File: CodeGenRegisters.cpp

package info (click to toggle)
llvm-toolchain-21 1%3A21.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,245,064 kB
  • sloc: cpp: 7,619,731; ansic: 1,434,018; asm: 1,058,748; python: 252,740; f90: 94,671; objc: 70,685; lisp: 42,813; pascal: 18,401; sh: 8,601; ml: 5,111; perl: 4,720; makefile: 3,676; awk: 3,523; javascript: 2,409; xml: 892; fortran: 770
file content (2661 lines) | stat: -rw-r--r-- 100,349 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines structures to encapsulate information gleaned from the
// target register and register class definitions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenRegisters.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntEqClasses.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <queue>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc-emitter"

//===----------------------------------------------------------------------===//
//                             CodeGenSubRegIndex
//===----------------------------------------------------------------------===//

CodeGenSubRegIndex::CodeGenSubRegIndex(const Record *R, unsigned Enum,
                                       const CodeGenHwModes &CGH)
    : TheDef(R), Name(R->getName().str()), EnumValue(Enum),
      AllSuperRegsCovered(true), Artificial(true) {
  if (R->getValue("Namespace"))
    Namespace = R->getValueAsString("Namespace").str();

  if (const RecordVal *RV = R->getValue("SubRegRanges"))
    if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
      Range = SubRegRangeByHwMode(DI->getDef(), CGH);
  if (!Range.hasDefault())
    Range.insertSubRegRangeForMode(DefaultMode, SubRegRange(R));
}

CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
                                       unsigned Enum)
    : TheDef(nullptr), Name(N.str()), Namespace(Nspace.str()),
      Range(SubRegRange(-1, -1)), EnumValue(Enum), AllSuperRegsCovered(true),
      Artificial(true) {}

std::string CodeGenSubRegIndex::getQualifiedName() const {
  std::string N = getNamespace();
  if (!N.empty())
    N += "::";
  N += getName();
  return N;
}

void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
  if (!TheDef)
    return;

  std::vector<const Record *> Comps =
      TheDef->getValueAsListOfDefs("ComposedOf");
  if (!Comps.empty()) {
    if (Comps.size() != 2)
      PrintFatalError(TheDef->getLoc(),
                      "ComposedOf must have exactly two entries");
    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
    CodeGenSubRegIndex *X = A->addComposite(B, this, RegBank.getHwModes());
    if (X)
      PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
  }

  std::vector<const Record *> Parts =
      TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
  if (!Parts.empty()) {
    if (Parts.size() < 2)
      PrintFatalError(TheDef->getLoc(),
                      "CoveringSubRegIndices must have two or more entries");
    SmallVector<CodeGenSubRegIndex *, 8> IdxParts;
    for (const Record *Part : Parts)
      IdxParts.push_back(RegBank.getSubRegIdx(Part));
    setConcatenationOf(IdxParts);
  }
}

LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
  // Already computed?
  if (LaneMask.any())
    return LaneMask;

  // Recursion guard, shouldn't be required.
  LaneMask = LaneBitmask::getAll();

  // The lane mask is simply the union of all sub-indices.
  LaneBitmask M;
  for (const auto &C : Composed)
    M |= C.second->computeLaneMask();
  assert(M.any() && "Missing lane mask, sub-register cycle?");
  LaneMask = M;
  return LaneMask;
}

void CodeGenSubRegIndex::setConcatenationOf(
    ArrayRef<CodeGenSubRegIndex *> Parts) {
  if (ConcatenationOf.empty()) {
    ConcatenationOf.assign(Parts.begin(), Parts.end());
    return;
  }
  assert(llvm::equal(Parts, ConcatenationOf) && "parts consistent");
}

void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
  for (SmallVectorImpl<CodeGenSubRegIndex *>::iterator I =
           ConcatenationOf.begin();
       I != ConcatenationOf.end();
       /*empty*/) {
    CodeGenSubRegIndex *SubIdx = *I;
    SubIdx->computeConcatTransitiveClosure();
#ifndef NDEBUG
    for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
      assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
#endif

    if (SubIdx->ConcatenationOf.empty()) {
      ++I;
    } else {
      I = ConcatenationOf.erase(I);
      I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
                                 SubIdx->ConcatenationOf.end());
      I += SubIdx->ConcatenationOf.size();
    }
  }
}

//===----------------------------------------------------------------------===//
//                              CodeGenRegister
//===----------------------------------------------------------------------===//

CodeGenRegister::CodeGenRegister(const Record *R, unsigned Enum)
    : TheDef(R), EnumValue(Enum),
      CostPerUse(R->getValueAsListOfInts("CostPerUse")),
      CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
      Constant(R->getValueAsBit("isConstant")), SubRegsComplete(false),
      SuperRegsComplete(false), TopoSig(~0u) {
  Artificial = R->getValueAsBit("isArtificial");
}

void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
  std::vector<const Record *> SRIs =
      TheDef->getValueAsListOfDefs("SubRegIndices");
  std::vector<const Record *> SRs = TheDef->getValueAsListOfDefs("SubRegs");

  if (SRIs.size() != SRs.size())
    PrintFatalError(TheDef->getLoc(),
                    "SubRegs and SubRegIndices must have the same size");

  for (const auto &[SRI, SR] : zip_equal(SRIs, SRs)) {
    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRI));
    ExplicitSubRegs.push_back(RegBank.getReg(SR));
  }

  // Also compute leading super-registers. Each register has a list of
  // covered-by-subregs super-registers where it appears as the first explicit
  // sub-register.
  //
  // This is used by computeSecondarySubRegs() to find candidates.
  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);

  // Add ad hoc alias links. This is a symmetric relationship between two
  // registers, so build a symmetric graph by adding links in both ends.
  for (const Record *Alias : TheDef->getValueAsListOfDefs("Aliases")) {
    CodeGenRegister *Reg = RegBank.getReg(Alias);
    ExplicitAliases.push_back(Reg);
    Reg->ExplicitAliases.push_back(this);
  }
}

// Inherit register units from subregisters.
// Return true if the RegUnits changed.
bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
  bool changed = false;
  for (const auto &[_, SR] : SubRegs) {
    // Merge the subregister's units into this register's RegUnits.
    changed |= (RegUnits |= SR->RegUnits);
  }

  return changed;
}

const CodeGenRegister::SubRegMap &
CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
  // Only compute this map once.
  if (SubRegsComplete)
    return SubRegs;
  SubRegsComplete = true;

  HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;

  // First insert the explicit subregs and make sure they are fully indexed.
  for (auto [SR, Idx] : zip_equal(ExplicitSubRegs, ExplicitSubRegIndices)) {
    if (!SR->Artificial)
      Idx->Artificial = false;
    if (!SubRegs.try_emplace(Idx, SR).second)
      PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
                                            " appears twice in Register " +
                                            getName());
    // Map explicit sub-registers first, so the names take precedence.
    // The inherited sub-registers are mapped below.
    SubReg2Idx.try_emplace(SR, Idx);
  }

  // Keep track of inherited subregs and how they can be reached.
  SmallPtrSet<CodeGenRegister *, 8> Orphans;

  // Clone inherited subregs and place duplicate entries in Orphans.
  // Here the order is important - earlier subregs take precedence.
  for (CodeGenRegister *ESR : ExplicitSubRegs) {
    const SubRegMap &Map = ESR->computeSubRegs(RegBank);
    HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;

    for (const auto &SR : Map) {
      if (!SubRegs.insert(SR).second)
        Orphans.insert(SR.second);
    }
  }

  // Expand any composed subreg indices.
  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
  // expanded subreg indices recursively.
  SmallVector<CodeGenSubRegIndex *, 8> Indices = ExplicitSubRegIndices;
  for (unsigned i = 0; i != Indices.size(); ++i) {
    CodeGenSubRegIndex *Idx = Indices[i];
    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
    CodeGenRegister *SR = SubRegs[Idx];
    const SubRegMap &Map = SR->computeSubRegs(RegBank);

    // Look at the possible compositions of Idx.
    // They may not all be supported by SR.
    for (auto [Key, Val] : Comps) {
      SubRegMap::const_iterator SRI = Map.find(Key);
      if (SRI == Map.end())
        continue; // Idx + I->first doesn't exist in SR.
      // Add `Val` as a name for the subreg SRI->second, assuming it is
      // orphaned, and the name isn't already used for something else.
      if (SubRegs.count(Val) || !Orphans.erase(SRI->second))
        continue;
      // We found a new name for the orphaned sub-register.
      SubRegs.try_emplace(Val, SRI->second);
      Indices.push_back(Val);
    }
  }

  // Now Orphans contains the inherited subregisters without a direct index.
  // Create inferred indexes for all missing entries.
  // Work backwards in the Indices vector in order to compose subregs bottom-up.
  // Consider this subreg sequence:
  //
  //   qsub_1 -> dsub_0 -> ssub_0
  //
  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
  // can be reached in two different ways:
  //
  //   qsub_1 -> ssub_0
  //   dsub_2 -> ssub_0
  //
  // We pick the latter composition because another register may have [dsub_0,
  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
  // dsub_2 -> ssub_0 composition can be shared.
  while (!Indices.empty() && !Orphans.empty()) {
    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
    CodeGenRegister *SR = SubRegs[Idx];
    const SubRegMap &Map = SR->computeSubRegs(RegBank);
    for (const auto &[SRI, SubReg] : Map)
      if (Orphans.erase(SubReg))
        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SRI)] = SubReg;
  }

  // Compute the inverse SubReg -> Idx map.
  for (auto &[SRI, SubReg] : SubRegs) {
    if (SubReg == this) {
      ArrayRef<SMLoc> Loc;
      if (TheDef)
        Loc = TheDef->getLoc();
      PrintFatalError(Loc, "Register " + getName() +
                               " has itself as a sub-register");
    }

    // Compute AllSuperRegsCovered.
    if (!CoveredBySubRegs)
      SRI->AllSuperRegsCovered = false;

    // Ensure that every sub-register has a unique name.
    DenseMap<const CodeGenRegister *, CodeGenSubRegIndex *>::iterator Ins =
        SubReg2Idx.try_emplace(SubReg, SRI).first;
    if (Ins->second == SRI)
      continue;
    // Trouble: Two different names for SubReg.second.
    ArrayRef<SMLoc> Loc;
    if (TheDef)
      Loc = TheDef->getLoc();
    PrintFatalError(Loc, "Sub-register can't have two names: " +
                             SubReg->getName() + " available as " +
                             SRI->getName() + " and " + Ins->second->getName());
  }

  // Derive possible names for sub-register concatenations from any explicit
  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
  // that getConcatSubRegIndex() won't invent any concatenated indices that the
  // user already specified.
  for (auto [Idx, SR] : enumerate(ExplicitSubRegs)) {
    if (!SR->CoveredBySubRegs || SR->Artificial)
      continue;

    // SR is composed of multiple sub-regs. Find their names in this register.
    bool AnyArtificial = false;
    SmallVector<CodeGenSubRegIndex *, 8> Parts;
    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
      CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
      if (I.Artificial) {
        AnyArtificial = true;
        break;
      }
      Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
    }

    if (AnyArtificial)
      continue;

    // Offer this as an existing spelling for the concatenation of Parts.
    ExplicitSubRegIndices[Idx]->setConcatenationOf(Parts);
  }

  // Initialize RegUnitList. Because getSubRegs is called recursively, this
  // processes the register hierarchy in postorder.
  if (ExplicitSubRegs.empty()) {
    // Create one register unit per leaf register. These units correspond to the
    // maximal cliques in the register overlap graph which is optimal.
    RegUnits.set(RegBank.newRegUnit(this));
  } else {
    // Inherit all sub-register units. It is good enough to look at the explicit
    // sub-registers, the other registers won't contribute any more units.
    for (const CodeGenRegister *SR : ExplicitSubRegs)
      RegUnits |= SR->RegUnits;
  }

  // When there is ad hoc aliasing, we simply create one unit per edge in the
  // undirected ad hoc aliasing graph. Technically, we could do better by
  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
  // are extremely rare anyway (I've never seen one), so we don't bother with
  // the added complexity.
  for (CodeGenRegister *AR : ExplicitAliases) {
    // Only visit each edge once.
    if (AR->SubRegsComplete)
      continue;
    // Create a RegUnit representing this alias edge, and add it to both
    // registers.
    unsigned Unit = RegBank.newRegUnit(this, AR);
    RegUnits.set(Unit);
    AR->RegUnits.set(Unit);
  }

  // We have now computed the native register units. More may be adopted later
  // for balancing purposes.
  NativeRegUnits = RegUnits;

  return SubRegs;
}

// In a register that is covered by its sub-registers, try to find redundant
// sub-registers. For example:
//
//   QQ0 = {Q0, Q1}
//   Q0 = {D0, D1}
//   Q1 = {D2, D3}
//
// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
// the register definition.
//
// The explicitly specified registers form a tree. This function discovers
// sub-register relationships that would force a DAG.
//
void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
  SmallVector<SubRegMap::value_type, 8> NewSubRegs;

  std::queue<std::pair<CodeGenSubRegIndex *, CodeGenRegister *>> SubRegQueue;
  for (auto [SRI, SubReg] : SubRegs)
    SubRegQueue.emplace(SRI, SubReg);

  // Look at the leading super-registers of each sub-register. Those are the
  // candidates for new sub-registers, assuming they are fully contained in
  // this register.
  while (!SubRegQueue.empty()) {
    auto [SubRegIdx, SubReg] = SubRegQueue.front();
    SubRegQueue.pop();

    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
    for (const CodeGenRegister *Cand : Leads) {
      // Already got this sub-register?
      if (Cand == this || getSubRegIndex(Cand))
        continue;
      // Check if each component of Cand is already a sub-register.
      assert(!Cand->ExplicitSubRegs.empty() &&
             "Super-register has no sub-registers");
      if (Cand->ExplicitSubRegs.size() == 1)
        continue;
      SmallVector<CodeGenSubRegIndex *, 8> Parts;
      // We know that the first component is (SubRegIdx,SubReg). However we
      // may still need to split it into smaller subregister parts.
      assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
      assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
      for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
        if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
          if (SubRegIdx->ConcatenationOf.empty())
            Parts.push_back(SubRegIdx);
          else
            append_range(Parts, SubRegIdx->ConcatenationOf);
        } else {
          // Sub-register doesn't exist.
          Parts.clear();
          break;
        }
      }
      // There is nothing to do if some Cand sub-register is not part of this
      // register.
      if (Parts.empty())
        continue;

      // Each part of Cand is a sub-register of this. Make the full Cand also
      // a sub-register with a concatenated sub-register index.
      CodeGenSubRegIndex *Concat =
          RegBank.getConcatSubRegIndex(Parts, RegBank.getHwModes());
      std::pair<CodeGenSubRegIndex *, CodeGenRegister *> NewSubReg = {
          Concat, const_cast<CodeGenRegister *>(Cand)};

      if (!SubRegs.insert(NewSubReg).second)
        continue;

      // We inserted a new subregister.
      NewSubRegs.push_back(NewSubReg);
      SubRegQueue.push(NewSubReg);
      SubReg2Idx.try_emplace(Cand, Concat);
    }
  }

  // Create sub-register index composition maps for the synthesized indices.
  for (auto [NewIdx, NewSubReg] : NewSubRegs) {
    for (auto [SRI, SubReg] : NewSubReg->SubRegs) {
      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg);
      if (!SubIdx)
        PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
                                              SubReg->getName() + " in " +
                                              getName());
      NewIdx->addComposite(SRI, SubIdx, RegBank.getHwModes());
    }
  }
}

void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
  // Only visit each register once.
  if (SuperRegsComplete)
    return;
  SuperRegsComplete = true;

  // Make sure all sub-registers have been visited first, so the super-reg
  // lists will be topologically ordered.
  for (auto SubReg : SubRegs)
    SubReg.second->computeSuperRegs(RegBank);

  // Now add this as a super-register on all sub-registers.
  // Also compute the TopoSigId in post-order.
  TopoSigId Id;
  for (auto SubReg : SubRegs) {
    // Topological signature computed from SubIdx, TopoId(SubReg).
    // Loops and idempotent indices have TopoSig = ~0u.
    Id.push_back(SubReg.first->EnumValue);
    Id.push_back(SubReg.second->TopoSig);

    // Don't add duplicate entries.
    if (!SubReg.second->SuperRegs.empty() &&
        SubReg.second->SuperRegs.back() == this)
      continue;
    SubReg.second->SuperRegs.push_back(this);
  }
  TopoSig = RegBank.getTopoSig(Id);
}

void CodeGenRegister::addSubRegsPreOrder(
    SetVector<const CodeGenRegister *> &OSet, CodeGenRegBank &RegBank) const {
  assert(SubRegsComplete && "Must precompute sub-registers");
  for (CodeGenRegister *SR : ExplicitSubRegs) {
    if (OSet.insert(SR))
      SR->addSubRegsPreOrder(OSet, RegBank);
  }
  // Add any secondary sub-registers that weren't part of the explicit tree.
  OSet.insert_range(llvm::make_second_range(SubRegs));
}

// Get the sum of this register's unit weights.
unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
  unsigned Weight = 0;
  for (unsigned RegUnit : RegUnits)
    Weight += RegBank.getRegUnit(RegUnit).Weight;
  return Weight;
}

//===----------------------------------------------------------------------===//
//                               RegisterTuples
//===----------------------------------------------------------------------===//

// A RegisterTuples def is used to generate pseudo-registers from lists of
// sub-registers. We provide a SetTheory expander class that returns the new
// registers.
namespace {

struct TupleExpander : SetTheory::Expander {
  // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
  // the synthesized definitions for their lifetime.
  std::vector<std::unique_ptr<Record>> &SynthDefs;

  // Track all synthesized tuple names in order to detect duplicate definitions.
  llvm::StringSet<> TupleNames;

  TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
      : SynthDefs(SynthDefs) {}

  void expand(SetTheory &ST, const Record *Def,
              SetTheory::RecSet &Elts) override {
    std::vector<const Record *> Indices =
        Def->getValueAsListOfDefs("SubRegIndices");
    unsigned Dim = Indices.size();
    const ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
    if (Dim != SubRegs->size())
      PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
    if (Dim < 2)
      PrintFatalError(Def->getLoc(),
                      "Tuples must have at least 2 sub-registers");

    // Evaluate the sub-register lists to be zipped.
    unsigned Length = ~0u;
    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
    for (unsigned i = 0; i != Dim; ++i) {
      ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
      Length = std::min(Length, unsigned(Lists[i].size()));
    }

    if (Length == 0)
      return;

    // Precompute some types.
    const Record *RegisterCl = Def->getRecords().getClass("Register");
    const RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
    std::vector<StringRef> RegNames =
        Def->getValueAsListOfStrings("RegAsmNames");

    // Zip them up.
    RecordKeeper &RK = Def->getRecords();
    for (unsigned n = 0; n != Length; ++n) {
      std::string Name;
      const Record *Proto = Lists[0][n];
      std::vector<Init *> Tuple;
      for (unsigned i = 0; i != Dim; ++i) {
        const Record *Reg = Lists[i][n];
        if (i)
          Name += '_';
        Name += Reg->getName();
        Tuple.push_back(Reg->getDefInit());
      }

      // Take the cost list of the first register in the tuple.
      const ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
      SmallVector<const Init *, 2> CostPerUse(CostList->getElements());

      const StringInit *AsmName = StringInit::get(RK, "");
      if (!RegNames.empty()) {
        if (RegNames.size() <= n)
          PrintFatalError(Def->getLoc(),
                          "Register tuple definition missing name for '" +
                              Name + "'.");
        AsmName = StringInit::get(RK, RegNames[n]);
      }

      // Create a new Record representing the synthesized register. This record
      // is only for consumption by CodeGenRegister, it is not added to the
      // RecordKeeper.
      SynthDefs.emplace_back(
          std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
      Record *NewReg = SynthDefs.back().get();
      Elts.insert(NewReg);

      // Detect duplicates among synthesized registers.
      const auto Res = TupleNames.insert(NewReg->getName());
      if (!Res.second)
        PrintFatalError(Def->getLoc(),
                        "Register tuple redefines register '" + Name + "'.");

      // Copy Proto super-classes.
      for (const auto &[Super, Loc] : Proto->getDirectSuperClasses())
        NewReg->addDirectSuperClass(Super, Loc);

      // Copy Proto fields.
      for (RecordVal RV : Proto->getValues()) {
        // Skip existing fields, like NAME.
        if (NewReg->getValue(RV.getNameInit()))
          continue;

        StringRef Field = RV.getName();

        // Replace the sub-register list with Tuple.
        if (Field == "SubRegs")
          RV.setValue(ListInit::get(Tuple, RegisterRecTy));

        if (Field == "AsmName")
          RV.setValue(AsmName);

        // CostPerUse is aggregated from all Tuple members.
        if (Field == "CostPerUse")
          RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));

        // Composite registers are always covered by sub-registers.
        if (Field == "CoveredBySubRegs")
          RV.setValue(BitInit::get(RK, true));

        // Copy fields from the RegisterTuples def.
        if (Field == "SubRegIndices") {
          NewReg->addValue(*Def->getValue(Field));
          continue;
        }

        // Some fields get their default uninitialized value.
        if (Field == "DwarfNumbers" || Field == "DwarfAlias" ||
            Field == "Aliases") {
          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
            NewReg->addValue(*DefRV);
          continue;
        }

        // Everything else is copied from Proto.
        NewReg->addValue(RV);
      }
    }
  }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
//                            CodeGenRegisterClass
//===----------------------------------------------------------------------===//

static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
  llvm::sort(M, deref<std::less<>>());
  M.erase(llvm::unique(M, deref<std::equal_to<>>()), M.end());
}

CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
                                           const Record *R)
    : TheDef(R), Name(R->getName().str()),
      RegsWithSuperRegsTopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1),
      TSFlags(0) {
  GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
  std::vector<const Record *> TypeList = R->getValueAsListOfDefs("RegTypes");
  if (TypeList.empty())
    PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
  for (const Record *Type : TypeList) {
    if (!Type->isSubClassOf("ValueType"))
      PrintFatalError(R->getLoc(),
                      "RegTypes list member '" + Type->getName() +
                          "' does not derive from the ValueType class!");
    VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
  }

  // Allocation order 0 is the full set. AltOrders provides others.
  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
  const ListInit *AltOrders = R->getValueAsListInit("AltOrders");
  Orders.resize(1 + AltOrders->size());

  // Default allocation order always contains all registers.
  Artificial = true;
  for (const Record *Element : *Elements) {
    Orders[0].push_back(Element);
    const CodeGenRegister *Reg = RegBank.getReg(Element);
    Members.push_back(Reg);
    Artificial &= Reg->Artificial;
    if (!Reg->getSuperRegs().empty())
      RegsWithSuperRegsTopoSigs.set(Reg->getTopoSig());
  }
  sortAndUniqueRegisters(Members);

  // Alternative allocation orders may be subsets.
  SetTheory::RecSet Order;
  for (auto [Idx, AltOrderElem] : enumerate(AltOrders->getElements())) {
    RegBank.getSets().evaluate(AltOrderElem, Order, R->getLoc());
    Orders[1 + Idx].append(Order.begin(), Order.end());
    // Verify that all altorder members are regclass members.
    while (!Order.empty()) {
      CodeGenRegister *Reg = RegBank.getReg(Order.back());
      Order.pop_back();
      if (!contains(Reg))
        PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
                                         " is not a class member");
    }
  }

  Namespace = R->getValueAsString("Namespace");

  if (const RecordVal *RV = R->getValue("RegInfos"))
    if (const DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
      RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
  unsigned Size = R->getValueAsInt("Size");
  assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
         "Impossible to determine register size");
  if (!RSI.hasDefault()) {
    RegSizeInfo RI;
    RI.RegSize = RI.SpillSize =
        Size ? Size : VTs[0].getSimple().getSizeInBits();
    RI.SpillAlignment = R->getValueAsInt("Alignment");
    RSI.insertRegSizeForMode(DefaultMode, RI);
  }

  CopyCost = R->getValueAsInt("CopyCost");
  Allocatable = R->getValueAsBit("isAllocatable");
  AltOrderSelect = R->getValueAsString("AltOrderSelect");
  int AllocationPriority = R->getValueAsInt("AllocationPriority");
  if (!isUInt<5>(AllocationPriority))
    PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,31]");
  this->AllocationPriority = AllocationPriority;

  GlobalPriority = R->getValueAsBit("GlobalPriority");

  const BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
  for (auto [Idx, Bit] : enumerate(TSF->getBits()))
    TSFlags |= uint8_t(cast<BitInit>(Bit)->getValue()) << Idx;
}

// Create an inferred register class that was missing from the .td files.
// Most properties will be inherited from the closest super-class after the
// class structure has been computed.
CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
                                           StringRef Name, Key Props)
    : Members(*Props.Members), TheDef(nullptr), Name(Name.str()),
      RegsWithSuperRegsTopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1),
      RSI(Props.RSI), CopyCost(0), Allocatable(true), AllocationPriority(0),
      GlobalPriority(false), TSFlags(0) {
  Artificial = true;
  GeneratePressureSet = false;
  for (const auto R : Members) {
    if (!R->getSuperRegs().empty())
      RegsWithSuperRegsTopoSigs.set(R->getTopoSig());
    Artificial &= R->Artificial;
  }
}

// Compute inherited properties for a synthesized register class.
void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
  assert(!getDef() && "Only synthesized classes can inherit properties");
  assert(!SuperClasses.empty() && "Synthesized class without super class");

  // The last super-class is the smallest one in topological order. Check for
  // allocatable super-classes and inherit from the nearest allocatable one if
  // any.
  auto NearestAllocSCRIt =
      find_if(reverse(SuperClasses),
              [&](const CodeGenRegisterClass *S) { return S->Allocatable; });
  CodeGenRegisterClass &Super = NearestAllocSCRIt == SuperClasses.rend()
                                    ? *SuperClasses.back()
                                    : **NearestAllocSCRIt;

  // Most properties are copied directly.
  // Exceptions are members, size, and alignment
  Namespace = Super.Namespace;
  VTs = Super.VTs;
  CopyCost = Super.CopyCost;
  Allocatable = Super.Allocatable;
  AltOrderSelect = Super.AltOrderSelect;
  AllocationPriority = Super.AllocationPriority;
  GlobalPriority = Super.GlobalPriority;
  TSFlags = Super.TSFlags;
  GeneratePressureSet |= Super.GeneratePressureSet;

  // Copy all allocation orders, filter out foreign registers from the larger
  // super-class.
  Orders.resize(Super.Orders.size());
  for (auto [Idx, Outer] : enumerate(Super.Orders))
    for (const Record *Reg : Outer)
      if (contains(RegBank.getReg(Reg)))
        Orders[Idx].push_back(Reg);
}

bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode &VT) const {
  if (llvm::is_contained(VTs, VT))
    return true;

  // If VT is not identical to any of this class's types, but is a simple
  // type, check if any of the types for this class contain it under some
  // mode.
  // The motivating example came from RISC-V, where (likely because of being
  // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the
  // type in GRC was {*:[i32], m1:[i64]}.
  if (VT.isSimple()) {
    MVT T = VT.getSimple();
    for (const ValueTypeByHwMode &OurVT : VTs) {
      if (llvm::is_contained(llvm::make_second_range(OurVT), T))
        return true;
    }
  }
  return false;
}

bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
  return llvm::binary_search(Members, Reg, deref<std::less<>>());
}

unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank &RegBank) const {
  if (TheDef && !TheDef->isValueUnset("Weight"))
    return TheDef->getValueAsInt("Weight");

  if (Members.empty() || Artificial)
    return 0;

  return (*Members.begin())->getWeight(RegBank);
}

namespace llvm {

raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
  OS << "{ " << K.RSI;
  for (const auto R : *K.Members)
    OS << ", " << R->getName();
  return OS << " }";
}

} // end namespace llvm

// This is a simple lexicographical order that can be used to search for sets.
// It is not the same as the topological order provided by TopoOrderRC.
bool CodeGenRegisterClass::Key::operator<(
    const CodeGenRegisterClass::Key &B) const {
  assert(Members && B.Members);
  return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
}

// Returns true if RC is a strict subclass.
// RC is a sub-class of this class if it is a valid replacement for any
// instruction operand where a register of this classis required. It must
// satisfy these conditions:
//
// 1. All RC registers are also in this.
// 2. The RC spill size must not be smaller than our spill size.
// 3. RC spill alignment must be compatible with ours.
//
static bool testSubClass(const CodeGenRegisterClass *A,
                         const CodeGenRegisterClass *B) {
  return A->RSI.isSubClassOf(B->RSI) &&
         llvm::includes(A->getMembers(), B->getMembers(), deref<std::less<>>());
}

/// Sorting predicate for register classes.  This provides a topological
/// ordering that arranges all register classes before their sub-classes.
///
/// Register classes with the same registers, spill size, and alignment form a
/// clique. They will be ordered alphabetically.
///
static bool TopoOrderRC(const CodeGenRegisterClass &A,
                        const CodeGenRegisterClass &B) {
  if (&A == &B)
    return false;

  constexpr size_t SIZET_MAX = std::numeric_limits<size_t>::max();

  // Sort in the following order:
  // (a) first by register size in ascending order.
  // (b) then by set size in descending order.
  // (c) finally, by name as a tie breaker.
  //
  // For set size, note that the classes' allocation order may not have been
  // computed yet, but the members set is always valid. Also, since we use
  // std::tie() < operator for ordering, we can achieve the descending set size
  // ordering by using (SIZET_MAX - set_size) in the std::tie.
  return std::tuple(A.RSI, SIZET_MAX - A.getMembers().size(),
                    StringRef(A.getName())) <
         std::tuple(B.RSI, SIZET_MAX - B.getMembers().size(),
                    StringRef(B.getName()));
}

std::string CodeGenRegisterClass::getNamespaceQualification() const {
  return Namespace.empty() ? "" : (Namespace + "::").str();
}

std::string CodeGenRegisterClass::getQualifiedName() const {
  return getNamespaceQualification() + getName();
}

std::string CodeGenRegisterClass::getIdName() const {
  return getName() + "RegClassID";
}

std::string CodeGenRegisterClass::getQualifiedIdName() const {
  return getNamespaceQualification() + getIdName();
}

// Compute sub-classes of all register classes.
// Assume the classes are ordered topologically.
void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
  std::list<CodeGenRegisterClass> &RegClasses = RegBank.getRegClasses();

  const size_t NumRegClasses = RegClasses.size();
  // Visit backwards so sub-classes are seen first.
  for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
    CodeGenRegisterClass &RC = *I;
    RC.SubClasses.resize(NumRegClasses);
    RC.SubClasses.set(RC.EnumValue);
    if (RC.Artificial)
      continue;

    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
    for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
      CodeGenRegisterClass &SubRC = *I2;
      if (RC.SubClasses.test(SubRC.EnumValue))
        continue;
      if (!testSubClass(&RC, &SubRC))
        continue;
      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
      // check them again.
      RC.SubClasses |= SubRC.SubClasses;
    }

    // Sweep up missed clique members.  They will be immediately preceding RC.
    for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
      RC.SubClasses.set(I2->EnumValue);
  }

  // Compute the SuperClasses lists from the SubClasses vectors.
  for (auto &RC : RegClasses) {
    const BitVector &SC = RC.getSubClasses();
    auto I = RegClasses.begin();
    for (int s = 0, next_s = SC.find_first(); next_s != -1;
         next_s = SC.find_next(s)) {
      std::advance(I, next_s - s);
      s = next_s;
      if (&*I == &RC)
        continue;
      I->SuperClasses.push_back(&RC);
    }
  }

  // With the class hierarchy in place, let synthesized register classes inherit
  // properties from their closest super-class. The iteration order here can
  // propagate properties down multiple levels.
  for (CodeGenRegisterClass &RC : RegClasses)
    if (!RC.getDef())
      RC.inheritProperties(RegBank);
}

std::optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
    CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
  auto WeakSizeOrder = [this](const CodeGenRegisterClass *A,
                              const CodeGenRegisterClass *B) {
    // If there are multiple, identical register classes, prefer the original
    // register class.
    if (A == B)
      return false;
    if (A->getMembers().size() == B->getMembers().size())
      return A == this;
    return A->getMembers().size() > B->getMembers().size();
  };

  std::list<CodeGenRegisterClass> &RegClasses = RegBank.getRegClasses();

  // Find all the subclasses of this one that fully support the sub-register
  // index and order them by size. BiggestSuperRC should always be first.
  CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
  if (!BiggestSuperRegRC)
    return std::nullopt;
  BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
  std::vector<CodeGenRegisterClass *> SuperRegRCs;
  for (auto &RC : RegClasses)
    if (SuperRegRCsBV[RC.EnumValue])
      SuperRegRCs.emplace_back(&RC);
  llvm::stable_sort(SuperRegRCs, WeakSizeOrder);

  assert(SuperRegRCs.front() == BiggestSuperRegRC &&
         "Biggest class wasn't first");

  // Find all the subreg classes and order them by size too.
  std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
  for (auto &RC : RegClasses) {
    BitVector SuperRegClassesBV(RegClasses.size());
    RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
    if (SuperRegClassesBV.any())
      SuperRegClasses.emplace_back(&RC, SuperRegClassesBV);
  }
  llvm::stable_sort(SuperRegClasses,
                    [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
                        const std::pair<CodeGenRegisterClass *, BitVector> &B) {
                      return WeakSizeOrder(A.first, B.first);
                    });

  // Find the biggest subclass and subreg class such that R:subidx is in the
  // subreg class for all R in subclass.
  //
  // For example:
  // All registers in X86's GR64 have a sub_32bit subregister but no class
  // exists that contains all the 32-bit subregisters because GR64 contains RIP
  // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
  // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
  // having excluded RIP, we are able to find a SubRegRC (GR32).
  CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
  CodeGenRegisterClass *SubRegRC = nullptr;
  for (CodeGenRegisterClass *SuperRegRC : SuperRegRCs) {
    for (const auto &[SuperRegClass, SuperRegClassBV] : SuperRegClasses) {
      if (SuperRegClassBV[SuperRegRC->EnumValue]) {
        SubRegRC = SuperRegClass;
        ChosenSuperRegClass = SuperRegRC;

        // If SubRegRC is bigger than SuperRegRC then there are members of
        // SubRegRC that don't have super registers via SubIdx. Keep looking to
        // find a better fit and fall back on this one if there isn't one.
        //
        // This is intended to prevent X86 from making odd choices such as
        // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
        // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
        // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
        // mapping.
        if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
          return std::pair(ChosenSuperRegClass, SubRegRC);
      }
    }

    // If we found a fit but it wasn't quite ideal because SubRegRC had excess
    // registers, then we're done.
    if (ChosenSuperRegClass)
      return std::pair(ChosenSuperRegClass, SubRegRC);
  }

  return std::nullopt;
}

void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
                                              BitVector &Out) const {
  auto FindI = SuperRegClasses.find(SubIdx);
  if (FindI == SuperRegClasses.end())
    return;
  for (CodeGenRegisterClass *RC : FindI->second)
    Out.set(RC->EnumValue);
}

// Populate a unique sorted list of units from a register set.
void CodeGenRegisterClass::buildRegUnitSet(
    const CodeGenRegBank &RegBank, std::vector<unsigned> &RegUnits) const {
  std::vector<unsigned> TmpUnits;
  for (const CodeGenRegister *Reg : Members) {
    for (unsigned UnitI : Reg->getRegUnits()) {
      const RegUnit &RU = RegBank.getRegUnit(UnitI);
      if (!RU.Artificial)
        TmpUnits.push_back(UnitI);
    }
  }
  llvm::sort(TmpUnits);
  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
                   std::back_inserter(RegUnits));
}

// Combine our super classes of the given sub-register index with all of their
// super classes in turn.
void CodeGenRegisterClass::extendSuperRegClasses(CodeGenSubRegIndex *SubIdx) {
  auto It = SuperRegClasses.find(SubIdx);
  if (It == SuperRegClasses.end())
    return;

  SmallVector<CodeGenRegisterClass *> MidRCs;
  llvm::append_range(MidRCs, It->second);

  for (CodeGenRegisterClass *MidRC : MidRCs) {
    for (auto &Pair : MidRC->SuperRegClasses) {
      CodeGenSubRegIndex *ComposedSubIdx = Pair.first->compose(SubIdx);
      if (!ComposedSubIdx)
        continue;

      for (CodeGenRegisterClass *SuperRC : Pair.second)
        addSuperRegClass(ComposedSubIdx, SuperRC);
    }
  }
}

//===----------------------------------------------------------------------===//
//                           CodeGenRegisterCategory
//===----------------------------------------------------------------------===//

CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank,
                                                 const Record *R)
    : TheDef(R), Name(R->getName().str()) {
  for (const Record *RegClass : R->getValueAsListOfDefs("Classes"))
    Classes.push_back(RegBank.getRegClass(RegClass));
}

//===----------------------------------------------------------------------===//
//                               CodeGenRegBank
//===----------------------------------------------------------------------===//

CodeGenRegBank::CodeGenRegBank(const RecordKeeper &Records,
                               const CodeGenHwModes &Modes)
    : CGH(Modes) {
  // Configure register Sets to understand register classes and tuples.
  Sets.addFieldExpander("RegisterClass", "MemberList");
  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
  Sets.addExpander("RegisterTuples",
                   std::make_unique<TupleExpander>(SynthDefs));

  // Read in the user-defined (named) sub-register indices.
  // More indices will be synthesized later.
  for (const Record *SRI : Records.getAllDerivedDefinitions("SubRegIndex"))
    getSubRegIdx(SRI);
  // Build composite maps from ComposedOf fields.
  for (auto &Idx : SubRegIndices)
    Idx.updateComponents(*this);

  // Read in the register and register tuple definitions.
  const RecordKeeper &RC = Records;
  std::vector<const Record *> Regs = RC.getAllDerivedDefinitions("Register");
  if (!Regs.empty() && Regs[0]->isSubClassOf("X86Reg")) {
    // For X86, we need to sort Registers and RegisterTuples together to list
    // new registers and register tuples at a later position. So that we can
    // reduce unnecessary iterations on unsupported registers in LiveVariables.
    // TODO: Remove this logic when migrate from LiveVariables to LiveIntervals
    // completely.
    for (const Record *R : Records.getAllDerivedDefinitions("RegisterTuples")) {
      // Expand tuples and merge the vectors
      std::vector<const Record *> TupRegs = *Sets.expand(R);
      llvm::append_range(Regs, TupRegs);
    }

    llvm::sort(Regs, LessRecordRegister());
    // Assign the enumeration values.
    for (const Record *Reg : Regs)
      getReg(Reg);
  } else {
    llvm::sort(Regs, LessRecordRegister());
    // Assign the enumeration values.
    for (const Record *Reg : Regs)
      getReg(Reg);

    // Expand tuples and number the new registers.
    for (const Record *R : Records.getAllDerivedDefinitions("RegisterTuples")) {
      std::vector<const Record *> TupRegs = *Sets.expand(R);
      llvm::sort(TupRegs, LessRecordRegister());
      for (const Record *RC : TupRegs)
        getReg(RC);
    }
  }

  // Now all the registers are known. Build the object graph of explicit
  // register-register references.
  for (CodeGenRegister &Reg : Registers)
    Reg.buildObjectGraph(*this);

  // Compute register name map.
  for (CodeGenRegister &Reg : Registers)
    // FIXME: This could just be RegistersByName[name] = register, except that
    // causes some failures in MIPS - perhaps they have duplicate register name
    // entries? (or maybe there's a reason for it - I don't know much about this
    // code, just drive-by refactoring)
    RegistersByName.try_emplace(Reg.TheDef->getValueAsString("AsmName"), &Reg);

  // Precompute all sub-register maps.
  // This will create Composite entries for all inferred sub-register indices.
  for (CodeGenRegister &Reg : Registers)
    Reg.computeSubRegs(*this);

  // Compute transitive closure of subregister index ConcatenationOf vectors
  // and initialize ConcatIdx map.
  for (CodeGenSubRegIndex &SRI : SubRegIndices) {
    SRI.computeConcatTransitiveClosure();
    if (!SRI.ConcatenationOf.empty())
      ConcatIdx.try_emplace(
          SmallVector<CodeGenSubRegIndex *, 8>(SRI.ConcatenationOf.begin(),
                                               SRI.ConcatenationOf.end()),
          &SRI);
  }

  // Infer even more sub-registers by combining leading super-registers.
  for (CodeGenRegister &Reg : Registers)
    if (Reg.CoveredBySubRegs)
      Reg.computeSecondarySubRegs(*this);

  // After the sub-register graph is complete, compute the topologically
  // ordered SuperRegs list.
  for (CodeGenRegister &Reg : Registers)
    Reg.computeSuperRegs(*this);

  // For each pair of Reg:SR, if both are non-artificial, mark the
  // corresponding sub-register index as non-artificial.
  for (CodeGenRegister &Reg : Registers) {
    if (Reg.Artificial)
      continue;
    for (auto [SRI, SR] : Reg.getSubRegs()) {
      if (!SR->Artificial)
        SRI->Artificial = false;
    }
  }

  computeSubRegIndicesRPOT();

  // Native register units are associated with a leaf register. They've all been
  // discovered now.
  NumNativeRegUnits = RegUnits.size();

  // Read in register class definitions.
  ArrayRef<const Record *> RCs =
      Records.getAllDerivedDefinitions("RegisterClass");
  if (RCs.empty())
    PrintFatalError("No 'RegisterClass' subclasses defined!");

  // Allocate user-defined register classes.
  for (const Record *R : RCs) {
    RegClasses.emplace_back(*this, R);
    CodeGenRegisterClass &RC = RegClasses.back();
    if (!RC.Artificial)
      addToMaps(&RC);
  }

  // Infer missing classes to create a full algebra.
  computeInferredRegisterClasses();

  // Order register classes topologically and assign enum values.
  RegClasses.sort(TopoOrderRC);
  for (auto [Idx, RC] : enumerate(RegClasses))
    RC.EnumValue = Idx;
  CodeGenRegisterClass::computeSubClasses(*this);

  // Read in the register category definitions.
  for (const Record *R : Records.getAllDerivedDefinitions("RegisterCategory"))
    RegCategories.emplace_back(*this, R);
}

// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
CodeGenSubRegIndex *CodeGenRegBank::createSubRegIndex(StringRef Name,
                                                      StringRef Namespace) {
  SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
  return &SubRegIndices.back();
}

CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(const Record *Def) {
  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
  if (Idx)
    return Idx;
  SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1, getHwModes());
  Idx = &SubRegIndices.back();
  return Idx;
}

const CodeGenSubRegIndex *
CodeGenRegBank::findSubRegIdx(const Record *Def) const {
  return Def2SubRegIdx.at(Def);
}

CodeGenRegister *CodeGenRegBank::getReg(const Record *Def) {
  CodeGenRegister *&Reg = Def2Reg[Def];
  if (Reg)
    return Reg;
  Registers.emplace_back(Def, Registers.size() + 1);
  Reg = &Registers.back();
  return Reg;
}

void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
  if (const Record *Def = RC->getDef())
    Def2RC.try_emplace(Def, RC);

  // Duplicate classes are rejected by insert().
  // That's OK, we only care about the properties handled by CGRC::Key.
  CodeGenRegisterClass::Key K(*RC);
  Key2RC.try_emplace(K, RC);
}

// Create a synthetic sub-class if it is missing.
std::pair<CodeGenRegisterClass *, bool>
CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
                                    const CodeGenRegister::Vec *Members,
                                    StringRef Name) {
  // Synthetic sub-class has the same size and alignment as RC.
  CodeGenRegisterClass::Key K(Members, RC->RSI);
  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
  if (FoundI != Key2RC.end())
    return {FoundI->second, false};

  // Sub-class doesn't exist, create a new one.
  RegClasses.emplace_back(*this, Name, K);
  addToMaps(&RegClasses.back());
  return {&RegClasses.back(), true};
}

CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
  if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
    return RC;

  PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
}

CodeGenSubRegIndex *
CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
                                        CodeGenSubRegIndex *B) {
  // Look for an existing entry.
  CodeGenSubRegIndex *Comp = A->compose(B);
  if (Comp)
    return Comp;

  // None exists, synthesize one.
  std::string Name = A->getName() + "_then_" + B->getName();
  Comp = createSubRegIndex(Name, A->getNamespace());
  A->addComposite(B, Comp, getHwModes());
  return Comp;
}

CodeGenSubRegIndex *CodeGenRegBank::getConcatSubRegIndex(
    const SmallVector<CodeGenSubRegIndex *, 8> &Parts,
    const CodeGenHwModes &CGH) {
  assert(Parts.size() > 1 && "Need two parts to concatenate");
#ifndef NDEBUG
  for (CodeGenSubRegIndex *Idx : Parts) {
    assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
  }
#endif

  // Look for an existing entry.
  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
  if (Idx)
    return Idx;

  // None exists, synthesize one.
  std::string Name = Parts.front()->getName();
  const unsigned UnknownSize = (uint16_t)-1;

  for (const CodeGenSubRegIndex *Part : ArrayRef(Parts).drop_front()) {
    Name += '_';
    Name += Part->getName();
  }

  Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
  Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());

  unsigned NumModes = CGH.getNumModeIds();
  for (unsigned M = 0; M < NumModes; ++M) {
    const CodeGenSubRegIndex *FirstPart = Parts.front();

    // Determine whether all parts are contiguous.
    bool IsContinuous = true;
    const SubRegRange &FirstPartRange = FirstPart->Range.get(M);
    unsigned Size = FirstPartRange.Size;
    unsigned LastOffset = FirstPartRange.Offset;
    unsigned LastSize = FirstPartRange.Size;

    for (const CodeGenSubRegIndex *Part : ArrayRef(Parts).drop_front()) {
      const SubRegRange &PartRange = Part->Range.get(M);
      if (Size == UnknownSize || PartRange.Size == UnknownSize)
        Size = UnknownSize;
      else
        Size += PartRange.Size;
      if (LastSize == UnknownSize ||
          PartRange.Offset != (LastOffset + LastSize))
        IsContinuous = false;
      LastOffset = PartRange.Offset;
      LastSize = PartRange.Size;
    }
    unsigned Offset = IsContinuous ? FirstPartRange.Offset : -1;
    Idx->Range.get(M) = SubRegRange(Size, Offset);
  }

  return Idx;
}

void CodeGenRegBank::computeComposites() {
  using RegMap = std::map<const CodeGenRegister *, const CodeGenRegister *>;

  // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
  // register to (sub)register associated with the action of the left-hand
  // side subregister.
  std::map<const CodeGenSubRegIndex *, RegMap> SubRegAction;
  for (const CodeGenRegister &R : Registers) {
    const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
    for (auto [SRI, SubReg] : SM)
      SubRegAction[SRI].try_emplace(&R, SubReg);
  }

  // Calculate the composition of two subregisters as compositions of their
  // associated actions.
  auto compose = [&SubRegAction](const CodeGenSubRegIndex *Sub1,
                                 const CodeGenSubRegIndex *Sub2) {
    RegMap C;
    const RegMap &Img1 = SubRegAction.at(Sub1);
    const RegMap &Img2 = SubRegAction.at(Sub2);
    for (auto [R, SubReg] : Img1) {
      auto F = Img2.find(SubReg);
      if (F != Img2.end())
        C.try_emplace(R, F->second);
    }
    return C;
  };

  // Check if the two maps agree on the intersection of their domains.
  auto agree = [](const RegMap &Map1, const RegMap &Map2) {
    // Technically speaking, an empty map agrees with any other map, but
    // this could flag false positives. We're interested in non-vacuous
    // agreements.
    if (Map1.empty() || Map2.empty())
      return false;
    for (auto [K, V] : Map1) {
      auto F = Map2.find(K);
      if (F == Map2.end() || V != F->second)
        return false;
    }
    return true;
  };

  using CompositePair =
      std::pair<const CodeGenSubRegIndex *, const CodeGenSubRegIndex *>;
  SmallSet<CompositePair, 4> UserDefined;
  for (const CodeGenSubRegIndex &Idx : SubRegIndices)
    for (auto P : Idx.getComposites())
      UserDefined.insert({&Idx, P.first});

  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
  // and many registers will share TopoSigs on regular architectures.
  BitVector TopoSigs(getNumTopoSigs());

  for (const CodeGenRegister &Reg1 : Registers) {
    // Skip identical subreg structures already processed.
    if (TopoSigs.test(Reg1.getTopoSig()))
      continue;
    TopoSigs.set(Reg1.getTopoSig());

    const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
    for (auto [Idx1, Reg2] : SRM1) {
      // Ignore identity compositions.
      if (&Reg1 == Reg2)
        continue;
      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
      // Try composing Idx1 with another SubRegIndex.
      for (auto I2 : SRM2) {
        CodeGenSubRegIndex *Idx2 = I2.first;
        CodeGenRegister *Reg3 = I2.second;
        // Ignore identity compositions.
        if (Reg2 == Reg3)
          continue;
        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
        CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
        assert(Idx3 && "Sub-register doesn't have an index");

        // Conflicting composition? Emit a warning but allow it.
        if (CodeGenSubRegIndex *Prev =
                Idx1->addComposite(Idx2, Idx3, getHwModes())) {
          // If the composition was not user-defined, always emit a warning.
          if (!UserDefined.contains({Idx1, Idx2}) ||
              agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
            PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
                         " and " + Idx2->getQualifiedName() +
                         " compose ambiguously as " + Prev->getQualifiedName() +
                         " or " + Idx3->getQualifiedName());
        }
      }
    }
  }
}

// Compute lane masks. This is similar to register units, but at the
// sub-register index level. Each bit in the lane mask is like a register unit
// class, and two lane masks will have a bit in common if two sub-register
// indices overlap in some register.
//
// Conservatively share a lane mask bit if two sub-register indices overlap in
// some registers, but not in others. That shouldn't happen a lot.
void CodeGenRegBank::computeSubRegLaneMasks() {
  // First assign individual bits to all the leaf indices.
  unsigned Bit = 0;
  // Determine mask of lanes that cover their registers.
  CoveringLanes = LaneBitmask::getAll();
  for (CodeGenSubRegIndex &Idx : SubRegIndices) {
    if (Idx.getComposites().empty()) {
      if (Bit > LaneBitmask::BitWidth) {
        PrintFatalError(
            Twine("Ran out of lanemask bits to represent subregister ") +
            Idx.getName());
      }
      Idx.LaneMask = LaneBitmask::getLane(Bit);
      ++Bit;
    } else {
      Idx.LaneMask = LaneBitmask::getNone();
    }
  }

  // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
  // here is that for each possible target subregister we look at the leafs
  // in the subregister graph that compose for this target and create
  // transformation sequences for the lanemasks. Each step in the sequence
  // consists of a bitmask and a bitrotate operation. As the rotation amounts
  // are usually the same for many subregisters we can easily combine the steps
  // by combining the masks.
  for (const CodeGenSubRegIndex &Idx : SubRegIndices) {
    const CodeGenSubRegIndex::CompMap &Composites = Idx.getComposites();
    auto &LaneTransforms = Idx.CompositionLaneMaskTransform;

    if (Composites.empty()) {
      // Moving from a class with no subregisters we just had a single lane:
      // The subregister must be a leaf subregister and only occupies 1 bit.
      // Move the bit from the class without subregisters into that position.
      unsigned DstBit = Idx.LaneMask.getHighestLane();
      assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
             "Must be a leaf subregister");
      MaskRolPair MaskRol = {LaneBitmask::getLane(0), (uint8_t)DstBit};
      LaneTransforms.push_back(MaskRol);
    } else {
      // Go through all leaf subregisters and find the ones that compose with
      // Idx. These make out all possible valid bits in the lane mask we want to
      // transform. Looking only at the leafs ensure that only a single bit in
      // the mask is set.
      unsigned NextBit = 0;
      for (CodeGenSubRegIndex &Idx2 : SubRegIndices) {
        // Skip non-leaf subregisters.
        if (!Idx2.getComposites().empty())
          continue;
        // Replicate the behaviour from the lane mask generation loop above.
        unsigned SrcBit = NextBit;
        LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
        if (NextBit < LaneBitmask::BitWidth - 1)
          ++NextBit;
        assert(Idx2.LaneMask == SrcMask);

        // Get the composed subregister if there is any.
        auto C = Composites.find(&Idx2);
        if (C == Composites.end())
          continue;
        const CodeGenSubRegIndex *Composite = C->second;
        // The Composed subreg should be a leaf subreg too
        assert(Composite->getComposites().empty());

        // Create Mask+Rotate operation and merge with existing ops if possible.
        unsigned DstBit = Composite->LaneMask.getHighestLane();
        int Shift = DstBit - SrcBit;
        uint8_t RotateLeft =
            Shift >= 0 ? (uint8_t)Shift : LaneBitmask::BitWidth + Shift;
        for (MaskRolPair &I : LaneTransforms) {
          if (I.RotateLeft == RotateLeft) {
            I.Mask |= SrcMask;
            SrcMask = LaneBitmask::getNone();
          }
        }
        if (SrcMask.any()) {
          MaskRolPair MaskRol = {SrcMask, RotateLeft};
          LaneTransforms.push_back(MaskRol);
        }
      }
    }

    // Optimize if the transformation consists of one step only: Set mask to
    // 0xffffffff (including some irrelevant invalid bits) so that it should
    // merge with more entries later while compressing the table.
    if (LaneTransforms.size() == 1)
      LaneTransforms[0].Mask = LaneBitmask::getAll();

    // Further compression optimization: For invalid compositions resulting
    // in a sequence with 0 entries we can just pick any other. Choose
    // Mask 0xffffffff with Rotation 0.
    if (LaneTransforms.size() == 0) {
      MaskRolPair P = {LaneBitmask::getAll(), 0};
      LaneTransforms.push_back(P);
    }
  }

  // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
  // by the sub-register graph? This doesn't occur in any known targets.

  // Inherit lanes from composites.
  for (const CodeGenSubRegIndex &Idx : SubRegIndices) {
    LaneBitmask Mask = Idx.computeLaneMask();
    // If some super-registers without CoveredBySubRegs use this index, we can
    // no longer assume that the lanes are covering their registers.
    if (!Idx.AllSuperRegsCovered)
      CoveringLanes &= ~Mask;
  }

  // Compute lane mask combinations for register classes.
  for (auto &RegClass : RegClasses) {
    LaneBitmask LaneMask;
    for (const CodeGenSubRegIndex &SubRegIndex : SubRegIndices) {
      if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
        continue;
      LaneMask |= SubRegIndex.LaneMask;
    }

    // For classes without any subregisters set LaneMask to 1 instead of 0.
    // This makes it easier for client code to handle classes uniformly.
    if (LaneMask.none())
      LaneMask = LaneBitmask::getLane(0);

    RegClass.LaneMask = LaneMask;
  }
}

namespace {

// A directed graph on sub-register indices with a virtual source node that
// has an arc to all other nodes, and an arc from A to B if sub-register index
// B can be obtained by composing A with some other sub-register index.
struct SubRegIndexCompositionGraph {
  std::deque<CodeGenSubRegIndex> &SubRegIndices;
  CodeGenSubRegIndex::CompMap EntryNode;

  SubRegIndexCompositionGraph(std::deque<CodeGenSubRegIndex> &SubRegIndices)
      : SubRegIndices(SubRegIndices) {
    for (CodeGenSubRegIndex &Idx : SubRegIndices) {
      EntryNode.try_emplace(&Idx, &Idx);
    }
  }
};

} // namespace

template <> struct llvm::GraphTraits<SubRegIndexCompositionGraph> {
  using NodeRef =
      PointerUnion<CodeGenSubRegIndex *, const CodeGenSubRegIndex::CompMap *>;

  // Using a reverse iterator causes sub-register indices to appear in their
  // more natural order in RPOT.
  using CompMapIt = CodeGenSubRegIndex::CompMap::const_reverse_iterator;
  struct ChildIteratorType
      : public iterator_adaptor_base<
            ChildIteratorType, CompMapIt,
            typename std::iterator_traits<CompMapIt>::iterator_category,
            NodeRef> {
    ChildIteratorType(CompMapIt I)
        : ChildIteratorType::iterator_adaptor_base(I) {}

    NodeRef operator*() const { return wrapped()->second; }
  };

  static NodeRef getEntryNode(const SubRegIndexCompositionGraph &G) {
    return &G.EntryNode;
  }

  static const CodeGenSubRegIndex::CompMap *children(NodeRef N) {
    if (auto *Idx = dyn_cast<CodeGenSubRegIndex *>(N))
      return &Idx->getComposites();
    return cast<const CodeGenSubRegIndex::CompMap *>(N);
  }

  static ChildIteratorType child_begin(NodeRef N) {
    return ChildIteratorType(children(N)->rbegin());
  }
  static ChildIteratorType child_end(NodeRef N) {
    return ChildIteratorType(children(N)->rend());
  }

  static auto nodes_begin(SubRegIndexCompositionGraph *G) {
    return G->SubRegIndices.begin();
  }
  static auto nodes_end(SubRegIndexCompositionGraph *G) {
    return G->SubRegIndices.end();
  }

  static unsigned size(SubRegIndexCompositionGraph *G) {
    return G->SubRegIndices.size();
  }
};

void CodeGenRegBank::computeSubRegIndicesRPOT() {
  SubRegIndexCompositionGraph G(SubRegIndices);
  ReversePostOrderTraversal<SubRegIndexCompositionGraph> RPOT(G);
  for (const auto N : RPOT) {
    if (auto *Idx = dyn_cast<CodeGenSubRegIndex *>(N))
      SubRegIndicesRPOT.push_back(Idx);
  }
}

namespace {

// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
// the transitive closure of the union of overlapping register
// classes. Together, the UberRegSets form a partition of the registers. If we
// consider overlapping register classes to be connected, then each UberRegSet
// is a set of connected components.
//
// An UberRegSet will likely be a horizontal slice of register names of
// the same width. Nontrivial subregisters should then be in a separate
// UberRegSet. But this property isn't required for valid computation of
// register unit weights.
//
// A Weight field caches the max per-register unit weight in each UberRegSet.
//
// A set of SingularDeterminants flags single units of some register in this set
// for which the unit weight equals the set weight. These units should not have
// their weight increased.
struct UberRegSet {
  CodeGenRegister::Vec Regs;
  unsigned Weight = 0;
  CodeGenRegister::RegUnitList SingularDeterminants;

  UberRegSet() = default;
};

} // end anonymous namespace

// Partition registers into UberRegSets, where each set is the transitive
// closure of the union of overlapping register classes.
//
// UberRegSets[0] is a special non-allocatable set.
static void computeUberSets(std::vector<UberRegSet> &UberSets,
                            std::vector<UberRegSet *> &RegSets,
                            CodeGenRegBank &RegBank) {
  const auto &Registers = RegBank.getRegisters();

  // The Register EnumValue is one greater than its index into Registers.
  assert(Registers.size() == Registers.back().EnumValue &&
         "register enum value mismatch");

  // For simplicitly make the SetID the same as EnumValue.
  IntEqClasses UberSetIDs(Registers.size() + 1);
  BitVector AllocatableRegs(Registers.size() + 1);
  for (CodeGenRegisterClass &RegClass : RegBank.getRegClasses()) {
    if (!RegClass.Allocatable)
      continue;

    const CodeGenRegister::Vec &Regs = RegClass.getMembers();
    if (Regs.empty())
      continue;

    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
    assert(USetID && "register number 0 is invalid");

    AllocatableRegs.set((*Regs.begin())->EnumValue);
    for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
      AllocatableRegs.set(CGR->EnumValue);
      UberSetIDs.join(USetID, CGR->EnumValue);
    }
  }
  // Combine non-allocatable regs.
  for (const CodeGenRegister &Reg : Registers) {
    unsigned RegNum = Reg.EnumValue;
    if (AllocatableRegs.test(RegNum))
      continue;

    UberSetIDs.join(0, RegNum);
  }
  UberSetIDs.compress();

  // Make the first UberSet a special unallocatable set.
  unsigned ZeroID = UberSetIDs[0];

  // Insert Registers into the UberSets formed by union-find.
  // Do not resize after this.
  UberSets.resize(UberSetIDs.getNumClasses());
  for (auto [Idx, Reg] : enumerate(Registers)) {
    unsigned USetID = UberSetIDs[Reg.EnumValue];
    if (!USetID)
      USetID = ZeroID;
    else if (USetID == ZeroID)
      USetID = 0;

    UberRegSet *USet = &UberSets[USetID];
    USet->Regs.push_back(&Reg);
    RegSets[Idx] = USet;
  }
}

// Recompute each UberSet weight after changing unit weights.
static void computeUberWeights(MutableArrayRef<UberRegSet> UberSets,
                               CodeGenRegBank &RegBank) {
  // Skip the first unallocatable set.
  for (UberRegSet &S : UberSets.drop_front()) {
    // Initialize all unit weights in this set, and remember the max units/reg.
    unsigned MaxWeight = 0;
    for (const CodeGenRegister *R : S.Regs) {
      unsigned Weight = 0;
      for (unsigned U : R->getRegUnits()) {
        if (!RegBank.getRegUnit(U).Artificial) {
          unsigned UWeight = RegBank.getRegUnit(U).Weight;
          if (!UWeight) {
            UWeight = 1;
            RegBank.increaseRegUnitWeight(U, UWeight);
          }
          Weight += UWeight;
        }
      }
      MaxWeight = std::max(MaxWeight, Weight);
    }
    if (S.Weight != MaxWeight) {
      LLVM_DEBUG({
        dbgs() << "UberSet " << &S - UberSets.begin() << " Weight "
               << MaxWeight;
        for (const CodeGenRegister *R : S.Regs)
          dbgs() << " " << R->getName();
        dbgs() << '\n';
      });
      // Update the set weight.
      S.Weight = MaxWeight;
    }

    // Find singular determinants.
    for (const CodeGenRegister *R : S.Regs)
      if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == S.Weight)
        S.SingularDeterminants |= R->getRegUnits();
  }
}

// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
// a register and its subregisters so that they have the same weight as their
// UberSet. Self-recursion processes the subregister tree in postorder so
// subregisters are normalized first.
//
// Side effects:
// - creates new adopted register units
// - causes superregisters to inherit adopted units
// - increases the weight of "singular" units
// - induces recomputation of UberWeights.
static bool normalizeWeight(CodeGenRegister *Reg,
                            std::vector<UberRegSet> &UberSets,
                            std::vector<UberRegSet *> &RegSets,
                            BitVector &NormalRegs,
                            CodeGenRegister::RegUnitList &NormalUnits,
                            CodeGenRegBank &RegBank) {
  NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
  if (NormalRegs.test(Reg->EnumValue))
    return false;
  NormalRegs.set(Reg->EnumValue);

  bool Changed = false;
  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
  for (auto SRI : SRM) {
    if (SRI.second == Reg)
      continue; // self-cycles happen

    Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
                               NormalUnits, RegBank);
  }
  // Postorder register normalization.

  // Inherit register units newly adopted by subregisters.
  if (Reg->inheritRegUnits(RegBank))
    computeUberWeights(UberSets, RegBank);

  // Check if this register is too skinny for its UberRegSet.
  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];

  unsigned RegWeight = Reg->getWeight(RegBank);
  if (UberSet->Weight > RegWeight) {
    // A register unit's weight can be adjusted only if it is the singular unit
    // for this register, has not been used to normalize a subregister's set,
    // and has not already been used to singularly determine this UberRegSet.
    unsigned AdjustUnit = *Reg->getRegUnits().begin();
    if (Reg->getRegUnits().count() != 1 || NormalUnits.test(AdjustUnit) ||
        UberSet->SingularDeterminants.test(AdjustUnit)) {
      // We don't have an adjustable unit, so adopt a new one.
      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
      Reg->adoptRegUnit(AdjustUnit);
      // Adopting a unit does not immediately require recomputing set weights.
    } else {
      // Adjust the existing single unit.
      if (!RegBank.getRegUnit(AdjustUnit).Artificial)
        RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
      // The unit may be shared among sets and registers within this set.
      computeUberWeights(UberSets, RegBank);
    }
    Changed = true;
  }

  // Mark these units normalized so superregisters can't change their weights.
  NormalUnits |= Reg->getRegUnits();

  return Changed;
}

// Compute a weight for each register unit created during getSubRegs.
//
// The goal is that two registers in the same class will have the same weight,
// where each register's weight is defined as sum of its units' weights.
void CodeGenRegBank::computeRegUnitWeights() {
  std::vector<UberRegSet> UberSets;
  std::vector<UberRegSet *> RegSets(Registers.size());
  computeUberSets(UberSets, RegSets, *this);
  // UberSets and RegSets are now immutable.

  computeUberWeights(UberSets, *this);

  // Iterate over each Register, normalizing the unit weights until reaching
  // a fix point.
  unsigned NumIters = 0;
  for (bool Changed = true; Changed; ++NumIters) {
    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
    (void)NumIters;
    Changed = false;
    for (CodeGenRegister &Reg : Registers) {
      CodeGenRegister::RegUnitList NormalUnits;
      BitVector NormalRegs;
      Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
                                 NormalUnits, *this);
    }
  }
}

// Find a set in UniqueSets with the same elements as Set.
// Return an iterator into UniqueSets.
static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
               const RegUnitSet &Set) {
  return llvm::find_if(
      UniqueSets, [&Set](const RegUnitSet &I) { return I.Units == Set.Units; });
}

// Return true if the RUSubSet is a subset of RUSuperSet.
static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
                            const std::vector<unsigned> &RUSuperSet) {
  return llvm::includes(RUSuperSet, RUSubSet);
}

/// Iteratively prune unit sets. Prune subsets that are close to the superset,
/// but with one or two registers removed. We occasionally have registers like
/// APSR and PC thrown in with the general registers. We also see many
/// special-purpose register subsets, such as tail-call and Thumb
/// encodings. Generating all possible overlapping sets is combinatorial and
/// overkill for modeling pressure. Ideally we could fix this statically in
/// tablegen by (1) having the target define register classes that only include
/// the allocatable registers and marking other classes as non-allocatable and
/// (2) having a way to mark special purpose classes as "don't-care" classes for
/// the purpose of pressure.  However, we make an attempt to handle targets that
/// are not nicely defined by merging nearly identical register unit sets
/// statically. This generates smaller tables. Then, dynamically, we adjust the
/// set limit by filtering the reserved registers.
///
/// Merge sets only if the units have the same weight. For example, on ARM,
/// Q-tuples with ssub index 0 include all S regs but also include D16+. We
/// should not expand the S set to include D regs.
void CodeGenRegBank::pruneUnitSets() {
  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");

  // Form an equivalence class of UnitSets with no significant difference.
  std::vector<unsigned> SuperSetIDs;
  unsigned EndIdx = RegUnitSets.size();
  for (auto [SubIdx, SubSet] : enumerate(RegUnitSets)) {
    unsigned SuperIdx = 0;
    for (; SuperIdx != EndIdx; ++SuperIdx) {
      if (SuperIdx == SubIdx)
        continue;

      unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) &&
          (SubSet.Units.size() + 3 > SuperSet.Units.size()) &&
          UnitWeight == RegUnits[SuperSet.Units[0]].Weight &&
          UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
        LLVM_DEBUG({
          dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx << '\n';
        });
        // We can pick any of the set names for the merged set. Go for the
        // shortest one to avoid picking the name of one of the classes that are
        // artificially created by tablegen. So "FPR128_lo" instead of
        // "QQQQ_with_qsub3_in_FPR128_lo".
        if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
          RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
        break;
      }
    }
    if (SuperIdx == EndIdx)
      SuperSetIDs.push_back(SubIdx);
  }
  // Populate PrunedUnitSets with each equivalence class's superset.
  std::vector<RegUnitSet> PrunedUnitSets;
  PrunedUnitSets.reserve(SuperSetIDs.size());
  for (unsigned SuperIdx : SuperSetIDs) {
    PrunedUnitSets.emplace_back(RegUnitSets[SuperIdx].Name);
    PrunedUnitSets.back().Units = std::move(RegUnitSets[SuperIdx].Units);
  }
  RegUnitSets = std::move(PrunedUnitSets);
}

// Create a RegUnitSet for each RegClass that contains all units in the class
// including adopted units that are necessary to model register pressure. Then
// iteratively compute RegUnitSets such that the union of any two overlapping
// RegUnitSets is represented.
//
// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
// RegUnitSet that is a superset of that RegUnitClass.
void CodeGenRegBank::computeRegUnitSets() {
  assert(RegUnitSets.empty() && "dirty RegUnitSets");

#ifndef NDEBUG
  // Helper to print register unit sets.
  auto PrintRegUnitSets = [this]() {
    for (auto [USIdx, US] : enumerate(RegUnitSets)) {
      dbgs() << "UnitSet " << USIdx << " " << US.Name << ":";
      printRegUnitNames(US.Units);
    }
  };
#endif // NDEBUG

  // Compute a unique RegUnitSet for each RegClass.
  auto &RegClasses = getRegClasses();
  for (CodeGenRegisterClass &RC : RegClasses) {
    if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
      continue;

    // Compute a sorted list of units in this class.
    RegUnitSet RUSet(RC.getName());
    RC.buildRegUnitSet(*this, RUSet.Units);

    // Find an existing RegUnitSet.
    if (findRegUnitSet(RegUnitSets, RUSet) == RegUnitSets.end())
      RegUnitSets.push_back(std::move(RUSet));
  }

  if (RegUnitSets.empty())
    PrintFatalError("RegUnitSets cannot be empty!");

  LLVM_DEBUG({
    dbgs() << "\nBefore pruning:\n";
    PrintRegUnitSets();
  });

  // Iteratively prune unit sets.
  pruneUnitSets();

  LLVM_DEBUG({
    dbgs() << "\nBefore union:\n";
    PrintRegUnitSets();
    dbgs() << "\nUnion sets:\n";
  });

  // Iterate over all unit sets, including new ones added by this loop.
  // FIXME: Since `EndIdx` is computed just once during loop initialization,
  // does this really iterate over new unit sets added by this loop?
  unsigned NumRegUnitSubSets = RegUnitSets.size();
  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
    // In theory, this is combinatorial. In practice, it needs to be bounded
    // by a small number of sets for regpressure to be efficient.
    // If the assert is hit, we need to implement pruning.
    assert(Idx < (2 * NumRegUnitSubSets) && "runaway unit set inference");

    // Compare new sets with all original classes.
    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx + 1;
         SearchIdx != EndIdx; ++SearchIdx) {
      std::vector<unsigned> Intersection;
      std::set_intersection(
          RegUnitSets[Idx].Units.begin(), RegUnitSets[Idx].Units.end(),
          RegUnitSets[SearchIdx].Units.begin(),
          RegUnitSets[SearchIdx].Units.end(), std::back_inserter(Intersection));
      if (Intersection.empty())
        continue;

      RegUnitSet RUSet(RegUnitSets[Idx].Name + "_with_" +
                       RegUnitSets[SearchIdx].Name);
      std::set_union(RegUnitSets[Idx].Units.begin(),
                     RegUnitSets[Idx].Units.end(),
                     RegUnitSets[SearchIdx].Units.begin(),
                     RegUnitSets[SearchIdx].Units.end(),
                     std::inserter(RUSet.Units, RUSet.Units.begin()));

      // Find an existing RegUnitSet, or add the union to the unique sets.
      if (findRegUnitSet(RegUnitSets, RUSet) == RegUnitSets.end()) {
        LLVM_DEBUG({
          dbgs() << "UnitSet " << RegUnitSets.size() << " " << RUSet.Name
                 << ":";
          printRegUnitNames(RUSet.Units);
        });
        RegUnitSets.push_back(std::move(RUSet));
      }
    }
  }

  // Iteratively prune unit sets after inferring supersets.
  pruneUnitSets();

  LLVM_DEBUG({
    dbgs() << '\n';
    PrintRegUnitSets();
  });

  // For each register class, list the UnitSets that are supersets.
  RegClassUnitSets.resize(RegClasses.size());
  for (CodeGenRegisterClass &RC : RegClasses) {
    if (!RC.Allocatable)
      continue;

    // Recompute the sorted list of units in this class.
    std::vector<unsigned> RCRegUnits;
    RC.buildRegUnitSet(*this, RCRegUnits);

    // Don't increase pressure for unallocatable regclasses.
    if (RCRegUnits.empty())
      continue;

    LLVM_DEBUG({
      dbgs() << "RC " << RC.getName() << " Units:\n";
      printRegUnitNames(RCRegUnits);
      dbgs() << "UnitSetIDs:";
    });

    // Find all supersets.
    for (const auto &[USIdx, Set] : enumerate(RegUnitSets)) {
      if (isRegUnitSubSet(RCRegUnits, Set.Units)) {
        LLVM_DEBUG(dbgs() << " " << USIdx);
        RegClassUnitSets[RC.EnumValue].push_back(USIdx);
      }
    }
    LLVM_DEBUG(dbgs() << '\n');
    assert(
        (!RegClassUnitSets[RC.EnumValue].empty() || !RC.GeneratePressureSet) &&
        "missing unit set for regclass");
  }

  // For each register unit, ensure that we have the list of UnitSets that
  // contain the unit. Normally, this matches an existing list of UnitSets for a
  // register class. If not, we create a new entry in RegClassUnitSets as a
  // "fake" register class.
  for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; UnitIdx < UnitEnd;
       ++UnitIdx) {
    std::vector<unsigned> RUSets;
    for (auto [Idx, S] : enumerate(RegUnitSets))
      if (is_contained(S.Units, UnitIdx))
        RUSets.push_back(Idx);

    unsigned RCUnitSetsIdx = 0;
    for (unsigned e = RegClassUnitSets.size(); RCUnitSetsIdx != e;
         ++RCUnitSetsIdx) {
      if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
        break;
      }
    }
    RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
    if (RCUnitSetsIdx == RegClassUnitSets.size()) {
      // Create a new list of UnitSets as a "fake" register class.
      RegClassUnitSets.push_back(std::move(RUSets));
    }
  }
}

void CodeGenRegBank::computeRegUnitLaneMasks() {
  for (CodeGenRegister &Register : Registers) {
    // Create an initial lane mask for all register units.
    const auto &RegUnits = Register.getRegUnits();
    CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(
        RegUnits.count(), LaneBitmask::getAll());
    // Iterate through SubRegisters.
    typedef CodeGenRegister::SubRegMap SubRegMap;
    const SubRegMap &SubRegs = Register.getSubRegs();
    for (auto [SubRegIndex, SubReg] : SubRegs) {
      // Ignore non-leaf subregisters, their lane masks are fully covered by
      // the leaf subregisters anyway.
      if (!SubReg->getSubRegs().empty())
        continue;
      LaneBitmask LaneMask = SubRegIndex->LaneMask;
      // Distribute LaneMask to Register Units touched.
      for (unsigned SUI : SubReg->getRegUnits()) {
        bool Found = false;
        unsigned u = 0;
        for (unsigned RU : RegUnits) {
          if (SUI == RU) {
            RegUnitLaneMasks[u] &= LaneMask;
            assert(!Found);
            Found = true;
          }
          ++u;
        }
        (void)Found;
        assert(Found);
      }
    }
    Register.setRegUnitLaneMasks(RegUnitLaneMasks);
  }
}

void CodeGenRegBank::computeDerivedInfo() {
  computeComposites();
  computeSubRegLaneMasks();

  // Compute a weight for each register unit created during getSubRegs.
  // This may create adopted register units (with unit # >= NumNativeRegUnits).
  computeRegUnitWeights();

  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
  // supersets for the union of overlapping sets.
  computeRegUnitSets();

  computeRegUnitLaneMasks();

  // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
  for (CodeGenRegisterClass &RC : RegClasses) {
    RC.HasDisjunctSubRegs = false;
    RC.CoveredBySubRegs = true;
    for (const CodeGenRegister *Reg : RC.getMembers()) {
      RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
      RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
    }
  }

  // Get the weight of each set.
  for (auto [Idx, US] : enumerate(RegUnitSets))
    RegUnitSets[Idx].Weight = getRegUnitSetWeight(US.Units);

  // Find the order of each set.
  RegUnitSetOrder.reserve(RegUnitSets.size());
  for (unsigned Idx : seq<unsigned>(RegUnitSets.size()))
    RegUnitSetOrder.push_back(Idx);

  llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
    return getRegPressureSet(ID1).Units.size() <
           getRegPressureSet(ID2).Units.size();
  });
  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
    RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
}

//
// Synthesize missing register class intersections.
//
// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
// returns a maximal register class for all X.
//
void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
  assert(!RegClasses.empty());
  // Stash the iterator to the last element so that this loop doesn't visit
  // elements added by the getOrCreateSubClass call within it.
  for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
       I != std::next(E); ++I) {
    CodeGenRegisterClass *RC1 = RC;
    CodeGenRegisterClass *RC2 = &*I;
    if (RC1 == RC2)
      continue;

    // Compute the set intersection of RC1 and RC2.
    const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
    const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
    CodeGenRegister::Vec Intersection;
    std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
                          Memb2.end(),
                          std::inserter(Intersection, Intersection.begin()),
                          deref<std::less<>>());

    // Skip disjoint class pairs.
    if (Intersection.empty())
      continue;

    // If RC1 and RC2 have different spill sizes or alignments, use the
    // stricter one for sub-classing.  If they are equal, prefer RC1.
    if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
      std::swap(RC1, RC2);

    getOrCreateSubClass(RC1, &Intersection,
                        RC1->getName() + "_and_" + RC2->getName());
  }
}

//
// Synthesize missing sub-classes for getSubClassWithSubReg().
//
// Make sure that the set of registers in RC with a given SubIdx sub-register
// form a register class.  Update RC->SubClassWithSubReg.
//
void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
  typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
                   deref<std::less<>>>
      SubReg2SetMap;

  // Compute the set of registers supporting each SubRegIndex.
  SubReg2SetMap SRSets;
  for (const CodeGenRegister *R : RC->getMembers()) {
    if (R->Artificial)
      continue;
    const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
    for (auto [I, _] : SRM)
      SRSets[I].push_back(R);
  }

  for (auto I : SRSets)
    sortAndUniqueRegisters(I.second);

  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
  // numerical order to visit synthetic indices last.
  for (const CodeGenSubRegIndex &SubIdx : SubRegIndices) {
    SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
    // Unsupported SubRegIndex. Skip it.
    if (I == SRSets.end())
      continue;
    // In most cases, all RC registers support the SubRegIndex.
    if (I->second.size() == RC->getMembers().size()) {
      RC->setSubClassWithSubReg(&SubIdx, RC);
      continue;
    }
    if (SubIdx.Artificial)
      continue;
    // This is a real subset.  See if we have a matching class.
    CodeGenRegisterClass *SubRC =
        getOrCreateSubClass(RC, &I->second,
                            RC->getName() + "_with_" + I->first->getName())
            .first;
    RC->setSubClassWithSubReg(&SubIdx, SubRC);
  }
}

//
// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
//
// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
//

void CodeGenRegBank::inferMatchingSuperRegClass(
    CodeGenRegisterClass *RC,
    std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
  DenseSet<const CodeGenSubRegIndex *> ImpliedSubRegIndices;
  std::vector<std::pair<const CodeGenRegister *, const CodeGenRegister *>>
      SubToSuperRegs;
  BitVector TopoSigs(getNumTopoSigs());

  // Iterate subregister indices in topological order to visit larger indices
  // first. This allows us to skip the smaller indices in many cases because
  // their inferred super-register classes are implied.
  for (CodeGenSubRegIndex *SubIdx : SubRegIndicesRPOT) {
    // Skip indexes that aren't fully supported by RC's registers. This was
    // computed by inferSubClassWithSubReg() above which should have been
    // called first.
    if (RC->getSubClassWithSubReg(SubIdx) != RC)
      continue;

    if (ImpliedSubRegIndices.contains(SubIdx))
      continue;

    // Build list of (Sub, Super) pairs for this SubIdx, sorted by Sub. Note
    // that the list may contain entries with the same Sub but different Supers.
    SubToSuperRegs.clear();
    TopoSigs.reset();
    for (const CodeGenRegister *Super : RC->getMembers()) {
      const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
      assert(Sub && "Missing sub-register");
      SubToSuperRegs.emplace_back(Sub, Super);
      TopoSigs.set(Sub->getTopoSig());
    }
    sort(SubToSuperRegs, on_first<deref<std::less<>>>());

    // Iterate over sub-register class candidates.  Ignore classes created by
    // this loop. They will never be useful.
    // Store an iterator to the last element (not end) so that this loop doesn't
    // visit newly inserted elements.
    assert(!RegClasses.empty());
    for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
         I != std::next(E); ++I) {
      CodeGenRegisterClass &SubRC = *I;
      if (SubRC.Artificial)
        continue;
      // Topological shortcut: SubRC members have the wrong shape.
      if (!TopoSigs.anyCommon(SubRC.getRegsWithSuperRegsTopoSigs()))
        continue;
      // Compute the subset of RC that maps into SubRC with a single linear scan
      // through SubToSuperRegs and the members of SubRC.
      CodeGenRegister::Vec SubSetVec;
      auto SubI = SubRC.getMembers().begin(), SubE = SubRC.getMembers().end();
      for (auto &[Sub, Super] : SubToSuperRegs) {
        while (SubI != SubE && **SubI < *Sub)
          ++SubI;
        if (SubI == SubE)
          break;
        if (**SubI == *Sub)
          SubSetVec.push_back(Super);
      }

      if (SubSetVec.empty())
        continue;

      // RC injects completely into SubRC.
      sortAndUniqueRegisters(SubSetVec);
      if (SubSetVec.size() == RC->getMembers().size()) {
        SubRC.addSuperRegClass(SubIdx, RC);

        // We can skip checking subregister indices that can be composed from
        // the current SubIdx.
        //
        // Proof sketch: Let SubRC' be another register class and SubSubIdx
        // a subregister index that can be composed from SubIdx.
        //
        // Calling this function with SubRC in place of RC ensures the existence
        // of a subclass X of SubRC with the registers that have subregisters in
        // SubRC'.
        //
        // The set of registers in RC with SubSubIdx in SubRC' is equal to the
        // set of registers in RC with SubIdx in X (because every register in
        // RC has a corresponding subregister in SubRC), and so checking the
        // pair (SubSubIdx, SubRC') is redundant with checking (SubIdx, X).
        for (const auto &SubSubIdx : SubIdx->getComposites())
          ImpliedSubRegIndices.insert(SubSubIdx.second);

        continue;
      }

      // Only a subset of RC maps into SubRC. Make sure it is represented by a
      // class.
      //
      // The name of the inferred register class follows the template
      // "<RC>_with_<SubIdx>_in_<SubRC>".
      //
      // When SubRC is already an inferred class, prefer a name of the form
      // "<RC>_with_<CompositeSubIdx>_in_<SubSubRC>" over a chain of the form
      // "<RC>_with_<SubIdx>_in_<OtherRc>_with_<SubSubIdx>_in_<SubSubRC>".
      CodeGenSubRegIndex *CompositeSubIdx = SubIdx;
      CodeGenRegisterClass *CompositeSubRC = &SubRC;
      if (CodeGenSubRegIndex *SubSubIdx = SubRC.getInferredFromSubRegIdx()) {
        auto It = SubIdx->getComposites().find(SubSubIdx);
        if (It != SubIdx->getComposites().end()) {
          CompositeSubIdx = It->second;
          CompositeSubRC = SubRC.getInferredFromRC();
        }
      }

      auto [SubSetRC, Inserted] = getOrCreateSubClass(
          RC, &SubSetVec,
          RC->getName() + "_with_" + CompositeSubIdx->getName() + "_in_" +
              CompositeSubRC->getName());

      if (Inserted)
        SubSetRC->setInferredFrom(CompositeSubIdx, CompositeSubRC);
    }
  }
}

//
// Infer missing register classes.
//
void CodeGenRegBank::computeInferredRegisterClasses() {
  assert(!RegClasses.empty());
  // When this function is called, the register classes have not been sorted
  // and assigned EnumValues yet.  That means getSubClasses(),
  // getSuperClasses(), and hasSubClass() functions are defunct.

  // Use one-before-the-end so it doesn't move forward when new elements are
  // added.
  auto FirstNewRC = std::prev(RegClasses.end());

  // Visit all register classes, including the ones being added by the loop.
  // Watch out for iterator invalidation here.
  for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
    CodeGenRegisterClass *RC = &*I;
    if (RC->Artificial)
      continue;

    // Synthesize answers for getSubClassWithSubReg().
    inferSubClassWithSubReg(RC);

    // Synthesize answers for getCommonSubClass().
    inferCommonSubClass(RC);

    // Synthesize answers for getMatchingSuperRegClass().
    inferMatchingSuperRegClass(RC);

    // New register classes are created while this loop is running, and we need
    // to visit all of them.  In particular, inferMatchingSuperRegClass needs
    // to match old super-register classes with sub-register classes created
    // after inferMatchingSuperRegClass was called.  At this point,
    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
    if (I == FirstNewRC) {
      auto NextNewRC = std::prev(RegClasses.end());
      for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
           ++I2)
        inferMatchingSuperRegClass(&*I2, E2);
      FirstNewRC = NextNewRC;
    }
  }

  // Compute the transitive closure for super-register classes.
  //
  // By iterating over sub-register indices in topological order, we only ever
  // add super-register classes for sub-register indices that have not already
  // been visited. That allows computing the transitive closure in a single
  // pass.
  for (CodeGenSubRegIndex *SubIdx : SubRegIndicesRPOT) {
    for (CodeGenRegisterClass &SubRC : RegClasses)
      SubRC.extendSuperRegClasses(SubIdx);
  }
}

/// getRegisterClassForRegister - Find the register class that contains the
/// specified physical register.  If the register is not in a register class,
/// return null. If the register is in multiple classes, and the classes have a
/// superset-subset relationship and the same set of types, return the
/// superclass.  Otherwise return null.
const CodeGenRegisterClass *
CodeGenRegBank::getRegClassForRegister(const Record *R) {
  const CodeGenRegister *Reg = getReg(R);
  const CodeGenRegisterClass *FoundRC = nullptr;
  for (const CodeGenRegisterClass &RC : getRegClasses()) {
    if (!RC.contains(Reg))
      continue;

    // If this is the first class that contains the register,
    // make a note of it and go on to the next class.
    if (!FoundRC) {
      FoundRC = &RC;
      continue;
    }

    // If a register's classes have different types, return null.
    if (RC.getValueTypes() != FoundRC->getValueTypes())
      return nullptr;

    // Check to see if the previously found class that contains
    // the register is a subclass of the current class. If so,
    // prefer the superclass.
    if (RC.hasSubClass(FoundRC)) {
      FoundRC = &RC;
      continue;
    }

    // Check to see if the previously found class that contains
    // the register is a superclass of the current class. If so,
    // prefer the superclass.
    if (FoundRC->hasSubClass(&RC))
      continue;

    // Multiple classes, and neither is a superclass of the other.
    // Return null.
    return nullptr;
  }
  return FoundRC;
}

const CodeGenRegisterClass *
CodeGenRegBank::getMinimalPhysRegClass(const Record *RegRecord,
                                       ValueTypeByHwMode *VT) {
  const CodeGenRegister *Reg = getReg(RegRecord);
  const CodeGenRegisterClass *BestRC = nullptr;
  for (const CodeGenRegisterClass &RC : getRegClasses()) {
    if ((!VT || RC.hasType(*VT)) && RC.contains(Reg) &&
        (!BestRC || BestRC->hasSubClass(&RC)))
      BestRC = &RC;
  }

  assert(BestRC && "Couldn't find the register class");
  return BestRC;
}

const CodeGenRegisterClass *
CodeGenRegBank::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
                                     const CodeGenSubRegIndex *SubIdx,
                                     bool MustBeAllocatable) const {
  std::vector<const CodeGenRegisterClass *> Candidates;
  auto &RegClasses = getRegClasses();

  // Try to find a register class which supports ValueTy, and also contains
  // SubIdx.
  for (const CodeGenRegisterClass &RC : RegClasses) {
    // Is there a subclass of this class which contains this subregister index?
    const CodeGenRegisterClass *SubClassWithSubReg =
        RC.getSubClassWithSubReg(SubIdx);
    if (!SubClassWithSubReg)
      continue;

    // We have a class. Check if it supports this value type.
    if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy))
      continue;

    // If necessary, check that it is allocatable.
    if (MustBeAllocatable && !SubClassWithSubReg->Allocatable)
      continue;

    // We have a register class which supports both the value type and
    // subregister index. Remember it.
    Candidates.push_back(SubClassWithSubReg);
  }

  // If we didn't find anything, we're done.
  if (Candidates.empty())
    return nullptr;

  // Find and return the largest of our candidate classes.
  llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
                                    const CodeGenRegisterClass *B) {
    if (A->getMembers().size() > B->getMembers().size())
      return true;

    if (A->getMembers().size() < B->getMembers().size())
      return false;

    // Order by name as a tie-breaker.
    return StringRef(A->getName()) < B->getName();
  });

  return Candidates[0];
}

BitVector
CodeGenRegBank::computeCoveredRegisters(ArrayRef<const Record *> Regs) {
  SetVector<const CodeGenRegister *> Set;

  // First add Regs with all sub-registers.
  for (const Record *RegDef : Regs) {
    CodeGenRegister *Reg = getReg(RegDef);
    if (Set.insert(Reg))
      // Reg is new, add all sub-registers.
      // The pre-ordering is not important here.
      Reg->addSubRegsPreOrder(Set, *this);
  }

  // Second, find all super-registers that are completely covered by the set.
  for (unsigned i = 0; i != Set.size(); ++i) {
    for (const CodeGenRegister *Super : Set[i]->getSuperRegs()) {
      if (!Super->CoveredBySubRegs || Set.contains(Super))
        continue;
      // This new super-register is covered by its sub-registers.
      bool AllSubsInSet = true;
      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
      for (auto [_, SR] : SRM)
        if (!Set.contains(SR)) {
          AllSubsInSet = false;
          break;
        }
      // All sub-registers in Set, add Super as well.
      // We will visit Super later to recheck its super-registers.
      if (AllSubsInSet)
        Set.insert(Super);
    }
  }

  // Convert to BitVector.
  BitVector BV(Registers.size() + 1);
  for (const CodeGenRegister *Reg : Set)
    BV.set(Reg->EnumValue);
  return BV;
}

void CodeGenRegBank::printRegUnitNames(ArrayRef<unsigned> Units) const {
  for (unsigned Unit : Units) {
    if (Unit < NumNativeRegUnits)
      dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
    else
      dbgs() << " #" << Unit;
  }
  dbgs() << '\n';
}