1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
|
//===------ omptarget.cpp - Target independent OpenMP target RTL -- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the interface to be used by Clang during the codegen of a
// target region.
//
//===----------------------------------------------------------------------===//
#include "omptarget.h"
#include "OffloadPolicy.h"
#include "OpenMP/OMPT/Callback.h"
#include "OpenMP/OMPT/Interface.h"
#include "PluginManager.h"
#include "Shared/Debug.h"
#include "Shared/EnvironmentVar.h"
#include "Shared/Utils.h"
#include "device.h"
#include "private.h"
#include "rtl.h"
#include "Shared/Profile.h"
#include "OpenMP/Mapping.h"
#include "OpenMP/omp.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/bit.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Object/ObjectFile.h"
#include <cassert>
#include <cstdint>
#include <vector>
using llvm::SmallVector;
#ifdef OMPT_SUPPORT
using namespace llvm::omp::target::ompt;
#endif
int AsyncInfoTy::synchronize() {
int Result = OFFLOAD_SUCCESS;
if (!isQueueEmpty()) {
switch (SyncType) {
case SyncTy::BLOCKING:
// If we have a queue we need to synchronize it now.
Result = Device.synchronize(*this);
assert(AsyncInfo.Queue == nullptr &&
"The device plugin should have nulled the queue to indicate there "
"are no outstanding actions!");
break;
case SyncTy::NON_BLOCKING:
Result = Device.queryAsync(*this);
break;
}
}
// Run any pending post-processing function registered on this async object.
if (Result == OFFLOAD_SUCCESS && isQueueEmpty())
Result = runPostProcessing();
return Result;
}
void *&AsyncInfoTy::getVoidPtrLocation() {
BufferLocations.push_back(nullptr);
return BufferLocations.back();
}
bool AsyncInfoTy::isDone() const { return isQueueEmpty(); }
int32_t AsyncInfoTy::runPostProcessing() {
size_t Size = PostProcessingFunctions.size();
for (size_t I = 0; I < Size; ++I) {
const int Result = PostProcessingFunctions[I]();
if (Result != OFFLOAD_SUCCESS)
return Result;
}
// Clear the vector up until the last known function, since post-processing
// procedures might add new procedures themselves.
const auto *PrevBegin = PostProcessingFunctions.begin();
PostProcessingFunctions.erase(PrevBegin, PrevBegin + Size);
return OFFLOAD_SUCCESS;
}
bool AsyncInfoTy::isQueueEmpty() const { return AsyncInfo.Queue == nullptr; }
/* All begin addresses for partially mapped structs must be aligned, up to 16,
* in order to ensure proper alignment of members. E.g.
*
* struct S {
* int a; // 4-aligned
* int b; // 4-aligned
* int *p; // 8-aligned
* } s1;
* ...
* #pragma omp target map(tofrom: s1.b, s1.p[0:N])
* {
* s1.b = 5;
* for (int i...) s1.p[i] = ...;
* }
*
* Here we are mapping s1 starting from member b, so BaseAddress=&s1=&s1.a and
* BeginAddress=&s1.b. Let's assume that the struct begins at address 0x100,
* then &s1.a=0x100, &s1.b=0x104, &s1.p=0x108. Each member obeys the alignment
* requirements for its type. Now, when we allocate memory on the device, in
* CUDA's case cuMemAlloc() returns an address which is at least 256-aligned.
* This means that the chunk of the struct on the device will start at a
* 256-aligned address, let's say 0x200. Then the address of b will be 0x200 and
* address of p will be a misaligned 0x204 (on the host there was no need to add
* padding between b and p, so p comes exactly 4 bytes after b). If the device
* kernel tries to access s1.p, a misaligned address error occurs (as reported
* by the CUDA plugin). By padding the begin address down to a multiple of 8 and
* extending the size of the allocated chuck accordingly, the chuck on the
* device will start at 0x200 with the padding (4 bytes), then &s1.b=0x204 and
* &s1.p=0x208, as they should be to satisfy the alignment requirements.
*/
static const int64_t MaxAlignment = 16;
/// Return the alignment requirement of partially mapped structs, see
/// MaxAlignment above.
static uint64_t getPartialStructRequiredAlignment(void *HstPtrBase) {
int LowestOneBit = __builtin_ffsl(reinterpret_cast<uintptr_t>(HstPtrBase));
uint64_t BaseAlignment = 1 << (LowestOneBit - 1);
return MaxAlignment < BaseAlignment ? MaxAlignment : BaseAlignment;
}
void handleTargetOutcome(bool Success, ident_t *Loc) {
switch (OffloadPolicy::get(*PM).Kind) {
case OffloadPolicy::DISABLED:
if (Success) {
FATAL_MESSAGE0(1, "expected no offloading while offloading is disabled");
}
break;
case OffloadPolicy::MANDATORY:
if (!Success) {
if (getInfoLevel() & OMP_INFOTYPE_DUMP_TABLE) {
auto ExclusiveDevicesAccessor = PM->getExclusiveDevicesAccessor();
for (auto &Device : PM->devices(ExclusiveDevicesAccessor))
dumpTargetPointerMappings(Loc, Device);
} else
FAILURE_MESSAGE("Consult https://openmp.llvm.org/design/Runtimes.html "
"for debugging options.\n");
if (!PM->getNumActivePlugins()) {
FAILURE_MESSAGE(
"No images found compatible with the installed hardware. ");
llvm::SmallVector<llvm::StringRef> Archs;
for (auto &Image : PM->deviceImages()) {
const char *Start = reinterpret_cast<const char *>(
Image.getExecutableImage().ImageStart);
uint64_t Length =
utils::getPtrDiff(Start, Image.getExecutableImage().ImageEnd);
llvm::MemoryBufferRef Buffer(llvm::StringRef(Start, Length),
/*Identifier=*/"");
auto ObjectOrErr = llvm::object::ObjectFile::createObjectFile(Buffer);
if (auto Err = ObjectOrErr.takeError()) {
llvm::consumeError(std::move(Err));
continue;
}
if (auto CPU = (*ObjectOrErr)->tryGetCPUName())
Archs.push_back(*CPU);
}
fprintf(stderr, "Found %zu image(s): (%s)\n", Archs.size(),
llvm::join(Archs, ",").c_str());
}
SourceInfo Info(Loc);
if (Info.isAvailible())
fprintf(stderr, "%s:%d:%d: ", Info.getFilename(), Info.getLine(),
Info.getColumn());
else
FAILURE_MESSAGE("Source location information not present. Compile with "
"-g or -gline-tables-only.\n");
FATAL_MESSAGE0(
1, "failure of target construct while offloading is mandatory");
} else {
if (getInfoLevel() & OMP_INFOTYPE_DUMP_TABLE) {
auto ExclusiveDevicesAccessor = PM->getExclusiveDevicesAccessor();
for (auto &Device : PM->devices(ExclusiveDevicesAccessor))
dumpTargetPointerMappings(Loc, Device);
}
}
break;
}
}
static int32_t getParentIndex(int64_t Type) {
return ((Type & OMP_TGT_MAPTYPE_MEMBER_OF) >> 48) - 1;
}
void *targetAllocExplicit(size_t Size, int DeviceNum, int Kind,
const char *Name) {
DP("Call to %s for device %d requesting %zu bytes\n", Name, DeviceNum, Size);
if (Size <= 0) {
DP("Call to %s with non-positive length\n", Name);
return NULL;
}
void *Rc = NULL;
if (DeviceNum == omp_get_initial_device()) {
Rc = malloc(Size);
DP("%s returns host ptr " DPxMOD "\n", Name, DPxPTR(Rc));
return Rc;
}
auto DeviceOrErr = PM->getDevice(DeviceNum);
if (!DeviceOrErr)
FATAL_MESSAGE(DeviceNum, "%s", toString(DeviceOrErr.takeError()).c_str());
Rc = DeviceOrErr->allocData(Size, nullptr, Kind);
DP("%s returns device ptr " DPxMOD "\n", Name, DPxPTR(Rc));
return Rc;
}
void targetFreeExplicit(void *DevicePtr, int DeviceNum, int Kind,
const char *Name) {
DP("Call to %s for device %d and address " DPxMOD "\n", Name, DeviceNum,
DPxPTR(DevicePtr));
if (!DevicePtr) {
DP("Call to %s with NULL ptr\n", Name);
return;
}
if (DeviceNum == omp_get_initial_device()) {
free(DevicePtr);
DP("%s deallocated host ptr\n", Name);
return;
}
auto DeviceOrErr = PM->getDevice(DeviceNum);
if (!DeviceOrErr)
FATAL_MESSAGE(DeviceNum, "%s", toString(DeviceOrErr.takeError()).c_str());
if (DeviceOrErr->deleteData(DevicePtr, Kind) == OFFLOAD_FAIL)
FATAL_MESSAGE(DeviceNum, "%s",
"Failed to deallocate device ptr. Set "
"OFFLOAD_TRACK_ALLOCATION_TRACES=1 to track allocations.");
DP("omp_target_free deallocated device ptr\n");
}
void *targetLockExplicit(void *HostPtr, size_t Size, int DeviceNum,
const char *Name) {
DP("Call to %s for device %d locking %zu bytes\n", Name, DeviceNum, Size);
if (Size <= 0) {
DP("Call to %s with non-positive length\n", Name);
return NULL;
}
void *RC = NULL;
auto DeviceOrErr = PM->getDevice(DeviceNum);
if (!DeviceOrErr)
FATAL_MESSAGE(DeviceNum, "%s", toString(DeviceOrErr.takeError()).c_str());
int32_t Err = 0;
Err = DeviceOrErr->RTL->data_lock(DeviceNum, HostPtr, Size, &RC);
if (Err) {
DP("Could not lock ptr %p\n", HostPtr);
return nullptr;
}
DP("%s returns device ptr " DPxMOD "\n", Name, DPxPTR(RC));
return RC;
}
void targetUnlockExplicit(void *HostPtr, int DeviceNum, const char *Name) {
DP("Call to %s for device %d unlocking\n", Name, DeviceNum);
auto DeviceOrErr = PM->getDevice(DeviceNum);
if (!DeviceOrErr)
FATAL_MESSAGE(DeviceNum, "%s", toString(DeviceOrErr.takeError()).c_str());
DeviceOrErr->RTL->data_unlock(DeviceNum, HostPtr);
DP("%s returns\n", Name);
}
/// Call the user-defined mapper function followed by the appropriate
// targetData* function (targetData{Begin,End,Update}).
int targetDataMapper(ident_t *Loc, DeviceTy &Device, void *ArgBase, void *Arg,
int64_t ArgSize, int64_t ArgType, map_var_info_t ArgNames,
void *ArgMapper, AsyncInfoTy &AsyncInfo,
TargetDataFuncPtrTy TargetDataFunction) {
DP("Calling the mapper function " DPxMOD "\n", DPxPTR(ArgMapper));
// The mapper function fills up Components.
MapperComponentsTy MapperComponents;
MapperFuncPtrTy MapperFuncPtr = (MapperFuncPtrTy)(ArgMapper);
(*MapperFuncPtr)((void *)&MapperComponents, ArgBase, Arg, ArgSize, ArgType,
ArgNames);
// Construct new arrays for args_base, args, arg_sizes and arg_types
// using the information in MapperComponents and call the corresponding
// targetData* function using these new arrays.
SmallVector<void *> MapperArgsBase(MapperComponents.Components.size());
SmallVector<void *> MapperArgs(MapperComponents.Components.size());
SmallVector<int64_t> MapperArgSizes(MapperComponents.Components.size());
SmallVector<int64_t> MapperArgTypes(MapperComponents.Components.size());
SmallVector<void *> MapperArgNames(MapperComponents.Components.size());
for (unsigned I = 0, E = MapperComponents.Components.size(); I < E; ++I) {
auto &C = MapperComponents.Components[I];
MapperArgsBase[I] = C.Base;
MapperArgs[I] = C.Begin;
MapperArgSizes[I] = C.Size;
MapperArgTypes[I] = C.Type;
MapperArgNames[I] = C.Name;
}
int Rc = TargetDataFunction(Loc, Device, MapperComponents.Components.size(),
MapperArgsBase.data(), MapperArgs.data(),
MapperArgSizes.data(), MapperArgTypes.data(),
MapperArgNames.data(), /*arg_mappers*/ nullptr,
AsyncInfo, /*FromMapper=*/true);
return Rc;
}
/// Internal function to do the mapping and transfer the data to the device
int targetDataBegin(ident_t *Loc, DeviceTy &Device, int32_t ArgNum,
void **ArgsBase, void **Args, int64_t *ArgSizes,
int64_t *ArgTypes, map_var_info_t *ArgNames,
void **ArgMappers, AsyncInfoTy &AsyncInfo,
bool FromMapper) {
// process each input.
for (int32_t I = 0; I < ArgNum; ++I) {
// Ignore private variables and arrays - there is no mapping for them.
if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) ||
(ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE))
continue;
TIMESCOPE_WITH_DETAILS_AND_IDENT(
"HostToDev", "Size=" + std::to_string(ArgSizes[I]) + "B", Loc);
if (ArgMappers && ArgMappers[I]) {
// Instead of executing the regular path of targetDataBegin, call the
// targetDataMapper variant which will call targetDataBegin again
// with new arguments.
DP("Calling targetDataMapper for the %dth argument\n", I);
map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I];
int Rc = targetDataMapper(Loc, Device, ArgsBase[I], Args[I], ArgSizes[I],
ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo,
targetDataBegin);
if (Rc != OFFLOAD_SUCCESS) {
REPORT("Call to targetDataBegin via targetDataMapper for custom mapper"
" failed.\n");
return OFFLOAD_FAIL;
}
// Skip the rest of this function, continue to the next argument.
continue;
}
void *HstPtrBegin = Args[I];
void *HstPtrBase = ArgsBase[I];
int64_t DataSize = ArgSizes[I];
map_var_info_t HstPtrName = (!ArgNames) ? nullptr : ArgNames[I];
// Adjust for proper alignment if this is a combined entry (for structs).
// Look at the next argument - if that is MEMBER_OF this one, then this one
// is a combined entry.
int64_t TgtPadding = 0;
const int NextI = I + 1;
if (getParentIndex(ArgTypes[I]) < 0 && NextI < ArgNum &&
getParentIndex(ArgTypes[NextI]) == I) {
int64_t Alignment = getPartialStructRequiredAlignment(HstPtrBase);
TgtPadding = (int64_t)HstPtrBegin % Alignment;
if (TgtPadding) {
DP("Using a padding of %" PRId64 " bytes for begin address " DPxMOD
"\n",
TgtPadding, DPxPTR(HstPtrBegin));
}
}
// Address of pointer on the host and device, respectively.
void *PointerHstPtrBegin, *PointerTgtPtrBegin;
TargetPointerResultTy PointerTpr;
bool IsHostPtr = false;
bool IsImplicit = ArgTypes[I] & OMP_TGT_MAPTYPE_IMPLICIT;
// Force the creation of a device side copy of the data when:
// a close map modifier was associated with a map that contained a to.
bool HasCloseModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_CLOSE;
bool HasPresentModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_PRESENT;
bool HasHoldModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_OMPX_HOLD;
// UpdateRef is based on MEMBER_OF instead of TARGET_PARAM because if we
// have reached this point via __tgt_target_data_begin and not __tgt_target
// then no argument is marked as TARGET_PARAM ("omp target data map" is not
// associated with a target region, so there are no target parameters). This
// may be considered a hack, we could revise the scheme in the future.
bool UpdateRef =
!(ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) && !(FromMapper && I == 0);
MappingInfoTy::HDTTMapAccessorTy HDTTMap =
Device.getMappingInfo().HostDataToTargetMap.getExclusiveAccessor();
if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) {
DP("Has a pointer entry: \n");
// Base is address of pointer.
//
// Usually, the pointer is already allocated by this time. For example:
//
// #pragma omp target map(s.p[0:N])
//
// The map entry for s comes first, and the PTR_AND_OBJ entry comes
// afterward, so the pointer is already allocated by the time the
// PTR_AND_OBJ entry is handled below, and PointerTgtPtrBegin is thus
// non-null. However, "declare target link" can produce a PTR_AND_OBJ
// entry for a global that might not already be allocated by the time the
// PTR_AND_OBJ entry is handled below, and so the allocation might fail
// when HasPresentModifier.
PointerTpr = Device.getMappingInfo().getTargetPointer(
HDTTMap, HstPtrBase, HstPtrBase, /*TgtPadding=*/0, sizeof(void *),
/*HstPtrName=*/nullptr,
/*HasFlagTo=*/false, /*HasFlagAlways=*/false, IsImplicit, UpdateRef,
HasCloseModifier, HasPresentModifier, HasHoldModifier, AsyncInfo,
/*OwnedTPR=*/nullptr, /*ReleaseHDTTMap=*/false);
PointerTgtPtrBegin = PointerTpr.TargetPointer;
IsHostPtr = PointerTpr.Flags.IsHostPointer;
if (!PointerTgtPtrBegin) {
REPORT("Call to getTargetPointer returned null pointer (%s).\n",
HasPresentModifier ? "'present' map type modifier"
: "device failure or illegal mapping");
return OFFLOAD_FAIL;
}
DP("There are %zu bytes allocated at target address " DPxMOD " - is%s new"
"\n",
sizeof(void *), DPxPTR(PointerTgtPtrBegin),
(PointerTpr.Flags.IsNewEntry ? "" : " not"));
PointerHstPtrBegin = HstPtrBase;
// modify current entry.
HstPtrBase = *(void **)HstPtrBase;
// No need to update pointee ref count for the first element of the
// subelement that comes from mapper.
UpdateRef =
(!FromMapper || I != 0); // subsequently update ref count of pointee
}
const bool HasFlagTo = ArgTypes[I] & OMP_TGT_MAPTYPE_TO;
const bool HasFlagAlways = ArgTypes[I] & OMP_TGT_MAPTYPE_ALWAYS;
// Note that HDTTMap will be released in getTargetPointer.
auto TPR = Device.getMappingInfo().getTargetPointer(
HDTTMap, HstPtrBegin, HstPtrBase, TgtPadding, DataSize, HstPtrName,
HasFlagTo, HasFlagAlways, IsImplicit, UpdateRef, HasCloseModifier,
HasPresentModifier, HasHoldModifier, AsyncInfo, PointerTpr.getEntry());
void *TgtPtrBegin = TPR.TargetPointer;
IsHostPtr = TPR.Flags.IsHostPointer;
// If data_size==0, then the argument could be a zero-length pointer to
// NULL, so getOrAlloc() returning NULL is not an error.
if (!TgtPtrBegin && (DataSize || HasPresentModifier)) {
REPORT("Call to getTargetPointer returned null pointer (%s).\n",
HasPresentModifier ? "'present' map type modifier"
: "device failure or illegal mapping");
return OFFLOAD_FAIL;
}
DP("There are %" PRId64 " bytes allocated at target address " DPxMOD
" - is%s new\n",
DataSize, DPxPTR(TgtPtrBegin), (TPR.Flags.IsNewEntry ? "" : " not"));
if (ArgTypes[I] & OMP_TGT_MAPTYPE_RETURN_PARAM) {
uintptr_t Delta = (uintptr_t)HstPtrBegin - (uintptr_t)HstPtrBase;
void *TgtPtrBase = (void *)((uintptr_t)TgtPtrBegin - Delta);
DP("Returning device pointer " DPxMOD "\n", DPxPTR(TgtPtrBase));
ArgsBase[I] = TgtPtrBase;
}
if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ && !IsHostPtr) {
uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase;
void *ExpectedTgtPtrBase = (void *)((uint64_t)TgtPtrBegin - Delta);
if (PointerTpr.getEntry()->addShadowPointer(ShadowPtrInfoTy{
(void **)PointerHstPtrBegin, HstPtrBase,
(void **)PointerTgtPtrBegin, ExpectedTgtPtrBase})) {
DP("Update pointer (" DPxMOD ") -> [" DPxMOD "]\n",
DPxPTR(PointerTgtPtrBegin), DPxPTR(TgtPtrBegin));
void *&TgtPtrBase = AsyncInfo.getVoidPtrLocation();
TgtPtrBase = ExpectedTgtPtrBase;
int Ret =
Device.submitData(PointerTgtPtrBegin, &TgtPtrBase, sizeof(void *),
AsyncInfo, PointerTpr.getEntry());
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Copying data to device failed.\n");
return OFFLOAD_FAIL;
}
if (PointerTpr.getEntry()->addEventIfNecessary(Device, AsyncInfo) !=
OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
}
}
// Check if variable can be used on the device:
bool IsStructMember = ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF;
if (getInfoLevel() & OMP_INFOTYPE_EMPTY_MAPPING && ArgTypes[I] != 0 &&
!IsStructMember && !IsImplicit && !TPR.isPresent() &&
!TPR.isContained() && !TPR.isHostPointer())
INFO(OMP_INFOTYPE_EMPTY_MAPPING, Device.DeviceID,
"variable %s does not have a valid device counterpart\n",
(HstPtrName) ? getNameFromMapping(HstPtrName).c_str() : "unknown");
}
return OFFLOAD_SUCCESS;
}
namespace {
/// This structure contains information to deallocate a target pointer, aka.
/// used to fix up the shadow map and potentially delete the entry from the
/// mapping table via \p DeviceTy::deallocTgtPtr.
struct PostProcessingInfo {
/// Host pointer used to look up into the map table
void *HstPtrBegin;
/// Size of the data
int64_t DataSize;
/// The mapping type (bitfield).
int64_t ArgType;
/// The target pointer information.
TargetPointerResultTy TPR;
PostProcessingInfo(void *HstPtr, int64_t Size, int64_t ArgType,
TargetPointerResultTy &&TPR)
: HstPtrBegin(HstPtr), DataSize(Size), ArgType(ArgType),
TPR(std::move(TPR)) {}
};
} // namespace
/// Applies the necessary post-processing procedures to entries listed in \p
/// EntriesInfo after the execution of all device side operations from a target
/// data end. This includes the update of pointers at the host and removal of
/// device buffer when needed. It returns OFFLOAD_FAIL or OFFLOAD_SUCCESS
/// according to the successfulness of the operations.
[[nodiscard]] static int
postProcessingTargetDataEnd(DeviceTy *Device,
SmallVector<PostProcessingInfo> &EntriesInfo) {
int Ret = OFFLOAD_SUCCESS;
for (auto &[HstPtrBegin, DataSize, ArgType, TPR] : EntriesInfo) {
bool DelEntry = !TPR.isHostPointer();
// If the last element from the mapper (for end transfer args comes in
// reverse order), do not remove the partial entry, the parent struct still
// exists.
if ((ArgType & OMP_TGT_MAPTYPE_MEMBER_OF) &&
!(ArgType & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) {
DelEntry = false; // protect parent struct from being deallocated
}
// If we marked the entry to be deleted we need to verify no other
// thread reused it by now. If deletion is still supposed to happen by
// this thread LR will be set and exclusive access to the HDTT map
// will avoid another thread reusing the entry now. Note that we do
// not request (exclusive) access to the HDTT map if DelEntry is
// not set.
MappingInfoTy::HDTTMapAccessorTy HDTTMap =
Device->getMappingInfo().HostDataToTargetMap.getExclusiveAccessor();
// We cannot use a lock guard because we may end up delete the mutex.
// We also explicitly unlocked the entry after it was put in the EntriesInfo
// so it can be reused.
TPR.getEntry()->lock();
auto *Entry = TPR.getEntry();
const bool IsNotLastUser = Entry->decDataEndThreadCount() != 0;
if (DelEntry && (Entry->getTotalRefCount() != 0 || IsNotLastUser)) {
// The thread is not in charge of deletion anymore. Give up access
// to the HDTT map and unset the deletion flag.
HDTTMap.destroy();
DelEntry = false;
}
// If we copied back to the host a struct/array containing pointers,
// we need to restore the original host pointer values from their
// shadow copies. If the struct is going to be deallocated, remove any
// remaining shadow pointer entries for this struct.
const bool HasFrom = ArgType & OMP_TGT_MAPTYPE_FROM;
if (HasFrom) {
Entry->foreachShadowPointerInfo([&](const ShadowPtrInfoTy &ShadowPtr) {
*ShadowPtr.HstPtrAddr = ShadowPtr.HstPtrVal;
DP("Restoring original host pointer value " DPxMOD " for host "
"pointer " DPxMOD "\n",
DPxPTR(ShadowPtr.HstPtrVal), DPxPTR(ShadowPtr.HstPtrAddr));
return OFFLOAD_SUCCESS;
});
}
// Give up the lock as we either don't need it anymore (e.g., done with
// TPR), or erase TPR.
TPR.setEntry(nullptr);
if (!DelEntry)
continue;
Ret = Device->getMappingInfo().eraseMapEntry(HDTTMap, Entry, DataSize);
// Entry is already remove from the map, we can unlock it now.
HDTTMap.destroy();
Ret |= Device->getMappingInfo().deallocTgtPtrAndEntry(Entry, DataSize);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Deallocating data from device failed.\n");
break;
}
}
delete &EntriesInfo;
return Ret;
}
/// Internal function to undo the mapping and retrieve the data from the device.
int targetDataEnd(ident_t *Loc, DeviceTy &Device, int32_t ArgNum,
void **ArgBases, void **Args, int64_t *ArgSizes,
int64_t *ArgTypes, map_var_info_t *ArgNames,
void **ArgMappers, AsyncInfoTy &AsyncInfo, bool FromMapper) {
int Ret = OFFLOAD_SUCCESS;
auto *PostProcessingPtrs = new SmallVector<PostProcessingInfo>();
// process each input.
for (int32_t I = ArgNum - 1; I >= 0; --I) {
// Ignore private variables and arrays - there is no mapping for them.
// Also, ignore the use_device_ptr directive, it has no effect here.
if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) ||
(ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE))
continue;
if (ArgMappers && ArgMappers[I]) {
// Instead of executing the regular path of targetDataEnd, call the
// targetDataMapper variant which will call targetDataEnd again
// with new arguments.
DP("Calling targetDataMapper for the %dth argument\n", I);
map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I];
Ret = targetDataMapper(Loc, Device, ArgBases[I], Args[I], ArgSizes[I],
ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo,
targetDataEnd);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Call to targetDataEnd via targetDataMapper for custom mapper"
" failed.\n");
return OFFLOAD_FAIL;
}
// Skip the rest of this function, continue to the next argument.
continue;
}
void *HstPtrBegin = Args[I];
int64_t DataSize = ArgSizes[I];
bool IsImplicit = ArgTypes[I] & OMP_TGT_MAPTYPE_IMPLICIT;
bool UpdateRef = (!(ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) ||
(ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) &&
!(FromMapper && I == 0);
bool ForceDelete = ArgTypes[I] & OMP_TGT_MAPTYPE_DELETE;
bool HasPresentModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_PRESENT;
bool HasHoldModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_OMPX_HOLD;
// If PTR_AND_OBJ, HstPtrBegin is address of pointee
TargetPointerResultTy TPR = Device.getMappingInfo().getTgtPtrBegin(
HstPtrBegin, DataSize, UpdateRef, HasHoldModifier, !IsImplicit,
ForceDelete, /*FromDataEnd=*/true);
void *TgtPtrBegin = TPR.TargetPointer;
if (!TPR.isPresent() && !TPR.isHostPointer() &&
(DataSize || HasPresentModifier)) {
DP("Mapping does not exist (%s)\n",
(HasPresentModifier ? "'present' map type modifier" : "ignored"));
if (HasPresentModifier) {
// OpenMP 5.1, sec. 2.21.7.1 "map Clause", p. 350 L10-13:
// "If a map clause appears on a target, target data, target enter data
// or target exit data construct with a present map-type-modifier then
// on entry to the region if the corresponding list item does not appear
// in the device data environment then an error occurs and the program
// terminates."
//
// This should be an error upon entering an "omp target exit data". It
// should not be an error upon exiting an "omp target data" or "omp
// target". For "omp target data", Clang thus doesn't include present
// modifiers for end calls. For "omp target", we have not found a valid
// OpenMP program for which the error matters: it appears that, if a
// program can guarantee that data is present at the beginning of an
// "omp target" region so that there's no error there, that data is also
// guaranteed to be present at the end.
MESSAGE("device mapping required by 'present' map type modifier does "
"not exist for host address " DPxMOD " (%" PRId64 " bytes)",
DPxPTR(HstPtrBegin), DataSize);
return OFFLOAD_FAIL;
}
} else {
DP("There are %" PRId64 " bytes allocated at target address " DPxMOD
" - is%s last\n",
DataSize, DPxPTR(TgtPtrBegin), (TPR.Flags.IsLast ? "" : " not"));
}
// OpenMP 5.1, sec. 2.21.7.1 "map Clause", p. 351 L14-16:
// "If the map clause appears on a target, target data, or target exit data
// construct and a corresponding list item of the original list item is not
// present in the device data environment on exit from the region then the
// list item is ignored."
if (!TPR.isPresent())
continue;
// Move data back to the host
const bool HasAlways = ArgTypes[I] & OMP_TGT_MAPTYPE_ALWAYS;
const bool HasFrom = ArgTypes[I] & OMP_TGT_MAPTYPE_FROM;
if (HasFrom && (HasAlways || TPR.Flags.IsLast) &&
!TPR.Flags.IsHostPointer && DataSize != 0) {
DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n",
DataSize, DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin));
TIMESCOPE_WITH_DETAILS_AND_IDENT(
"DevToHost", "Size=" + std::to_string(DataSize) + "B", Loc);
// Wait for any previous transfer if an event is present.
if (void *Event = TPR.getEntry()->getEvent()) {
if (Device.waitEvent(Event, AsyncInfo) != OFFLOAD_SUCCESS) {
REPORT("Failed to wait for event " DPxMOD ".\n", DPxPTR(Event));
return OFFLOAD_FAIL;
}
}
Ret = Device.retrieveData(HstPtrBegin, TgtPtrBegin, DataSize, AsyncInfo,
TPR.getEntry());
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Copying data from device failed.\n");
return OFFLOAD_FAIL;
}
// As we are expecting to delete the entry the d2h copy might race
// with another one that also tries to delete the entry. This happens
// as the entry can be reused and the reuse might happen after the
// copy-back was issued but before it completed. Since the reuse might
// also copy-back a value we would race.
if (TPR.Flags.IsLast) {
if (TPR.getEntry()->addEventIfNecessary(Device, AsyncInfo) !=
OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
}
}
// Add pointer to the buffer for post-synchronize processing.
PostProcessingPtrs->emplace_back(HstPtrBegin, DataSize, ArgTypes[I],
std::move(TPR));
PostProcessingPtrs->back().TPR.getEntry()->unlock();
}
// Add post-processing functions
// TODO: We might want to remove `mutable` in the future by not changing the
// captured variables somehow.
AsyncInfo.addPostProcessingFunction([=, Device = &Device]() mutable -> int {
return postProcessingTargetDataEnd(Device, *PostProcessingPtrs);
});
return Ret;
}
static int targetDataContiguous(ident_t *Loc, DeviceTy &Device, void *ArgsBase,
void *HstPtrBegin, int64_t ArgSize,
int64_t ArgType, AsyncInfoTy &AsyncInfo) {
TargetPointerResultTy TPR = Device.getMappingInfo().getTgtPtrBegin(
HstPtrBegin, ArgSize, /*UpdateRefCount=*/false,
/*UseHoldRefCount=*/false, /*MustContain=*/true);
void *TgtPtrBegin = TPR.TargetPointer;
if (!TPR.isPresent()) {
DP("hst data:" DPxMOD " not found, becomes a noop\n", DPxPTR(HstPtrBegin));
if (ArgType & OMP_TGT_MAPTYPE_PRESENT) {
MESSAGE("device mapping required by 'present' motion modifier does not "
"exist for host address " DPxMOD " (%" PRId64 " bytes)",
DPxPTR(HstPtrBegin), ArgSize);
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
if (TPR.Flags.IsHostPointer) {
DP("hst data:" DPxMOD " unified and shared, becomes a noop\n",
DPxPTR(HstPtrBegin));
return OFFLOAD_SUCCESS;
}
if (ArgType & OMP_TGT_MAPTYPE_TO) {
DP("Moving %" PRId64 " bytes (hst:" DPxMOD ") -> (tgt:" DPxMOD ")\n",
ArgSize, DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBegin));
int Ret = Device.submitData(TgtPtrBegin, HstPtrBegin, ArgSize, AsyncInfo,
TPR.getEntry());
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Copying data to device failed.\n");
return OFFLOAD_FAIL;
}
if (TPR.getEntry()) {
int Ret = TPR.getEntry()->foreachShadowPointerInfo(
[&](ShadowPtrInfoTy &ShadowPtr) {
DP("Restoring original target pointer value " DPxMOD " for target "
"pointer " DPxMOD "\n",
DPxPTR(ShadowPtr.TgtPtrVal), DPxPTR(ShadowPtr.TgtPtrAddr));
Ret = Device.submitData(ShadowPtr.TgtPtrAddr,
(void *)&ShadowPtr.TgtPtrVal,
sizeof(void *), AsyncInfo);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Copying data to device failed.\n");
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
});
if (Ret != OFFLOAD_SUCCESS) {
DP("Updating shadow map failed\n");
return Ret;
}
}
}
if (ArgType & OMP_TGT_MAPTYPE_FROM) {
DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n",
ArgSize, DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin));
int Ret = Device.retrieveData(HstPtrBegin, TgtPtrBegin, ArgSize, AsyncInfo,
TPR.getEntry());
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Copying data from device failed.\n");
return OFFLOAD_FAIL;
}
// Wait for device-to-host memcopies for whole struct to complete,
// before restoring the correct host pointer.
if (auto *Entry = TPR.getEntry()) {
AsyncInfo.addPostProcessingFunction([=]() -> int {
int Ret = Entry->foreachShadowPointerInfo(
[&](const ShadowPtrInfoTy &ShadowPtr) {
*ShadowPtr.HstPtrAddr = ShadowPtr.HstPtrVal;
DP("Restoring original host pointer value " DPxMOD
" for host pointer " DPxMOD "\n",
DPxPTR(ShadowPtr.HstPtrVal), DPxPTR(ShadowPtr.HstPtrAddr));
return OFFLOAD_SUCCESS;
});
Entry->unlock();
if (Ret != OFFLOAD_SUCCESS) {
DP("Updating shadow map failed\n");
return Ret;
}
return OFFLOAD_SUCCESS;
});
}
}
return OFFLOAD_SUCCESS;
}
static int targetDataNonContiguous(ident_t *Loc, DeviceTy &Device,
void *ArgsBase,
__tgt_target_non_contig *NonContig,
uint64_t Size, int64_t ArgType,
int CurrentDim, int DimSize, uint64_t Offset,
AsyncInfoTy &AsyncInfo) {
int Ret = OFFLOAD_SUCCESS;
if (CurrentDim < DimSize) {
for (unsigned int I = 0; I < NonContig[CurrentDim].Count; ++I) {
uint64_t CurOffset =
(NonContig[CurrentDim].Offset + I) * NonContig[CurrentDim].Stride;
// we only need to transfer the first element for the last dimension
// since we've already got a contiguous piece.
if (CurrentDim != DimSize - 1 || I == 0) {
Ret = targetDataNonContiguous(Loc, Device, ArgsBase, NonContig, Size,
ArgType, CurrentDim + 1, DimSize,
Offset + CurOffset, AsyncInfo);
// Stop the whole process if any contiguous piece returns anything
// other than OFFLOAD_SUCCESS.
if (Ret != OFFLOAD_SUCCESS)
return Ret;
}
}
} else {
char *Ptr = (char *)ArgsBase + Offset;
DP("Transfer of non-contiguous : host ptr " DPxMOD " offset %" PRIu64
" len %" PRIu64 "\n",
DPxPTR(Ptr), Offset, Size);
Ret = targetDataContiguous(Loc, Device, ArgsBase, Ptr, Size, ArgType,
AsyncInfo);
}
return Ret;
}
static int getNonContigMergedDimension(__tgt_target_non_contig *NonContig,
int32_t DimSize) {
int RemovedDim = 0;
for (int I = DimSize - 1; I > 0; --I) {
if (NonContig[I].Count * NonContig[I].Stride == NonContig[I - 1].Stride)
RemovedDim++;
}
return RemovedDim;
}
/// Internal function to pass data to/from the target.
int targetDataUpdate(ident_t *Loc, DeviceTy &Device, int32_t ArgNum,
void **ArgsBase, void **Args, int64_t *ArgSizes,
int64_t *ArgTypes, map_var_info_t *ArgNames,
void **ArgMappers, AsyncInfoTy &AsyncInfo, bool) {
// process each input.
for (int32_t I = 0; I < ArgNum; ++I) {
if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) ||
(ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE))
continue;
if (ArgMappers && ArgMappers[I]) {
// Instead of executing the regular path of targetDataUpdate, call the
// targetDataMapper variant which will call targetDataUpdate again
// with new arguments.
DP("Calling targetDataMapper for the %dth argument\n", I);
map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I];
int Ret = targetDataMapper(Loc, Device, ArgsBase[I], Args[I], ArgSizes[I],
ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo,
targetDataUpdate);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Call to targetDataUpdate via targetDataMapper for custom mapper"
" failed.\n");
return OFFLOAD_FAIL;
}
// Skip the rest of this function, continue to the next argument.
continue;
}
int Ret = OFFLOAD_SUCCESS;
if (ArgTypes[I] & OMP_TGT_MAPTYPE_NON_CONTIG) {
__tgt_target_non_contig *NonContig = (__tgt_target_non_contig *)Args[I];
int32_t DimSize = ArgSizes[I];
uint64_t Size =
NonContig[DimSize - 1].Count * NonContig[DimSize - 1].Stride;
int32_t MergedDim = getNonContigMergedDimension(NonContig, DimSize);
Ret = targetDataNonContiguous(
Loc, Device, ArgsBase[I], NonContig, Size, ArgTypes[I],
/*current_dim=*/0, DimSize - MergedDim, /*offset=*/0, AsyncInfo);
} else {
Ret = targetDataContiguous(Loc, Device, ArgsBase[I], Args[I], ArgSizes[I],
ArgTypes[I], AsyncInfo);
}
if (Ret == OFFLOAD_FAIL)
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
static const unsigned LambdaMapping = OMP_TGT_MAPTYPE_PTR_AND_OBJ |
OMP_TGT_MAPTYPE_LITERAL |
OMP_TGT_MAPTYPE_IMPLICIT;
static bool isLambdaMapping(int64_t Mapping) {
return (Mapping & LambdaMapping) == LambdaMapping;
}
namespace {
/// Find the table information in the map or look it up in the translation
/// tables.
TableMap *getTableMap(void *HostPtr) {
std::lock_guard<std::mutex> TblMapLock(PM->TblMapMtx);
HostPtrToTableMapTy::iterator TableMapIt =
PM->HostPtrToTableMap.find(HostPtr);
if (TableMapIt != PM->HostPtrToTableMap.end())
return &TableMapIt->second;
// We don't have a map. So search all the registered libraries.
TableMap *TM = nullptr;
std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx);
for (HostEntriesBeginToTransTableTy::iterator Itr =
PM->HostEntriesBeginToTransTable.begin();
Itr != PM->HostEntriesBeginToTransTable.end(); ++Itr) {
// get the translation table (which contains all the good info).
TranslationTable *TransTable = &Itr->second;
// iterate over all the host table entries to see if we can locate the
// host_ptr.
llvm::offloading::EntryTy *Cur = TransTable->HostTable.EntriesBegin;
for (uint32_t I = 0; Cur < TransTable->HostTable.EntriesEnd; ++Cur, ++I) {
if (Cur->Address != HostPtr)
continue;
// we got a match, now fill the HostPtrToTableMap so that we
// may avoid this search next time.
TM = &(PM->HostPtrToTableMap)[HostPtr];
TM->Table = TransTable;
TM->Index = I;
return TM;
}
}
return nullptr;
}
/// A class manages private arguments in a target region.
class PrivateArgumentManagerTy {
/// A data structure for the information of first-private arguments. We can
/// use this information to optimize data transfer by packing all
/// first-private arguments and transfer them all at once.
struct FirstPrivateArgInfoTy {
/// Host pointer begin
char *HstPtrBegin;
/// Host pointer end
char *HstPtrEnd;
/// The index of the element in \p TgtArgs corresponding to the argument
int Index;
/// Alignment of the entry (base of the entry, not after the entry).
uint32_t Alignment;
/// Size (without alignment, see padding)
uint32_t Size;
/// Padding used to align this argument entry, if necessary.
uint32_t Padding;
/// Host pointer name
map_var_info_t HstPtrName = nullptr;
FirstPrivateArgInfoTy(int Index, void *HstPtr, uint32_t Size,
uint32_t Alignment, uint32_t Padding,
map_var_info_t HstPtrName = nullptr)
: HstPtrBegin(reinterpret_cast<char *>(HstPtr)),
HstPtrEnd(HstPtrBegin + Size), Index(Index), Alignment(Alignment),
Size(Size), Padding(Padding), HstPtrName(HstPtrName) {}
};
/// A vector of target pointers for all private arguments
SmallVector<void *> TgtPtrs;
/// A vector of information of all first-private arguments to be packed
SmallVector<FirstPrivateArgInfoTy> FirstPrivateArgInfo;
/// Host buffer for all arguments to be packed
SmallVector<char> FirstPrivateArgBuffer;
/// The total size of all arguments to be packed
int64_t FirstPrivateArgSize = 0;
/// A reference to the \p DeviceTy object
DeviceTy &Device;
/// A pointer to a \p AsyncInfoTy object
AsyncInfoTy &AsyncInfo;
// TODO: What would be the best value here? Should we make it configurable?
// If the size is larger than this threshold, we will allocate and transfer it
// immediately instead of packing it.
static constexpr const int64_t FirstPrivateArgSizeThreshold = 1024;
public:
/// Constructor
PrivateArgumentManagerTy(DeviceTy &Dev, AsyncInfoTy &AsyncInfo)
: Device(Dev), AsyncInfo(AsyncInfo) {}
/// Add a private argument
int addArg(void *HstPtr, int64_t ArgSize, int64_t ArgOffset,
bool IsFirstPrivate, void *&TgtPtr, int TgtArgsIndex,
map_var_info_t HstPtrName = nullptr,
const bool AllocImmediately = false) {
// If the argument is not first-private, or its size is greater than a
// predefined threshold, we will allocate memory and issue the transfer
// immediately.
if (ArgSize > FirstPrivateArgSizeThreshold || !IsFirstPrivate ||
AllocImmediately) {
TgtPtr = Device.allocData(ArgSize, HstPtr);
if (!TgtPtr) {
DP("Data allocation for %sprivate array " DPxMOD " failed.\n",
(IsFirstPrivate ? "first-" : ""), DPxPTR(HstPtr));
return OFFLOAD_FAIL;
}
#ifdef OMPTARGET_DEBUG
void *TgtPtrBase = (void *)((intptr_t)TgtPtr + ArgOffset);
DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD
" for %sprivate array " DPxMOD " - pushing target argument " DPxMOD
"\n",
ArgSize, DPxPTR(TgtPtr), (IsFirstPrivate ? "first-" : ""),
DPxPTR(HstPtr), DPxPTR(TgtPtrBase));
#endif
// If first-private, copy data from host
if (IsFirstPrivate) {
DP("Submitting firstprivate data to the device.\n");
int Ret = Device.submitData(TgtPtr, HstPtr, ArgSize, AsyncInfo);
if (Ret != OFFLOAD_SUCCESS) {
DP("Copying data to device failed, failed.\n");
return OFFLOAD_FAIL;
}
}
TgtPtrs.push_back(TgtPtr);
} else {
DP("Firstprivate array " DPxMOD " of size %" PRId64 " will be packed\n",
DPxPTR(HstPtr), ArgSize);
// When reach this point, the argument must meet all following
// requirements:
// 1. Its size does not exceed the threshold (see the comment for
// FirstPrivateArgSizeThreshold);
// 2. It must be first-private (needs to be mapped to target device).
// We will pack all this kind of arguments to transfer them all at once
// to reduce the number of data transfer. We will not take
// non-first-private arguments, aka. private arguments that doesn't need
// to be mapped to target device, into account because data allocation
// can be very efficient with memory manager.
// Placeholder value
TgtPtr = nullptr;
auto *LastFPArgInfo =
FirstPrivateArgInfo.empty() ? nullptr : &FirstPrivateArgInfo.back();
// Compute the start alignment of this entry, add padding if necessary.
// TODO: Consider sorting instead.
uint32_t Padding = 0;
uint32_t StartAlignment =
LastFPArgInfo ? LastFPArgInfo->Alignment : MaxAlignment;
if (LastFPArgInfo) {
// Check if we keep the start alignment or if it is shrunk due to the
// size of the last element.
uint32_t Offset = LastFPArgInfo->Size % StartAlignment;
if (Offset)
StartAlignment = Offset;
// We only need as much alignment as the host pointer had (since we
// don't know the alignment information from the source we might end up
// overaligning accesses but not too much).
uint32_t RequiredAlignment =
llvm::bit_floor(getPartialStructRequiredAlignment(HstPtr));
if (RequiredAlignment > StartAlignment) {
Padding = RequiredAlignment - StartAlignment;
StartAlignment = RequiredAlignment;
}
}
FirstPrivateArgInfo.emplace_back(TgtArgsIndex, HstPtr, ArgSize,
StartAlignment, Padding, HstPtrName);
FirstPrivateArgSize += Padding + ArgSize;
}
return OFFLOAD_SUCCESS;
}
/// Pack first-private arguments, replace place holder pointers in \p TgtArgs,
/// and start the transfer.
int packAndTransfer(SmallVector<void *> &TgtArgs) {
if (!FirstPrivateArgInfo.empty()) {
assert(FirstPrivateArgSize != 0 &&
"FirstPrivateArgSize is 0 but FirstPrivateArgInfo is empty");
FirstPrivateArgBuffer.resize(FirstPrivateArgSize, 0);
auto *Itr = FirstPrivateArgBuffer.begin();
// Copy all host data to this buffer
for (FirstPrivateArgInfoTy &Info : FirstPrivateArgInfo) {
// First pad the pointer as we (have to) pad it on the device too.
Itr = std::next(Itr, Info.Padding);
std::copy(Info.HstPtrBegin, Info.HstPtrEnd, Itr);
Itr = std::next(Itr, Info.Size);
}
// Allocate target memory
void *TgtPtr =
Device.allocData(FirstPrivateArgSize, FirstPrivateArgBuffer.data());
if (TgtPtr == nullptr) {
DP("Failed to allocate target memory for private arguments.\n");
return OFFLOAD_FAIL;
}
TgtPtrs.push_back(TgtPtr);
DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD "\n",
FirstPrivateArgSize, DPxPTR(TgtPtr));
// Transfer data to target device
int Ret = Device.submitData(TgtPtr, FirstPrivateArgBuffer.data(),
FirstPrivateArgSize, AsyncInfo);
if (Ret != OFFLOAD_SUCCESS) {
DP("Failed to submit data of private arguments.\n");
return OFFLOAD_FAIL;
}
// Fill in all placeholder pointers
auto TP = reinterpret_cast<uintptr_t>(TgtPtr);
for (FirstPrivateArgInfoTy &Info : FirstPrivateArgInfo) {
void *&Ptr = TgtArgs[Info.Index];
assert(Ptr == nullptr && "Target pointer is already set by mistaken");
// Pad the device pointer to get the right alignment.
TP += Info.Padding;
Ptr = reinterpret_cast<void *>(TP);
TP += Info.Size;
DP("Firstprivate array " DPxMOD " of size %" PRId64 " mapped to " DPxMOD
"\n",
DPxPTR(Info.HstPtrBegin), Info.HstPtrEnd - Info.HstPtrBegin,
DPxPTR(Ptr));
}
}
return OFFLOAD_SUCCESS;
}
/// Free all target memory allocated for private arguments
int free() {
for (void *P : TgtPtrs) {
int Ret = Device.deleteData(P);
if (Ret != OFFLOAD_SUCCESS) {
DP("Deallocation of (first-)private arrays failed.\n");
return OFFLOAD_FAIL;
}
}
TgtPtrs.clear();
return OFFLOAD_SUCCESS;
}
};
/// Process data before launching the kernel, including calling targetDataBegin
/// to map and transfer data to target device, transferring (first-)private
/// variables.
static int processDataBefore(ident_t *Loc, int64_t DeviceId, void *HostPtr,
int32_t ArgNum, void **ArgBases, void **Args,
int64_t *ArgSizes, int64_t *ArgTypes,
map_var_info_t *ArgNames, void **ArgMappers,
SmallVector<void *> &TgtArgs,
SmallVector<ptrdiff_t> &TgtOffsets,
PrivateArgumentManagerTy &PrivateArgumentManager,
AsyncInfoTy &AsyncInfo) {
auto DeviceOrErr = PM->getDevice(DeviceId);
if (!DeviceOrErr)
FATAL_MESSAGE(DeviceId, "%s", toString(DeviceOrErr.takeError()).c_str());
int Ret = targetDataBegin(Loc, *DeviceOrErr, ArgNum, ArgBases, Args, ArgSizes,
ArgTypes, ArgNames, ArgMappers, AsyncInfo);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Call to targetDataBegin failed, abort target.\n");
return OFFLOAD_FAIL;
}
// List of (first-)private arrays allocated for this target region
SmallVector<int> TgtArgsPositions(ArgNum, -1);
for (int32_t I = 0; I < ArgNum; ++I) {
if (!(ArgTypes[I] & OMP_TGT_MAPTYPE_TARGET_PARAM)) {
// This is not a target parameter, do not push it into TgtArgs.
// Check for lambda mapping.
if (isLambdaMapping(ArgTypes[I])) {
assert((ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) &&
"PTR_AND_OBJ must be also MEMBER_OF.");
unsigned Idx = getParentIndex(ArgTypes[I]);
int TgtIdx = TgtArgsPositions[Idx];
assert(TgtIdx != -1 && "Base address must be translated already.");
// The parent lambda must be processed already and it must be the last
// in TgtArgs and TgtOffsets arrays.
void *HstPtrVal = Args[I];
void *HstPtrBegin = ArgBases[I];
void *HstPtrBase = Args[Idx];
void *TgtPtrBase =
(void *)((intptr_t)TgtArgs[TgtIdx] + TgtOffsets[TgtIdx]);
DP("Parent lambda base " DPxMOD "\n", DPxPTR(TgtPtrBase));
uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase;
void *TgtPtrBegin = (void *)((uintptr_t)TgtPtrBase + Delta);
void *&PointerTgtPtrBegin = AsyncInfo.getVoidPtrLocation();
TargetPointerResultTy TPR =
DeviceOrErr->getMappingInfo().getTgtPtrBegin(
HstPtrVal, ArgSizes[I], /*UpdateRefCount=*/false,
/*UseHoldRefCount=*/false);
PointerTgtPtrBegin = TPR.TargetPointer;
if (!TPR.isPresent()) {
DP("No lambda captured variable mapped (" DPxMOD ") - ignored\n",
DPxPTR(HstPtrVal));
continue;
}
if (TPR.Flags.IsHostPointer) {
DP("Unified memory is active, no need to map lambda captured"
"variable (" DPxMOD ")\n",
DPxPTR(HstPtrVal));
continue;
}
DP("Update lambda reference (" DPxMOD ") -> [" DPxMOD "]\n",
DPxPTR(PointerTgtPtrBegin), DPxPTR(TgtPtrBegin));
Ret =
DeviceOrErr->submitData(TgtPtrBegin, &PointerTgtPtrBegin,
sizeof(void *), AsyncInfo, TPR.getEntry());
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Copying data to device failed.\n");
return OFFLOAD_FAIL;
}
}
continue;
}
void *HstPtrBegin = Args[I];
void *HstPtrBase = ArgBases[I];
void *TgtPtrBegin;
map_var_info_t HstPtrName = (!ArgNames) ? nullptr : ArgNames[I];
ptrdiff_t TgtBaseOffset;
TargetPointerResultTy TPR;
if (ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) {
DP("Forwarding first-private value " DPxMOD " to the target construct\n",
DPxPTR(HstPtrBase));
TgtPtrBegin = HstPtrBase;
TgtBaseOffset = 0;
} else if (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE) {
TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin;
const bool IsFirstPrivate = (ArgTypes[I] & OMP_TGT_MAPTYPE_TO);
// If there is a next argument and it depends on the current one, we need
// to allocate the private memory immediately. If this is not the case,
// then the argument can be marked for optimization and packed with the
// other privates.
const bool AllocImmediately =
(I < ArgNum - 1 && (ArgTypes[I + 1] & OMP_TGT_MAPTYPE_MEMBER_OF));
Ret = PrivateArgumentManager.addArg(
HstPtrBegin, ArgSizes[I], TgtBaseOffset, IsFirstPrivate, TgtPtrBegin,
TgtArgs.size(), HstPtrName, AllocImmediately);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Failed to process %sprivate argument " DPxMOD "\n",
(IsFirstPrivate ? "first-" : ""), DPxPTR(HstPtrBegin));
return OFFLOAD_FAIL;
}
} else {
if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)
HstPtrBase = *reinterpret_cast<void **>(HstPtrBase);
TPR = DeviceOrErr->getMappingInfo().getTgtPtrBegin(
HstPtrBegin, ArgSizes[I],
/*UpdateRefCount=*/false,
/*UseHoldRefCount=*/false);
TgtPtrBegin = TPR.TargetPointer;
TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin;
#ifdef OMPTARGET_DEBUG
void *TgtPtrBase = (void *)((intptr_t)TgtPtrBegin + TgtBaseOffset);
DP("Obtained target argument " DPxMOD " from host pointer " DPxMOD "\n",
DPxPTR(TgtPtrBase), DPxPTR(HstPtrBegin));
#endif
}
TgtArgsPositions[I] = TgtArgs.size();
TgtArgs.push_back(TgtPtrBegin);
TgtOffsets.push_back(TgtBaseOffset);
}
assert(TgtArgs.size() == TgtOffsets.size() &&
"Size mismatch in arguments and offsets");
// Pack and transfer first-private arguments
Ret = PrivateArgumentManager.packAndTransfer(TgtArgs);
if (Ret != OFFLOAD_SUCCESS) {
DP("Failed to pack and transfer first private arguments\n");
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
/// Process data after launching the kernel, including transferring data back to
/// host if needed and deallocating target memory of (first-)private variables.
static int processDataAfter(ident_t *Loc, int64_t DeviceId, void *HostPtr,
int32_t ArgNum, void **ArgBases, void **Args,
int64_t *ArgSizes, int64_t *ArgTypes,
map_var_info_t *ArgNames, void **ArgMappers,
PrivateArgumentManagerTy &PrivateArgumentManager,
AsyncInfoTy &AsyncInfo) {
auto DeviceOrErr = PM->getDevice(DeviceId);
if (!DeviceOrErr)
FATAL_MESSAGE(DeviceId, "%s", toString(DeviceOrErr.takeError()).c_str());
// Move data from device.
int Ret = targetDataEnd(Loc, *DeviceOrErr, ArgNum, ArgBases, Args, ArgSizes,
ArgTypes, ArgNames, ArgMappers, AsyncInfo);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Call to targetDataEnd failed, abort target.\n");
return OFFLOAD_FAIL;
}
// Free target memory for private arguments after synchronization.
// TODO: We might want to remove `mutable` in the future by not changing the
// captured variables somehow.
AsyncInfo.addPostProcessingFunction(
[PrivateArgumentManager =
std::move(PrivateArgumentManager)]() mutable -> int {
int Ret = PrivateArgumentManager.free();
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Failed to deallocate target memory for private args\n");
return OFFLOAD_FAIL;
}
return Ret;
});
return OFFLOAD_SUCCESS;
}
} // namespace
/// performs the same actions as data_begin in case arg_num is
/// non-zero and initiates run of the offloaded region on the target platform;
/// if arg_num is non-zero after the region execution is done it also
/// performs the same action as data_update and data_end above. This function
/// returns 0 if it was able to transfer the execution to a target and an
/// integer different from zero otherwise.
int target(ident_t *Loc, DeviceTy &Device, void *HostPtr,
KernelArgsTy &KernelArgs, AsyncInfoTy &AsyncInfo) {
int32_t DeviceId = Device.DeviceID;
TableMap *TM = getTableMap(HostPtr);
// No map for this host pointer found!
if (!TM) {
REPORT("Host ptr " DPxMOD " does not have a matching target pointer.\n",
DPxPTR(HostPtr));
return OFFLOAD_FAIL;
}
// get target table.
__tgt_target_table *TargetTable = nullptr;
{
std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx);
assert(TM->Table->TargetsTable.size() > (size_t)DeviceId &&
"Not expecting a device ID outside the table's bounds!");
TargetTable = TM->Table->TargetsTable[DeviceId];
}
assert(TargetTable && "Global data has not been mapped\n");
DP("loop trip count is %" PRIu64 ".\n", KernelArgs.Tripcount);
// We need to keep bases and offsets separate. Sometimes (e.g. in OpenCL) we
// need to manifest base pointers prior to launching a kernel. Even if we have
// mapped an object only partially, e.g. A[N:M], although the kernel is
// expected to access elements starting at address &A[N] and beyond, we still
// need to manifest the base of the array &A[0]. In other cases, e.g. the COI
// API, we need the begin address itself, i.e. &A[N], as the API operates on
// begin addresses, not bases. That's why we pass args and offsets as two
// separate entities so that each plugin can do what it needs. This behavior
// was introduced via https://reviews.llvm.org/D33028 and commit 1546d319244c.
SmallVector<void *> TgtArgs;
SmallVector<ptrdiff_t> TgtOffsets;
PrivateArgumentManagerTy PrivateArgumentManager(Device, AsyncInfo);
int NumClangLaunchArgs = KernelArgs.NumArgs;
int Ret = OFFLOAD_SUCCESS;
if (NumClangLaunchArgs) {
// Process data, such as data mapping, before launching the kernel
Ret = processDataBefore(Loc, DeviceId, HostPtr, NumClangLaunchArgs,
KernelArgs.ArgBasePtrs, KernelArgs.ArgPtrs,
KernelArgs.ArgSizes, KernelArgs.ArgTypes,
KernelArgs.ArgNames, KernelArgs.ArgMappers, TgtArgs,
TgtOffsets, PrivateArgumentManager, AsyncInfo);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Failed to process data before launching the kernel.\n");
return OFFLOAD_FAIL;
}
// Clang might pass more values via the ArgPtrs to the runtime that we pass
// on to the kernel.
// TODO: Next time we adjust the KernelArgsTy we should introduce a new
// NumKernelArgs field.
KernelArgs.NumArgs = TgtArgs.size();
}
// Launch device execution.
void *TgtEntryPtr = TargetTable->EntriesBegin[TM->Index].Address;
DP("Launching target execution %s with pointer " DPxMOD " (index=%d).\n",
TargetTable->EntriesBegin[TM->Index].SymbolName, DPxPTR(TgtEntryPtr),
TM->Index);
{
assert(KernelArgs.NumArgs == TgtArgs.size() && "Argument count mismatch!");
TIMESCOPE_WITH_DETAILS_AND_IDENT(
"Kernel Target",
"NumArguments=" + std::to_string(KernelArgs.NumArgs) +
";NumTeams=" + std::to_string(KernelArgs.NumTeams[0]) +
";TripCount=" + std::to_string(KernelArgs.Tripcount),
Loc);
#ifdef OMPT_SUPPORT
/// RAII to establish tool anchors before and after kernel launch
int32_t NumTeams = KernelArgs.NumTeams[0];
// No need to guard this with OMPT_IF_BUILT
InterfaceRAII TargetSubmitRAII(
RegionInterface.getCallbacks<ompt_callback_target_submit>(), NumTeams);
#endif
Ret = Device.launchKernel(TgtEntryPtr, TgtArgs.data(), TgtOffsets.data(),
KernelArgs, AsyncInfo);
}
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Executing target region abort target.\n");
return OFFLOAD_FAIL;
}
if (NumClangLaunchArgs) {
// Transfer data back and deallocate target memory for (first-)private
// variables
Ret = processDataAfter(Loc, DeviceId, HostPtr, NumClangLaunchArgs,
KernelArgs.ArgBasePtrs, KernelArgs.ArgPtrs,
KernelArgs.ArgSizes, KernelArgs.ArgTypes,
KernelArgs.ArgNames, KernelArgs.ArgMappers,
PrivateArgumentManager, AsyncInfo);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Failed to process data after launching the kernel.\n");
return OFFLOAD_FAIL;
}
}
return OFFLOAD_SUCCESS;
}
/// Enables the record replay mechanism by pre-allocating MemorySize
/// and informing the record-replayer of whether to store the output
/// in some file.
int target_activate_rr(DeviceTy &Device, uint64_t MemorySize, void *VAddr,
bool IsRecord, bool SaveOutput,
uint64_t &ReqPtrArgOffset) {
return Device.RTL->initialize_record_replay(Device.DeviceID, MemorySize,
VAddr, IsRecord, SaveOutput,
ReqPtrArgOffset);
}
/// Executes a kernel using pre-recorded information for loading to
/// device memory to launch the target kernel with the pre-recorded
/// configuration.
int target_replay(ident_t *Loc, DeviceTy &Device, void *HostPtr,
void *DeviceMemory, int64_t DeviceMemorySize, void **TgtArgs,
ptrdiff_t *TgtOffsets, int32_t NumArgs, int32_t NumTeams,
int32_t ThreadLimit, uint64_t LoopTripCount,
AsyncInfoTy &AsyncInfo) {
int32_t DeviceId = Device.DeviceID;
TableMap *TM = getTableMap(HostPtr);
// Fail if the table map fails to find the target kernel pointer for the
// provided host pointer.
if (!TM) {
REPORT("Host ptr " DPxMOD " does not have a matching target pointer.\n",
DPxPTR(HostPtr));
return OFFLOAD_FAIL;
}
// Retrieve the target table of offloading entries.
__tgt_target_table *TargetTable = nullptr;
{
std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx);
assert(TM->Table->TargetsTable.size() > (size_t)DeviceId &&
"Not expecting a device ID outside the table's bounds!");
TargetTable = TM->Table->TargetsTable[DeviceId];
}
assert(TargetTable && "Global data has not been mapped\n");
// Retrieve the target kernel pointer, allocate and store the recorded device
// memory data, and launch device execution.
void *TgtEntryPtr = TargetTable->EntriesBegin[TM->Index].Address;
DP("Launching target execution %s with pointer " DPxMOD " (index=%d).\n",
TargetTable->EntriesBegin[TM->Index].SymbolName, DPxPTR(TgtEntryPtr),
TM->Index);
void *TgtPtr = Device.allocData(DeviceMemorySize, /*HstPtr=*/nullptr,
TARGET_ALLOC_DEFAULT);
Device.submitData(TgtPtr, DeviceMemory, DeviceMemorySize, AsyncInfo);
KernelArgsTy KernelArgs{};
KernelArgs.Version = OMP_KERNEL_ARG_VERSION;
KernelArgs.NumArgs = NumArgs;
KernelArgs.Tripcount = LoopTripCount;
KernelArgs.NumTeams[0] = NumTeams;
KernelArgs.ThreadLimit[0] = ThreadLimit;
int Ret = Device.launchKernel(TgtEntryPtr, TgtArgs, TgtOffsets, KernelArgs,
AsyncInfo);
if (Ret != OFFLOAD_SUCCESS) {
REPORT("Executing target region abort target.\n");
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
|