln != Lanes; ++Ln)
Vec.emplace_back(VecOp, ExtractIdxOpt ? *ExtractIdxOpt + Ln : -1);
} else {
Vec.emplace_back(V);
}
}
return CollectDescr(std::move(Vec));
}
const LegalityResult &LegalityAnalysis::canVectorize(ArrayRef<Value *> Bndl,
bool SkipScheduling) {
// If Bndl contains values other than instructions, we need to Pack.
if (any_of(Bndl, [](auto *V) { return !isa<Instruction>(V); }))
return createLegalityResult<Pack>(ResultReason::NotInstructions);
// Pack if not in the same BB.
auto *BB = cast<Instruction>(Bndl[0])->getParent();
if (any_of(drop_begin(Bndl),
[BB](auto *V) { return cast<Instruction>(V)->getParent() != BB; }))
return createLegalityResult<Pack>(ResultReason::DiffBBs);
// Pack if instructions repeat, i.e., require some sort of broadcast.
SmallPtrSet<Value *, 8> Unique(llvm::from_range, Bndl);
if (Unique.size() != Bndl.size())
return createLegalityResult<Pack>(ResultReason::RepeatedInstrs);
auto CollectDescrs = getHowToCollectValues(Bndl);
if (CollectDescrs.hasVectorInputs()) {
if (auto ValueShuffleOpt = CollectDescrs.getSingleInput()) {
auto [Vec, Mask] = *ValueShuffleOpt;
if (Mask.isIdentity())
return createLegalityResult<DiamondReuse>(Vec);
return createLegalityResult<DiamondReuseWithShuffle>(Vec, Mask);
}
return createLegalityResult<DiamondReuseMultiInput>(
std::move(CollectDescrs));
}
if (auto ReasonOpt = notVectorizableBasedOnOpcodesAndTypes(Bndl))
return createLegalityResult<Pack>(*ReasonOpt);
if (!SkipScheduling) {
// TODO: Try to remove the IBndl vector.
SmallVector<Instruction *, 8> IBndl;
IBndl.reserve(Bndl.size());
for (auto *V : Bndl)
IBndl.push_back(cast<Instruction>(V));
if (!Sched.trySchedule(IBndl))
return createLegalityResult<Pack>(ResultReason::CantSchedule);
}
return createLegalityResult<Widen>();
}
void LegalityAnalysis::clear() {
Sched.clear();
IMaps.clear();
}
} // namespace llvm::sandboxir
|