File: BottomUpVec.cpp

package info (click to toggle)
llvm-toolchain-21 1%3A21.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,245,064 kB
  • sloc: cpp: 7,619,731; ansic: 1,434,018; asm: 1,058,748; python: 252,740; f90: 94,671; objc: 70,685; lisp: 42,813; pascal: 18,401; sh: 8,601; ml: 5,111; perl: 4,720; makefile: 3,676; awk: 3,523; javascript: 2,409; xml: 892; fortran: 770
file content (518 lines) | stat: -rw-r--r-- 20,400 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
//===- BottomUpVec.cpp - A bottom-up vectorizer pass ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Vectorize/SandboxVectorizer/Passes/BottomUpVec.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/SandboxIR/Function.h"
#include "llvm/SandboxIR/Instruction.h"
#include "llvm/SandboxIR/Module.h"
#include "llvm/SandboxIR/Region.h"
#include "llvm/SandboxIR/Utils.h"
#include "llvm/Transforms/Vectorize/SandboxVectorizer/Debug.h"
#include "llvm/Transforms/Vectorize/SandboxVectorizer/VecUtils.h"

namespace llvm {

#ifndef NDEBUG
static cl::opt<bool>
    AlwaysVerify("sbvec-always-verify", cl::init(false), cl::Hidden,
                 cl::desc("Helps find bugs by verifying the IR whenever we "
                          "emit new instructions (*very* expensive)."));
#endif // NDEBUG

static constexpr const unsigned long StopAtDisabled =
    std::numeric_limits<unsigned long>::max();
static cl::opt<unsigned long>
    StopAt("sbvec-stop-at", cl::init(StopAtDisabled), cl::Hidden,
           cl::desc("Vectorize if the invocation count is < than this. 0 "
                    "disables vectorization."));

static constexpr const unsigned long StopBundleDisabled =
    std::numeric_limits<unsigned long>::max();
static cl::opt<unsigned long>
    StopBundle("sbvec-stop-bndl", cl::init(StopBundleDisabled), cl::Hidden,
               cl::desc("Vectorize up to this many bundles."));

namespace sandboxir {

static SmallVector<Value *, 4> getOperand(ArrayRef<Value *> Bndl,
                                          unsigned OpIdx) {
  SmallVector<Value *, 4> Operands;
  for (Value *BndlV : Bndl) {
    auto *BndlI = cast<Instruction>(BndlV);
    Operands.push_back(BndlI->getOperand(OpIdx));
  }
  return Operands;
}

/// \Returns the BB iterator after the lowest instruction in \p Vals, or the top
/// of BB if no instruction found in \p Vals.
static BasicBlock::iterator getInsertPointAfterInstrs(ArrayRef<Value *> Vals,
                                                      BasicBlock *BB) {
  auto *BotI = VecUtils::getLastPHIOrSelf(VecUtils::getLowest(Vals, BB));
  if (BotI == nullptr)
    // We are using BB->begin() (or after PHIs) as the fallback insert point.
    return BB->empty()
               ? BB->begin()
               : std::next(
                     VecUtils::getLastPHIOrSelf(&*BB->begin())->getIterator());
  return std::next(BotI->getIterator());
}

Value *BottomUpVec::createVectorInstr(ArrayRef<Value *> Bndl,
                                      ArrayRef<Value *> Operands) {
  auto CreateVectorInstr = [](ArrayRef<Value *> Bndl,
                              ArrayRef<Value *> Operands) -> Value * {
    assert(all_of(Bndl, [](auto *V) { return isa<Instruction>(V); }) &&
           "Expect Instructions!");
    auto &Ctx = Bndl[0]->getContext();

    Type *ScalarTy = VecUtils::getElementType(Utils::getExpectedType(Bndl[0]));
    auto *VecTy = VecUtils::getWideType(ScalarTy, VecUtils::getNumLanes(Bndl));

    BasicBlock::iterator WhereIt = getInsertPointAfterInstrs(
        Bndl, cast<Instruction>(Bndl[0])->getParent());

    auto Opcode = cast<Instruction>(Bndl[0])->getOpcode();
    switch (Opcode) {
    case Instruction::Opcode::ZExt:
    case Instruction::Opcode::SExt:
    case Instruction::Opcode::FPToUI:
    case Instruction::Opcode::FPToSI:
    case Instruction::Opcode::FPExt:
    case Instruction::Opcode::PtrToInt:
    case Instruction::Opcode::IntToPtr:
    case Instruction::Opcode::SIToFP:
    case Instruction::Opcode::UIToFP:
    case Instruction::Opcode::Trunc:
    case Instruction::Opcode::FPTrunc:
    case Instruction::Opcode::BitCast: {
      assert(Operands.size() == 1u && "Casts are unary!");
      return CastInst::create(VecTy, Opcode, Operands[0], WhereIt, Ctx,
                              "VCast");
    }
    case Instruction::Opcode::FCmp:
    case Instruction::Opcode::ICmp: {
      auto Pred = cast<CmpInst>(Bndl[0])->getPredicate();
      assert(all_of(drop_begin(Bndl),
                    [Pred](auto *SBV) {
                      return cast<CmpInst>(SBV)->getPredicate() == Pred;
                    }) &&
             "Expected same predicate across bundle.");
      return CmpInst::create(Pred, Operands[0], Operands[1], WhereIt, Ctx,
                             "VCmp");
    }
    case Instruction::Opcode::Select: {
      return SelectInst::create(Operands[0], Operands[1], Operands[2], WhereIt,
                                Ctx, "Vec");
    }
    case Instruction::Opcode::FNeg: {
      auto *UOp0 = cast<UnaryOperator>(Bndl[0]);
      auto OpC = UOp0->getOpcode();
      return UnaryOperator::createWithCopiedFlags(OpC, Operands[0], UOp0,
                                                  WhereIt, Ctx, "Vec");
    }
    case Instruction::Opcode::Add:
    case Instruction::Opcode::FAdd:
    case Instruction::Opcode::Sub:
    case Instruction::Opcode::FSub:
    case Instruction::Opcode::Mul:
    case Instruction::Opcode::FMul:
    case Instruction::Opcode::UDiv:
    case Instruction::Opcode::SDiv:
    case Instruction::Opcode::FDiv:
    case Instruction::Opcode::URem:
    case Instruction::Opcode::SRem:
    case Instruction::Opcode::FRem:
    case Instruction::Opcode::Shl:
    case Instruction::Opcode::LShr:
    case Instruction::Opcode::AShr:
    case Instruction::Opcode::And:
    case Instruction::Opcode::Or:
    case Instruction::Opcode::Xor: {
      auto *BinOp0 = cast<BinaryOperator>(Bndl[0]);
      auto *LHS = Operands[0];
      auto *RHS = Operands[1];
      return BinaryOperator::createWithCopiedFlags(
          BinOp0->getOpcode(), LHS, RHS, BinOp0, WhereIt, Ctx, "Vec");
    }
    case Instruction::Opcode::Load: {
      auto *Ld0 = cast<LoadInst>(Bndl[0]);
      Value *Ptr = Ld0->getPointerOperand();
      return LoadInst::create(VecTy, Ptr, Ld0->getAlign(), WhereIt, Ctx,
                              "VecL");
    }
    case Instruction::Opcode::Store: {
      auto Align = cast<StoreInst>(Bndl[0])->getAlign();
      Value *Val = Operands[0];
      Value *Ptr = Operands[1];
      return StoreInst::create(Val, Ptr, Align, WhereIt, Ctx);
    }
    case Instruction::Opcode::Br:
    case Instruction::Opcode::Ret:
    case Instruction::Opcode::PHI:
    case Instruction::Opcode::AddrSpaceCast:
    case Instruction::Opcode::Call:
    case Instruction::Opcode::GetElementPtr:
      llvm_unreachable("Unimplemented");
      break;
    default:
      llvm_unreachable("Unimplemented");
      break;
    }
    llvm_unreachable("Missing switch case!");
    // TODO: Propagate debug info.
  };

  auto *NewI = CreateVectorInstr(Bndl, Operands);
  LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "New instr: " << *NewI << "\n");
  return NewI;
}

void BottomUpVec::tryEraseDeadInstrs() {
  DenseMap<BasicBlock *, SmallVector<Instruction *>> SortedDeadInstrCandidates;
  // The dead instrs could span BBs, so we need to collect and sort them per BB.
  for (auto *DeadI : DeadInstrCandidates)
    SortedDeadInstrCandidates[DeadI->getParent()].push_back(DeadI);
  for (auto &Pair : SortedDeadInstrCandidates)
    sort(Pair.second,
         [](Instruction *I1, Instruction *I2) { return I1->comesBefore(I2); });
  for (const auto &Pair : SortedDeadInstrCandidates) {
    for (Instruction *I : reverse(Pair.second)) {
      if (I->hasNUses(0)) {
        // Erase the dead instructions bottom-to-top.
        LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "Erase dead: " << *I << "\n");
        I->eraseFromParent();
      }
    }
  }
  DeadInstrCandidates.clear();
}

Value *BottomUpVec::createShuffle(Value *VecOp, const ShuffleMask &Mask,
                                  BasicBlock *UserBB) {
  BasicBlock::iterator WhereIt = getInsertPointAfterInstrs({VecOp}, UserBB);
  return ShuffleVectorInst::create(VecOp, VecOp, Mask, WhereIt,
                                   VecOp->getContext(), "VShuf");
}

Value *BottomUpVec::createPack(ArrayRef<Value *> ToPack, BasicBlock *UserBB) {
  BasicBlock::iterator WhereIt = getInsertPointAfterInstrs(ToPack, UserBB);

  Type *ScalarTy = VecUtils::getCommonScalarType(ToPack);
  unsigned Lanes = VecUtils::getNumLanes(ToPack);
  Type *VecTy = VecUtils::getWideType(ScalarTy, Lanes);

  // Create a series of pack instructions.
  Value *LastInsert = PoisonValue::get(VecTy);

  Context &Ctx = ToPack[0]->getContext();

  unsigned InsertIdx = 0;
  for (Value *Elm : ToPack) {
    // An element can be either scalar or vector. We need to generate different
    // IR for each case.
    if (Elm->getType()->isVectorTy()) {
      unsigned NumElms =
          cast<FixedVectorType>(Elm->getType())->getNumElements();
      for (auto ExtrLane : seq<int>(0, NumElms)) {
        // We generate extract-insert pairs, for each lane in `Elm`.
        Constant *ExtrLaneC =
            ConstantInt::getSigned(Type::getInt32Ty(Ctx), ExtrLane);
        // This may return a Constant if Elm is a Constant.
        auto *ExtrI =
            ExtractElementInst::create(Elm, ExtrLaneC, WhereIt, Ctx, "VPack");
        if (!isa<Constant>(ExtrI))
          WhereIt = std::next(cast<Instruction>(ExtrI)->getIterator());
        Constant *InsertLaneC =
            ConstantInt::getSigned(Type::getInt32Ty(Ctx), InsertIdx++);
        // This may also return a Constant if ExtrI is a Constant.
        auto *InsertI = InsertElementInst::create(
            LastInsert, ExtrI, InsertLaneC, WhereIt, Ctx, "VPack");
        LastInsert = InsertI;
        if (!isa<Constant>(InsertI))
          WhereIt = std::next(cast<Instruction>(LastInsert)->getIterator());
      }
    } else {
      Constant *InsertLaneC =
          ConstantInt::getSigned(Type::getInt32Ty(Ctx), InsertIdx++);
      // This may be folded into a Constant if LastInsert is a Constant. In
      // that case we only collect the last constant.
      LastInsert = InsertElementInst::create(LastInsert, Elm, InsertLaneC,
                                             WhereIt, Ctx, "Pack");
      if (auto *NewI = dyn_cast<Instruction>(LastInsert))
        WhereIt = std::next(NewI->getIterator());
    }
  }
  return LastInsert;
}

void BottomUpVec::collectPotentiallyDeadInstrs(ArrayRef<Value *> Bndl) {
  for (Value *V : Bndl)
    DeadInstrCandidates.insert(cast<Instruction>(V));
  // Also collect the GEPs of vectorized loads and stores.
  auto Opcode = cast<Instruction>(Bndl[0])->getOpcode();
  switch (Opcode) {
  case Instruction::Opcode::Load: {
    for (Value *V : drop_begin(Bndl))
      if (auto *Ptr =
              dyn_cast<Instruction>(cast<LoadInst>(V)->getPointerOperand()))
        DeadInstrCandidates.insert(Ptr);
    break;
  }
  case Instruction::Opcode::Store: {
    for (Value *V : drop_begin(Bndl))
      if (auto *Ptr =
              dyn_cast<Instruction>(cast<StoreInst>(V)->getPointerOperand()))
        DeadInstrCandidates.insert(Ptr);
    break;
  }
  default:
    break;
  }
}

Action *BottomUpVec::vectorizeRec(ArrayRef<Value *> Bndl,
                                  ArrayRef<Value *> UserBndl, unsigned Depth,
                                  LegalityAnalysis &Legality) {
  bool StopForDebug =
      DebugBndlCnt++ >= StopBundle && StopBundle != StopBundleDisabled;
  LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "canVectorize() Bundle:\n";
             VecUtils::dump(Bndl));
  const auto &LegalityRes = StopForDebug ? Legality.getForcedPackForDebugging()
                                         : Legality.canVectorize(Bndl);
  LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "Legality: " << LegalityRes << "\n");
  auto ActionPtr =
      std::make_unique<Action>(&LegalityRes, Bndl, UserBndl, Depth);
  SmallVector<Action *> Operands;
  switch (LegalityRes.getSubclassID()) {
  case LegalityResultID::Widen: {
    auto *I = cast<Instruction>(Bndl[0]);
    switch (I->getOpcode()) {
    case Instruction::Opcode::Load:
      break;
    case Instruction::Opcode::Store: {
      // Don't recurse towards the pointer operand.
      Action *OpA =
          vectorizeRec(getOperand(Bndl, 0), Bndl, Depth + 1, Legality);
      Operands.push_back(OpA);
      break;
    }
    default:
      // Visit all operands.
      for (auto OpIdx : seq<unsigned>(I->getNumOperands())) {
        Action *OpA =
            vectorizeRec(getOperand(Bndl, OpIdx), Bndl, Depth + 1, Legality);
        Operands.push_back(OpA);
      }
      break;
    }
    // Update the maps to mark Bndl as "vectorized".
    IMaps->registerVector(Bndl, ActionPtr.get());
    break;
  }
  case LegalityResultID::DiamondReuse:
  case LegalityResultID::DiamondReuseWithShuffle:
  case LegalityResultID::DiamondReuseMultiInput:
  case LegalityResultID::Pack:
    break;
  }
  // Create actions in post-order.
  ActionPtr->Operands = std::move(Operands);
  auto *Action = ActionPtr.get();
  Actions.push_back(std::move(ActionPtr));
  return Action;
}

#ifndef NDEBUG
void BottomUpVec::ActionsVector::print(raw_ostream &OS) const {
  for (auto [Idx, Action] : enumerate(Actions)) {
    Action->print(OS);
    OS << "\n";
  }
}
void BottomUpVec::ActionsVector::dump() const { print(dbgs()); }
#endif // NDEBUG

Value *BottomUpVec::emitVectors() {
  Value *NewVec = nullptr;
  for (const auto &ActionPtr : Actions) {
    ArrayRef<Value *> Bndl = ActionPtr->Bndl;
    ArrayRef<Value *> UserBndl = ActionPtr->UserBndl;
    const LegalityResult &LegalityRes = *ActionPtr->LegalityRes;
    unsigned Depth = ActionPtr->Depth;
    auto *UserBB = !UserBndl.empty()
                       ? cast<Instruction>(UserBndl.front())->getParent()
                       : cast<Instruction>(Bndl[0])->getParent();

    switch (LegalityRes.getSubclassID()) {
    case LegalityResultID::Widen: {
      auto *I = cast<Instruction>(Bndl[0]);
      SmallVector<Value *, 2> VecOperands;
      switch (I->getOpcode()) {
      case Instruction::Opcode::Load:
        VecOperands.push_back(cast<LoadInst>(I)->getPointerOperand());
        break;
      case Instruction::Opcode::Store: {
        VecOperands.push_back(ActionPtr->Operands[0]->Vec);
        VecOperands.push_back(cast<StoreInst>(I)->getPointerOperand());
        break;
      }
      default:
        // Visit all operands.
        for (Action *OpA : ActionPtr->Operands) {
          auto *VecOp = OpA->Vec;
          VecOperands.push_back(VecOp);
        }
        break;
      }
      NewVec = createVectorInstr(ActionPtr->Bndl, VecOperands);
      // Collect any potentially dead scalar instructions, including the
      // original scalars and pointer operands of loads/stores.
      if (NewVec != nullptr)
        collectPotentiallyDeadInstrs(Bndl);
      break;
    }
    case LegalityResultID::DiamondReuse: {
      NewVec = cast<DiamondReuse>(LegalityRes).getVector()->Vec;
      break;
    }
    case LegalityResultID::DiamondReuseWithShuffle: {
      auto *VecOp = cast<DiamondReuseWithShuffle>(LegalityRes).getVector()->Vec;
      const ShuffleMask &Mask =
          cast<DiamondReuseWithShuffle>(LegalityRes).getMask();
      NewVec = createShuffle(VecOp, Mask, UserBB);
      assert(NewVec->getType() == VecOp->getType() &&
             "Expected same type! Bad mask ?");
      break;
    }
    case LegalityResultID::DiamondReuseMultiInput: {
      const auto &Descr =
          cast<DiamondReuseMultiInput>(LegalityRes).getCollectDescr();
      Type *ResTy = VecUtils::getWideType(Bndl[0]->getType(), Bndl.size());

      // TODO: Try to get WhereIt without creating a vector.
      SmallVector<Value *, 4> DescrInstrs;
      for (const auto &ElmDescr : Descr.getDescrs()) {
        auto *V = ElmDescr.needsExtract() ? ElmDescr.getValue()->Vec
                                          : ElmDescr.getScalar();
        if (auto *I = dyn_cast<Instruction>(V))
          DescrInstrs.push_back(I);
      }
      BasicBlock::iterator WhereIt =
          getInsertPointAfterInstrs(DescrInstrs, UserBB);

      Value *LastV = PoisonValue::get(ResTy);
      Context &Ctx = LastV->getContext();
      unsigned Lane = 0;
      for (const auto &ElmDescr : Descr.getDescrs()) {
        Value *VecOp = nullptr;
        Value *ValueToInsert;
        if (ElmDescr.needsExtract()) {
          VecOp = ElmDescr.getValue()->Vec;
          ConstantInt *IdxC =
              ConstantInt::get(Type::getInt32Ty(Ctx), ElmDescr.getExtractIdx());
          ValueToInsert = ExtractElementInst::create(
              VecOp, IdxC, WhereIt, VecOp->getContext(), "VExt");
        } else {
          ValueToInsert = ElmDescr.getScalar();
        }
        auto NumLanesToInsert = VecUtils::getNumLanes(ValueToInsert);
        if (NumLanesToInsert == 1) {
          // If we are inserting a scalar element then we need a single insert.
          //   %VIns = insert %DstVec,  %SrcScalar, Lane
          ConstantInt *LaneC = ConstantInt::get(Type::getInt32Ty(Ctx), Lane);
          LastV = InsertElementInst::create(LastV, ValueToInsert, LaneC,
                                            WhereIt, Ctx, "VIns");
        } else {
          // If we are inserting a vector element then we need to extract and
          // insert each vector element one by one with a chain of extracts and
          // inserts, for example:
          //   %VExt0 = extract %SrcVec, 0
          //   %VIns0 = insert  %DstVec, %Vect0, Lane + 0
          //   %VExt1 = extract %SrcVec, 1
          //   %VIns1 = insert  %VIns0,  %Vect0, Lane + 1
          for (unsigned LnCnt = 0; LnCnt != NumLanesToInsert; ++LnCnt) {
            auto *ExtrIdxC = ConstantInt::get(Type::getInt32Ty(Ctx), LnCnt);
            auto *ExtrI = ExtractElementInst::create(ValueToInsert, ExtrIdxC,
                                                     WhereIt, Ctx, "VExt");
            unsigned InsLane = Lane + LnCnt;
            auto *InsLaneC = ConstantInt::get(Type::getInt32Ty(Ctx), InsLane);
            LastV = InsertElementInst::create(LastV, ExtrI, InsLaneC, WhereIt,
                                              Ctx, "VIns");
          }
        }
        Lane += NumLanesToInsert;
      }
      NewVec = LastV;
      break;
    }
    case LegalityResultID::Pack: {
      // If we can't vectorize the seeds then just return.
      if (Depth == 0)
        return nullptr;
      NewVec = createPack(Bndl, UserBB);
      break;
    }
    }
    if (NewVec != nullptr) {
      Change = true;
      ActionPtr->Vec = NewVec;
    }
#ifndef NDEBUG
    if (AlwaysVerify) {
      // This helps find broken IR by constantly verifying the function. Note
      // that this is very expensive and should only be used for debugging.
      Instruction *I0 = isa<Instruction>(Bndl[0])
                            ? cast<Instruction>(Bndl[0])
                            : cast<Instruction>(UserBndl[0]);
      assert(!Utils::verifyFunction(I0->getParent()->getParent(), dbgs()) &&
             "Broken function!");
    }
#endif // NDEBUG
  }
  return NewVec;
}

bool BottomUpVec::tryVectorize(ArrayRef<Value *> Bndl,
                               LegalityAnalysis &Legality) {
  Change = false;
  if (LLVM_UNLIKELY(BottomUpInvocationCnt++ >= StopAt &&
                    StopAt != StopAtDisabled))
    return false;
  DeadInstrCandidates.clear();
  Legality.clear();
  Actions.clear();
  DebugBndlCnt = 0;
  vectorizeRec(Bndl, {}, /*Depth=*/0, Legality);
  LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "BottomUpVec: Vectorization Actions:\n";
             Actions.dump());
  emitVectors();
  tryEraseDeadInstrs();
  return Change;
}

bool BottomUpVec::runOnRegion(Region &Rgn, const Analyses &A) {
  const auto &SeedSlice = Rgn.getAux();
  assert(SeedSlice.size() >= 2 && "Bad slice!");
  Function &F = *SeedSlice[0]->getParent()->getParent();
  IMaps = std::make_unique<InstrMaps>();
  LegalityAnalysis Legality(A.getAA(), A.getScalarEvolution(),
                            F.getParent()->getDataLayout(), F.getContext(),
                            *IMaps);

  // TODO: Refactor to remove the unnecessary copy to SeedSliceVals.
  SmallVector<Value *> SeedSliceVals(SeedSlice.begin(), SeedSlice.end());
  // Try to vectorize starting from the seed slice. The returned value
  // is true if we found vectorizable code and generated some vector
  // code for it. It does not mean that the code is profitable.
  return tryVectorize(SeedSliceVals, Legality);
}

} // namespace sandboxir
} // namespace llvm