1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
//===- BottomUpVec.cpp - A bottom-up vectorizer pass ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/SandboxVectorizer/Passes/BottomUpVec.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/SandboxIR/Function.h"
#include "llvm/SandboxIR/Instruction.h"
#include "llvm/SandboxIR/Module.h"
#include "llvm/SandboxIR/Region.h"
#include "llvm/SandboxIR/Utils.h"
#include "llvm/Transforms/Vectorize/SandboxVectorizer/Debug.h"
#include "llvm/Transforms/Vectorize/SandboxVectorizer/VecUtils.h"
namespace llvm {
#ifndef NDEBUG
static cl::opt<bool>
AlwaysVerify("sbvec-always-verify", cl::init(false), cl::Hidden,
cl::desc("Helps find bugs by verifying the IR whenever we "
"emit new instructions (*very* expensive)."));
#endif // NDEBUG
static constexpr const unsigned long StopAtDisabled =
std::numeric_limits<unsigned long>::max();
static cl::opt<unsigned long>
StopAt("sbvec-stop-at", cl::init(StopAtDisabled), cl::Hidden,
cl::desc("Vectorize if the invocation count is < than this. 0 "
"disables vectorization."));
static constexpr const unsigned long StopBundleDisabled =
std::numeric_limits<unsigned long>::max();
static cl::opt<unsigned long>
StopBundle("sbvec-stop-bndl", cl::init(StopBundleDisabled), cl::Hidden,
cl::desc("Vectorize up to this many bundles."));
namespace sandboxir {
static SmallVector<Value *, 4> getOperand(ArrayRef<Value *> Bndl,
unsigned OpIdx) {
SmallVector<Value *, 4> Operands;
for (Value *BndlV : Bndl) {
auto *BndlI = cast<Instruction>(BndlV);
Operands.push_back(BndlI->getOperand(OpIdx));
}
return Operands;
}
/// \Returns the BB iterator after the lowest instruction in \p Vals, or the top
/// of BB if no instruction found in \p Vals.
static BasicBlock::iterator getInsertPointAfterInstrs(ArrayRef<Value *> Vals,
BasicBlock *BB) {
auto *BotI = VecUtils::getLastPHIOrSelf(VecUtils::getLowest(Vals, BB));
if (BotI == nullptr)
// We are using BB->begin() (or after PHIs) as the fallback insert point.
return BB->empty()
? BB->begin()
: std::next(
VecUtils::getLastPHIOrSelf(&*BB->begin())->getIterator());
return std::next(BotI->getIterator());
}
Value *BottomUpVec::createVectorInstr(ArrayRef<Value *> Bndl,
ArrayRef<Value *> Operands) {
auto CreateVectorInstr = [](ArrayRef<Value *> Bndl,
ArrayRef<Value *> Operands) -> Value * {
assert(all_of(Bndl, [](auto *V) { return isa<Instruction>(V); }) &&
"Expect Instructions!");
auto &Ctx = Bndl[0]->getContext();
Type *ScalarTy = VecUtils::getElementType(Utils::getExpectedType(Bndl[0]));
auto *VecTy = VecUtils::getWideType(ScalarTy, VecUtils::getNumLanes(Bndl));
BasicBlock::iterator WhereIt = getInsertPointAfterInstrs(
Bndl, cast<Instruction>(Bndl[0])->getParent());
auto Opcode = cast<Instruction>(Bndl[0])->getOpcode();
switch (Opcode) {
case Instruction::Opcode::ZExt:
case Instruction::Opcode::SExt:
case Instruction::Opcode::FPToUI:
case Instruction::Opcode::FPToSI:
case Instruction::Opcode::FPExt:
case Instruction::Opcode::PtrToInt:
case Instruction::Opcode::IntToPtr:
case Instruction::Opcode::SIToFP:
case Instruction::Opcode::UIToFP:
case Instruction::Opcode::Trunc:
case Instruction::Opcode::FPTrunc:
case Instruction::Opcode::BitCast: {
assert(Operands.size() == 1u && "Casts are unary!");
return CastInst::create(VecTy, Opcode, Operands[0], WhereIt, Ctx,
"VCast");
}
case Instruction::Opcode::FCmp:
case Instruction::Opcode::ICmp: {
auto Pred = cast<CmpInst>(Bndl[0])->getPredicate();
assert(all_of(drop_begin(Bndl),
[Pred](auto *SBV) {
return cast<CmpInst>(SBV)->getPredicate() == Pred;
}) &&
"Expected same predicate across bundle.");
return CmpInst::create(Pred, Operands[0], Operands[1], WhereIt, Ctx,
"VCmp");
}
case Instruction::Opcode::Select: {
return SelectInst::create(Operands[0], Operands[1], Operands[2], WhereIt,
Ctx, "Vec");
}
case Instruction::Opcode::FNeg: {
auto *UOp0 = cast<UnaryOperator>(Bndl[0]);
auto OpC = UOp0->getOpcode();
return UnaryOperator::createWithCopiedFlags(OpC, Operands[0], UOp0,
WhereIt, Ctx, "Vec");
}
case Instruction::Opcode::Add:
case Instruction::Opcode::FAdd:
case Instruction::Opcode::Sub:
case Instruction::Opcode::FSub:
case Instruction::Opcode::Mul:
case Instruction::Opcode::FMul:
case Instruction::Opcode::UDiv:
case Instruction::Opcode::SDiv:
case Instruction::Opcode::FDiv:
case Instruction::Opcode::URem:
case Instruction::Opcode::SRem:
case Instruction::Opcode::FRem:
case Instruction::Opcode::Shl:
case Instruction::Opcode::LShr:
case Instruction::Opcode::AShr:
case Instruction::Opcode::And:
case Instruction::Opcode::Or:
case Instruction::Opcode::Xor: {
auto *BinOp0 = cast<BinaryOperator>(Bndl[0]);
auto *LHS = Operands[0];
auto *RHS = Operands[1];
return BinaryOperator::createWithCopiedFlags(
BinOp0->getOpcode(), LHS, RHS, BinOp0, WhereIt, Ctx, "Vec");
}
case Instruction::Opcode::Load: {
auto *Ld0 = cast<LoadInst>(Bndl[0]);
Value *Ptr = Ld0->getPointerOperand();
return LoadInst::create(VecTy, Ptr, Ld0->getAlign(), WhereIt, Ctx,
"VecL");
}
case Instruction::Opcode::Store: {
auto Align = cast<StoreInst>(Bndl[0])->getAlign();
Value *Val = Operands[0];
Value *Ptr = Operands[1];
return StoreInst::create(Val, Ptr, Align, WhereIt, Ctx);
}
case Instruction::Opcode::Br:
case Instruction::Opcode::Ret:
case Instruction::Opcode::PHI:
case Instruction::Opcode::AddrSpaceCast:
case Instruction::Opcode::Call:
case Instruction::Opcode::GetElementPtr:
llvm_unreachable("Unimplemented");
break;
default:
llvm_unreachable("Unimplemented");
break;
}
llvm_unreachable("Missing switch case!");
// TODO: Propagate debug info.
};
auto *NewI = CreateVectorInstr(Bndl, Operands);
LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "New instr: " << *NewI << "\n");
return NewI;
}
void BottomUpVec::tryEraseDeadInstrs() {
DenseMap<BasicBlock *, SmallVector<Instruction *>> SortedDeadInstrCandidates;
// The dead instrs could span BBs, so we need to collect and sort them per BB.
for (auto *DeadI : DeadInstrCandidates)
SortedDeadInstrCandidates[DeadI->getParent()].push_back(DeadI);
for (auto &Pair : SortedDeadInstrCandidates)
sort(Pair.second,
[](Instruction *I1, Instruction *I2) { return I1->comesBefore(I2); });
for (const auto &Pair : SortedDeadInstrCandidates) {
for (Instruction *I : reverse(Pair.second)) {
if (I->hasNUses(0)) {
// Erase the dead instructions bottom-to-top.
LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "Erase dead: " << *I << "\n");
I->eraseFromParent();
}
}
}
DeadInstrCandidates.clear();
}
Value *BottomUpVec::createShuffle(Value *VecOp, const ShuffleMask &Mask,
BasicBlock *UserBB) {
BasicBlock::iterator WhereIt = getInsertPointAfterInstrs({VecOp}, UserBB);
return ShuffleVectorInst::create(VecOp, VecOp, Mask, WhereIt,
VecOp->getContext(), "VShuf");
}
Value *BottomUpVec::createPack(ArrayRef<Value *> ToPack, BasicBlock *UserBB) {
BasicBlock::iterator WhereIt = getInsertPointAfterInstrs(ToPack, UserBB);
Type *ScalarTy = VecUtils::getCommonScalarType(ToPack);
unsigned Lanes = VecUtils::getNumLanes(ToPack);
Type *VecTy = VecUtils::getWideType(ScalarTy, Lanes);
// Create a series of pack instructions.
Value *LastInsert = PoisonValue::get(VecTy);
Context &Ctx = ToPack[0]->getContext();
unsigned InsertIdx = 0;
for (Value *Elm : ToPack) {
// An element can be either scalar or vector. We need to generate different
// IR for each case.
if (Elm->getType()->isVectorTy()) {
unsigned NumElms =
cast<FixedVectorType>(Elm->getType())->getNumElements();
for (auto ExtrLane : seq<int>(0, NumElms)) {
// We generate extract-insert pairs, for each lane in `Elm`.
Constant *ExtrLaneC =
ConstantInt::getSigned(Type::getInt32Ty(Ctx), ExtrLane);
// This may return a Constant if Elm is a Constant.
auto *ExtrI =
ExtractElementInst::create(Elm, ExtrLaneC, WhereIt, Ctx, "VPack");
if (!isa<Constant>(ExtrI))
WhereIt = std::next(cast<Instruction>(ExtrI)->getIterator());
Constant *InsertLaneC =
ConstantInt::getSigned(Type::getInt32Ty(Ctx), InsertIdx++);
// This may also return a Constant if ExtrI is a Constant.
auto *InsertI = InsertElementInst::create(
LastInsert, ExtrI, InsertLaneC, WhereIt, Ctx, "VPack");
LastInsert = InsertI;
if (!isa<Constant>(InsertI))
WhereIt = std::next(cast<Instruction>(LastInsert)->getIterator());
}
} else {
Constant *InsertLaneC =
ConstantInt::getSigned(Type::getInt32Ty(Ctx), InsertIdx++);
// This may be folded into a Constant if LastInsert is a Constant. In
// that case we only collect the last constant.
LastInsert = InsertElementInst::create(LastInsert, Elm, InsertLaneC,
WhereIt, Ctx, "Pack");
if (auto *NewI = dyn_cast<Instruction>(LastInsert))
WhereIt = std::next(NewI->getIterator());
}
}
return LastInsert;
}
void BottomUpVec::collectPotentiallyDeadInstrs(ArrayRef<Value *> Bndl) {
for (Value *V : Bndl)
DeadInstrCandidates.insert(cast<Instruction>(V));
// Also collect the GEPs of vectorized loads and stores.
auto Opcode = cast<Instruction>(Bndl[0])->getOpcode();
switch (Opcode) {
case Instruction::Opcode::Load: {
for (Value *V : drop_begin(Bndl))
if (auto *Ptr =
dyn_cast<Instruction>(cast<LoadInst>(V)->getPointerOperand()))
DeadInstrCandidates.insert(Ptr);
break;
}
case Instruction::Opcode::Store: {
for (Value *V : drop_begin(Bndl))
if (auto *Ptr =
dyn_cast<Instruction>(cast<StoreInst>(V)->getPointerOperand()))
DeadInstrCandidates.insert(Ptr);
break;
}
default:
break;
}
}
Action *BottomUpVec::vectorizeRec(ArrayRef<Value *> Bndl,
ArrayRef<Value *> UserBndl, unsigned Depth,
LegalityAnalysis &Legality) {
bool StopForDebug =
DebugBndlCnt++ >= StopBundle && StopBundle != StopBundleDisabled;
LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "canVectorize() Bundle:\n";
VecUtils::dump(Bndl));
const auto &LegalityRes = StopForDebug ? Legality.getForcedPackForDebugging()
: Legality.canVectorize(Bndl);
LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "Legality: " << LegalityRes << "\n");
auto ActionPtr =
std::make_unique<Action>(&LegalityRes, Bndl, UserBndl, Depth);
SmallVector<Action *> Operands;
switch (LegalityRes.getSubclassID()) {
case LegalityResultID::Widen: {
auto *I = cast<Instruction>(Bndl[0]);
switch (I->getOpcode()) {
case Instruction::Opcode::Load:
break;
case Instruction::Opcode::Store: {
// Don't recurse towards the pointer operand.
Action *OpA =
vectorizeRec(getOperand(Bndl, 0), Bndl, Depth + 1, Legality);
Operands.push_back(OpA);
break;
}
default:
// Visit all operands.
for (auto OpIdx : seq<unsigned>(I->getNumOperands())) {
Action *OpA =
vectorizeRec(getOperand(Bndl, OpIdx), Bndl, Depth + 1, Legality);
Operands.push_back(OpA);
}
break;
}
// Update the maps to mark Bndl as "vectorized".
IMaps->registerVector(Bndl, ActionPtr.get());
break;
}
case LegalityResultID::DiamondReuse:
case LegalityResultID::DiamondReuseWithShuffle:
case LegalityResultID::DiamondReuseMultiInput:
case LegalityResultID::Pack:
break;
}
// Create actions in post-order.
ActionPtr->Operands = std::move(Operands);
auto *Action = ActionPtr.get();
Actions.push_back(std::move(ActionPtr));
return Action;
}
#ifndef NDEBUG
void BottomUpVec::ActionsVector::print(raw_ostream &OS) const {
for (auto [Idx, Action] : enumerate(Actions)) {
Action->print(OS);
OS << "\n";
}
}
void BottomUpVec::ActionsVector::dump() const { print(dbgs()); }
#endif // NDEBUG
Value *BottomUpVec::emitVectors() {
Value *NewVec = nullptr;
for (const auto &ActionPtr : Actions) {
ArrayRef<Value *> Bndl = ActionPtr->Bndl;
ArrayRef<Value *> UserBndl = ActionPtr->UserBndl;
const LegalityResult &LegalityRes = *ActionPtr->LegalityRes;
unsigned Depth = ActionPtr->Depth;
auto *UserBB = !UserBndl.empty()
? cast<Instruction>(UserBndl.front())->getParent()
: cast<Instruction>(Bndl[0])->getParent();
switch (LegalityRes.getSubclassID()) {
case LegalityResultID::Widen: {
auto *I = cast<Instruction>(Bndl[0]);
SmallVector<Value *, 2> VecOperands;
switch (I->getOpcode()) {
case Instruction::Opcode::Load:
VecOperands.push_back(cast<LoadInst>(I)->getPointerOperand());
break;
case Instruction::Opcode::Store: {
VecOperands.push_back(ActionPtr->Operands[0]->Vec);
VecOperands.push_back(cast<StoreInst>(I)->getPointerOperand());
break;
}
default:
// Visit all operands.
for (Action *OpA : ActionPtr->Operands) {
auto *VecOp = OpA->Vec;
VecOperands.push_back(VecOp);
}
break;
}
NewVec = createVectorInstr(ActionPtr->Bndl, VecOperands);
// Collect any potentially dead scalar instructions, including the
// original scalars and pointer operands of loads/stores.
if (NewVec != nullptr)
collectPotentiallyDeadInstrs(Bndl);
break;
}
case LegalityResultID::DiamondReuse: {
NewVec = cast<DiamondReuse>(LegalityRes).getVector()->Vec;
break;
}
case LegalityResultID::DiamondReuseWithShuffle: {
auto *VecOp = cast<DiamondReuseWithShuffle>(LegalityRes).getVector()->Vec;
const ShuffleMask &Mask =
cast<DiamondReuseWithShuffle>(LegalityRes).getMask();
NewVec = createShuffle(VecOp, Mask, UserBB);
assert(NewVec->getType() == VecOp->getType() &&
"Expected same type! Bad mask ?");
break;
}
case LegalityResultID::DiamondReuseMultiInput: {
const auto &Descr =
cast<DiamondReuseMultiInput>(LegalityRes).getCollectDescr();
Type *ResTy = VecUtils::getWideType(Bndl[0]->getType(), Bndl.size());
// TODO: Try to get WhereIt without creating a vector.
SmallVector<Value *, 4> DescrInstrs;
for (const auto &ElmDescr : Descr.getDescrs()) {
auto *V = ElmDescr.needsExtract() ? ElmDescr.getValue()->Vec
: ElmDescr.getScalar();
if (auto *I = dyn_cast<Instruction>(V))
DescrInstrs.push_back(I);
}
BasicBlock::iterator WhereIt =
getInsertPointAfterInstrs(DescrInstrs, UserBB);
Value *LastV = PoisonValue::get(ResTy);
Context &Ctx = LastV->getContext();
unsigned Lane = 0;
for (const auto &ElmDescr : Descr.getDescrs()) {
Value *VecOp = nullptr;
Value *ValueToInsert;
if (ElmDescr.needsExtract()) {
VecOp = ElmDescr.getValue()->Vec;
ConstantInt *IdxC =
ConstantInt::get(Type::getInt32Ty(Ctx), ElmDescr.getExtractIdx());
ValueToInsert = ExtractElementInst::create(
VecOp, IdxC, WhereIt, VecOp->getContext(), "VExt");
} else {
ValueToInsert = ElmDescr.getScalar();
}
auto NumLanesToInsert = VecUtils::getNumLanes(ValueToInsert);
if (NumLanesToInsert == 1) {
// If we are inserting a scalar element then we need a single insert.
// %VIns = insert %DstVec, %SrcScalar, Lane
ConstantInt *LaneC = ConstantInt::get(Type::getInt32Ty(Ctx), Lane);
LastV = InsertElementInst::create(LastV, ValueToInsert, LaneC,
WhereIt, Ctx, "VIns");
} else {
// If we are inserting a vector element then we need to extract and
// insert each vector element one by one with a chain of extracts and
// inserts, for example:
// %VExt0 = extract %SrcVec, 0
// %VIns0 = insert %DstVec, %Vect0, Lane + 0
// %VExt1 = extract %SrcVec, 1
// %VIns1 = insert %VIns0, %Vect0, Lane + 1
for (unsigned LnCnt = 0; LnCnt != NumLanesToInsert; ++LnCnt) {
auto *ExtrIdxC = ConstantInt::get(Type::getInt32Ty(Ctx), LnCnt);
auto *ExtrI = ExtractElementInst::create(ValueToInsert, ExtrIdxC,
WhereIt, Ctx, "VExt");
unsigned InsLane = Lane + LnCnt;
auto *InsLaneC = ConstantInt::get(Type::getInt32Ty(Ctx), InsLane);
LastV = InsertElementInst::create(LastV, ExtrI, InsLaneC, WhereIt,
Ctx, "VIns");
}
}
Lane += NumLanesToInsert;
}
NewVec = LastV;
break;
}
case LegalityResultID::Pack: {
// If we can't vectorize the seeds then just return.
if (Depth == 0)
return nullptr;
NewVec = createPack(Bndl, UserBB);
break;
}
}
if (NewVec != nullptr) {
Change = true;
ActionPtr->Vec = NewVec;
}
#ifndef NDEBUG
if (AlwaysVerify) {
// This helps find broken IR by constantly verifying the function. Note
// that this is very expensive and should only be used for debugging.
Instruction *I0 = isa<Instruction>(Bndl[0])
? cast<Instruction>(Bndl[0])
: cast<Instruction>(UserBndl[0]);
assert(!Utils::verifyFunction(I0->getParent()->getParent(), dbgs()) &&
"Broken function!");
}
#endif // NDEBUG
}
return NewVec;
}
bool BottomUpVec::tryVectorize(ArrayRef<Value *> Bndl,
LegalityAnalysis &Legality) {
Change = false;
if (LLVM_UNLIKELY(BottomUpInvocationCnt++ >= StopAt &&
StopAt != StopAtDisabled))
return false;
DeadInstrCandidates.clear();
Legality.clear();
Actions.clear();
DebugBndlCnt = 0;
vectorizeRec(Bndl, {}, /*Depth=*/0, Legality);
LLVM_DEBUG(dbgs() << DEBUG_PREFIX << "BottomUpVec: Vectorization Actions:\n";
Actions.dump());
emitVectors();
tryEraseDeadInstrs();
return Change;
}
bool BottomUpVec::runOnRegion(Region &Rgn, const Analyses &A) {
const auto &SeedSlice = Rgn.getAux();
assert(SeedSlice.size() >= 2 && "Bad slice!");
Function &F = *SeedSlice[0]->getParent()->getParent();
IMaps = std::make_unique<InstrMaps>();
LegalityAnalysis Legality(A.getAA(), A.getScalarEvolution(),
F.getParent()->getDataLayout(), F.getContext(),
*IMaps);
// TODO: Refactor to remove the unnecessary copy to SeedSliceVals.
SmallVector<Value *> SeedSliceVals(SeedSlice.begin(), SeedSlice.end());
// Try to vectorize starting from the seed slice. The returned value
// is true if we found vectorizable code and generated some vector
// code for it. It does not mean that the code is profitable.
return tryVectorize(SeedSliceVals, Legality);
}
} // namespace sandboxir
} // namespace llvm
|