1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
//===- SeedCollector.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/SandboxVectorizer/SeedCollector.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Type.h"
#include "llvm/SandboxIR/Instruction.h"
#include "llvm/SandboxIR/Utils.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
namespace llvm::sandboxir {
static cl::opt<unsigned> SeedBundleSizeLimit(
"sbvec-seed-bundle-size-limit", cl::init(32), cl::Hidden,
cl::desc("Limit the size of the seed bundle to cap compilation time."));
static cl::opt<unsigned> SeedGroupsLimit(
"sbvec-seed-groups-limit", cl::init(256), cl::Hidden,
cl::desc("Limit the number of collected seeds groups in a BB to "
"cap compilation time."));
ArrayRef<Instruction *> SeedBundle::getSlice(unsigned StartIdx,
unsigned MaxVecRegBits,
bool ForcePowerOf2) {
// Use uint32_t here for compatibility with IsPowerOf2_32
// BitCount tracks the size of the working slice. From that we can tell
// when the working slice's size is a power-of-two and when it exceeds
// the legal size in MaxVecBits.
uint32_t BitCount = 0;
uint32_t NumElements = 0;
// Tracks the most recent slice where NumElements gave a power-of-2 BitCount
uint32_t NumElementsPowerOfTwo = 0;
uint32_t BitCountPowerOfTwo = 0;
// Can't start a slice with a used instruction.
assert(!isUsed(StartIdx) && "Expected unused at StartIdx");
for (Instruction *S : drop_begin(Seeds, StartIdx)) {
// Stop if this instruction is used. This needs to be done before
// getNumBits() because a "used" instruction may have been erased.
if (isUsed(StartIdx + NumElements))
break;
uint32_t InstBits = Utils::getNumBits(S);
// Stop if adding it puts the slice over the limit.
if (BitCount + InstBits > MaxVecRegBits)
break;
NumElements++;
BitCount += InstBits;
if (ForcePowerOf2 && isPowerOf2_32(BitCount)) {
NumElementsPowerOfTwo = NumElements;
BitCountPowerOfTwo = BitCount;
}
}
if (ForcePowerOf2) {
NumElements = NumElementsPowerOfTwo;
BitCount = BitCountPowerOfTwo;
}
// Return any non-empty slice
if (NumElements > 1) {
assert((!ForcePowerOf2 || isPowerOf2_32(BitCount)) &&
"Must be a power of two");
return ArrayRef<Instruction *>(&Seeds[StartIdx], NumElements);
}
return {};
}
template <typename LoadOrStoreT>
SeedContainer::KeyT SeedContainer::getKey(LoadOrStoreT *LSI) const {
assert((isa<LoadInst>(LSI) || isa<StoreInst>(LSI)) &&
"Expected Load or Store!");
Value *Ptr = Utils::getMemInstructionBase(LSI);
Instruction::Opcode Op = LSI->getOpcode();
Type *Ty = Utils::getExpectedType(LSI);
if (auto *VTy = dyn_cast<VectorType>(Ty))
Ty = VTy->getElementType();
return {Ptr, Ty, Op};
}
// Explicit instantiations
template SeedContainer::KeyT
SeedContainer::getKey<LoadInst>(LoadInst *LSI) const;
template SeedContainer::KeyT
SeedContainer::getKey<StoreInst>(StoreInst *LSI) const;
bool SeedContainer::erase(Instruction *I) {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Expected Load or Store!");
auto It = SeedLookupMap.find(I);
if (It == SeedLookupMap.end())
return false;
SeedBundle *Bndl = It->second;
Bndl->setUsed(I);
return true;
}
template <typename LoadOrStoreT> void SeedContainer::insert(LoadOrStoreT *LSI) {
// Find the bundle containing seeds for this symbol and type-of-access.
auto &BundleVec = Bundles[getKey(LSI)];
// Fill this vector of bundles front to back so that only the last bundle in
// the vector may have available space. This avoids iteration to find one with
// space.
if (BundleVec.empty() || BundleVec.back()->size() == SeedBundleSizeLimit)
BundleVec.emplace_back(std::make_unique<MemSeedBundle<LoadOrStoreT>>(LSI));
else
BundleVec.back()->insert(LSI, SE);
SeedLookupMap[LSI] = BundleVec.back().get();
}
// Explicit instantiations
template LLVM_EXPORT_TEMPLATE void SeedContainer::insert<LoadInst>(LoadInst *);
template LLVM_EXPORT_TEMPLATE void
SeedContainer::insert<StoreInst>(StoreInst *);
#ifndef NDEBUG
void SeedContainer::print(raw_ostream &OS) const {
for (const auto &Pair : Bundles) {
auto [I, Ty, Opc] = Pair.first;
const auto &SeedsVec = Pair.second;
std::string RefType = dyn_cast<LoadInst>(I) ? "Load"
: dyn_cast<StoreInst>(I) ? "Store"
: "Other";
OS << "[Inst=" << *I << " Ty=" << Ty << " " << RefType << "]\n";
for (const auto &SeedPtr : SeedsVec) {
SeedPtr->dump(OS);
OS << "\n";
}
}
OS << "\n";
}
LLVM_DUMP_METHOD void SeedContainer::dump() const { print(dbgs()); }
#endif // NDEBUG
template <typename LoadOrStoreT> static bool isValidMemSeed(LoadOrStoreT *LSI) {
if (!LSI->isSimple())
return false;
auto *Ty = Utils::getExpectedType(LSI);
// Omit types that are architecturally unvectorizable
if (Ty->isX86_FP80Ty() || Ty->isPPC_FP128Ty())
return false;
// Omit vector types without compile-time-known lane counts
if (isa<ScalableVectorType>(Ty))
return false;
if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
return VectorType::isValidElementType(VTy->getElementType());
return VectorType::isValidElementType(Ty);
}
template bool isValidMemSeed<LoadInst>(LoadInst *LSI);
template bool isValidMemSeed<StoreInst>(StoreInst *LSI);
SeedCollector::SeedCollector(BasicBlock *BB, ScalarEvolution &SE,
bool CollectStores, bool CollectLoads)
: StoreSeeds(SE), LoadSeeds(SE), Ctx(BB->getContext()) {
if (!CollectStores && !CollectLoads)
return;
EraseCallbackID = Ctx.registerEraseInstrCallback([this](Instruction *I) {
if (auto SI = dyn_cast<StoreInst>(I))
StoreSeeds.erase(SI);
else if (auto LI = dyn_cast<LoadInst>(I))
LoadSeeds.erase(LI);
});
// Actually collect the seeds.
for (auto &I : *BB) {
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
if (CollectStores && isValidMemSeed(SI))
StoreSeeds.insert(SI);
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
if (CollectLoads && isValidMemSeed(LI))
LoadSeeds.insert(LI);
// Cap compilation time.
if (totalNumSeedGroups() > SeedGroupsLimit)
break;
}
}
SeedCollector::~SeedCollector() {
Ctx.unregisterEraseInstrCallback(EraseCallbackID);
}
#ifndef NDEBUG
void SeedCollector::print(raw_ostream &OS) const {
OS << "=== StoreSeeds ===\n";
StoreSeeds.print(OS);
OS << "=== LoadSeeds ===\n";
LoadSeeds.print(OS);
}
void SeedCollector::dump() const { print(dbgs()); }
#endif
} // namespace llvm::sandboxir
|