1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
|
//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A intra-procedural analysis for thread safety (e.g. deadlocks and race
// conditions), based off of an annotation system.
//
// See http://clang.llvm.org/docs/LanguageExtensions.html#thread-safety-annotation-checking
// for more information.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/ThreadSafety.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <utility>
#include <vector>
using namespace clang;
using namespace thread_safety;
// Key method definition
ThreadSafetyHandler::~ThreadSafetyHandler() {}
namespace {
/// SExpr implements a simple expression language that is used to store,
/// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr
/// does not capture surface syntax, and it does not distinguish between
/// C++ concepts, like pointers and references, that have no real semantic
/// differences. This simplicity allows SExprs to be meaningfully compared,
/// e.g.
/// (x) = x
/// (*this).foo = this->foo
/// *&a = a
///
/// Thread-safety analysis works by comparing lock expressions. Within the
/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
/// a particular mutex object at run-time. Subsequent occurrences of the same
/// expression (where "same" means syntactic equality) will refer to the same
/// run-time object if three conditions hold:
/// (1) Local variables in the expression, such as "x" have not changed.
/// (2) Values on the heap that affect the expression have not changed.
/// (3) The expression involves only pure function calls.
///
/// The current implementation assumes, but does not verify, that multiple uses
/// of the same lock expression satisfies these criteria.
class SExpr {
private:
enum ExprOp {
EOP_Nop, ///< No-op
EOP_Wildcard, ///< Matches anything.
EOP_Universal, ///< Universal lock.
EOP_This, ///< This keyword.
EOP_NVar, ///< Named variable.
EOP_LVar, ///< Local variable.
EOP_Dot, ///< Field access
EOP_Call, ///< Function call
EOP_MCall, ///< Method call
EOP_Index, ///< Array index
EOP_Unary, ///< Unary operation
EOP_Binary, ///< Binary operation
EOP_Unknown ///< Catchall for everything else
};
class SExprNode {
private:
unsigned char Op; ///< Opcode of the root node
unsigned char Flags; ///< Additional opcode-specific data
unsigned short Sz; ///< Number of child nodes
const void* Data; ///< Additional opcode-specific data
public:
SExprNode(ExprOp O, unsigned F, const void* D)
: Op(static_cast<unsigned char>(O)),
Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
{ }
unsigned size() const { return Sz; }
void setSize(unsigned S) { Sz = S; }
ExprOp kind() const { return static_cast<ExprOp>(Op); }
const NamedDecl* getNamedDecl() const {
assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
return reinterpret_cast<const NamedDecl*>(Data);
}
const NamedDecl* getFunctionDecl() const {
assert(Op == EOP_Call || Op == EOP_MCall);
return reinterpret_cast<const NamedDecl*>(Data);
}
bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
void setArrow(bool A) { Flags = A ? 1 : 0; }
unsigned arity() const {
switch (Op) {
case EOP_Nop: return 0;
case EOP_Wildcard: return 0;
case EOP_Universal: return 0;
case EOP_NVar: return 0;
case EOP_LVar: return 0;
case EOP_This: return 0;
case EOP_Dot: return 1;
case EOP_Call: return Flags+1; // First arg is function.
case EOP_MCall: return Flags+1; // First arg is implicit obj.
case EOP_Index: return 2;
case EOP_Unary: return 1;
case EOP_Binary: return 2;
case EOP_Unknown: return Flags;
}
return 0;
}
bool operator==(const SExprNode& Other) const {
// Ignore flags and size -- they don't matter.
return (Op == Other.Op &&
Data == Other.Data);
}
bool operator!=(const SExprNode& Other) const {
return !(*this == Other);
}
bool matches(const SExprNode& Other) const {
return (*this == Other) ||
(Op == EOP_Wildcard) ||
(Other.Op == EOP_Wildcard);
}
};
/// \brief Encapsulates the lexical context of a function call. The lexical
/// context includes the arguments to the call, including the implicit object
/// argument. When an attribute containing a mutex expression is attached to
/// a method, the expression may refer to formal parameters of the method.
/// Actual arguments must be substituted for formal parameters to derive
/// the appropriate mutex expression in the lexical context where the function
/// is called. PrevCtx holds the context in which the arguments themselves
/// should be evaluated; multiple calling contexts can be chained together
/// by the lock_returned attribute.
struct CallingContext {
const NamedDecl* AttrDecl; // The decl to which the attribute is attached.
const Expr* SelfArg; // Implicit object argument -- e.g. 'this'
bool SelfArrow; // is Self referred to with -> or .?
unsigned NumArgs; // Number of funArgs
const Expr* const* FunArgs; // Function arguments
CallingContext* PrevCtx; // The previous context; or 0 if none.
CallingContext(const NamedDecl *D = 0, const Expr *S = 0,
unsigned N = 0, const Expr* const *A = 0,
CallingContext *P = 0)
: AttrDecl(D), SelfArg(S), SelfArrow(false),
NumArgs(N), FunArgs(A), PrevCtx(P)
{ }
};
typedef SmallVector<SExprNode, 4> NodeVector;
private:
// A SExpr is a list of SExprNodes in prefix order. The Size field allows
// the list to be traversed as a tree.
NodeVector NodeVec;
private:
unsigned makeNop() {
NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
return NodeVec.size()-1;
}
unsigned makeWildcard() {
NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
return NodeVec.size()-1;
}
unsigned makeUniversal() {
NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
return NodeVec.size()-1;
}
unsigned makeNamedVar(const NamedDecl *D) {
NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
return NodeVec.size()-1;
}
unsigned makeLocalVar(const NamedDecl *D) {
NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
return NodeVec.size()-1;
}
unsigned makeThis() {
NodeVec.push_back(SExprNode(EOP_This, 0, 0));
return NodeVec.size()-1;
}
unsigned makeDot(const NamedDecl *D, bool Arrow) {
NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
return NodeVec.size()-1;
}
unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
return NodeVec.size()-1;
}
// Grab the very first declaration of virtual method D
const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
while (true) {
D = D->getCanonicalDecl();
CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
E = D->end_overridden_methods();
if (I == E)
return D; // Method does not override anything
D = *I; // FIXME: this does not work with multiple inheritance.
}
return 0;
}
unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) {
NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, getFirstVirtualDecl(D)));
return NodeVec.size()-1;
}
unsigned makeIndex() {
NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
return NodeVec.size()-1;
}
unsigned makeUnary() {
NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
return NodeVec.size()-1;
}
unsigned makeBinary() {
NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
return NodeVec.size()-1;
}
unsigned makeUnknown(unsigned Arity) {
NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
return NodeVec.size()-1;
}
inline bool isCalleeArrow(const Expr *E) {
const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
return ME ? ME->isArrow() : false;
}
/// Build an SExpr from the given C++ expression.
/// Recursive function that terminates on DeclRefExpr.
/// Note: this function merely creates a SExpr; it does not check to
/// ensure that the original expression is a valid mutex expression.
///
/// NDeref returns the number of Derefence and AddressOf operations
/// preceeding the Expr; this is used to decide whether to pretty-print
/// SExprs with . or ->.
unsigned buildSExpr(const Expr *Exp, CallingContext* CallCtx,
int* NDeref = 0) {
if (!Exp)
return 0;
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
const NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
if (PV) {
const FunctionDecl *FD =
cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
unsigned i = PV->getFunctionScopeIndex();
if (CallCtx && CallCtx->FunArgs &&
FD == CallCtx->AttrDecl->getCanonicalDecl()) {
// Substitute call arguments for references to function parameters
assert(i < CallCtx->NumArgs);
return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
}
// Map the param back to the param of the original function declaration.
makeNamedVar(FD->getParamDecl(i));
return 1;
}
// Not a function parameter -- just store the reference.
makeNamedVar(ND);
return 1;
} else if (isa<CXXThisExpr>(Exp)) {
// Substitute parent for 'this'
if (CallCtx && CallCtx->SelfArg) {
if (!CallCtx->SelfArrow && NDeref)
// 'this' is a pointer, but self is not, so need to take address.
--(*NDeref);
return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
}
else {
makeThis();
return 1;
}
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
const NamedDecl *ND = ME->getMemberDecl();
int ImplicitDeref = ME->isArrow() ? 1 : 0;
unsigned Root = makeDot(ND, false);
unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
NodeVec[Root].setArrow(ImplicitDeref > 0);
NodeVec[Root].setSize(Sz + 1);
return Sz + 1;
} else if (const CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
// When calling a function with a lock_returned attribute, replace
// the function call with the expression in lock_returned.
const CXXMethodDecl *MD = CMCE->getMethodDecl()->getMostRecentDecl();
if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
CallingContext LRCallCtx(CMCE->getMethodDecl());
LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
LRCallCtx.SelfArrow = isCalleeArrow(CMCE->getCallee());
LRCallCtx.NumArgs = CMCE->getNumArgs();
LRCallCtx.FunArgs = CMCE->getArgs();
LRCallCtx.PrevCtx = CallCtx;
return buildSExpr(At->getArg(), &LRCallCtx);
}
// Hack to treat smart pointers and iterators as pointers;
// ignore any method named get().
if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
CMCE->getNumArgs() == 0) {
if (NDeref && isCalleeArrow(CMCE->getCallee()))
++(*NDeref);
return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
}
unsigned NumCallArgs = CMCE->getNumArgs();
unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl());
unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
const Expr* const* CallArgs = CMCE->getArgs();
for (unsigned i = 0; i < NumCallArgs; ++i) {
Sz += buildSExpr(CallArgs[i], CallCtx);
}
NodeVec[Root].setSize(Sz + 1);
return Sz + 1;
} else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
CallingContext LRCallCtx(CE->getDirectCallee());
LRCallCtx.NumArgs = CE->getNumArgs();
LRCallCtx.FunArgs = CE->getArgs();
LRCallCtx.PrevCtx = CallCtx;
return buildSExpr(At->getArg(), &LRCallCtx);
}
// Treat smart pointers and iterators as pointers;
// ignore the * and -> operators.
if (const CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
OverloadedOperatorKind k = OE->getOperator();
if (k == OO_Star) {
if (NDeref) ++(*NDeref);
return buildSExpr(OE->getArg(0), CallCtx, NDeref);
}
else if (k == OO_Arrow) {
return buildSExpr(OE->getArg(0), CallCtx, NDeref);
}
}
unsigned NumCallArgs = CE->getNumArgs();
unsigned Root = makeCall(NumCallArgs, 0);
unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
const Expr* const* CallArgs = CE->getArgs();
for (unsigned i = 0; i < NumCallArgs; ++i) {
Sz += buildSExpr(CallArgs[i], CallCtx);
}
NodeVec[Root].setSize(Sz+1);
return Sz+1;
} else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
unsigned Root = makeBinary();
unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
Sz += buildSExpr(BOE->getRHS(), CallCtx);
NodeVec[Root].setSize(Sz);
return Sz;
} else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
// Ignore & and * operators -- they're no-ops.
// However, we try to figure out whether the expression is a pointer,
// so we can use . and -> appropriately in error messages.
if (UOE->getOpcode() == UO_Deref) {
if (NDeref) ++(*NDeref);
return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
}
if (UOE->getOpcode() == UO_AddrOf) {
if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
if (DRE->getDecl()->isCXXInstanceMember()) {
// This is a pointer-to-member expression, e.g. &MyClass::mu_.
// We interpret this syntax specially, as a wildcard.
unsigned Root = makeDot(DRE->getDecl(), false);
makeWildcard();
NodeVec[Root].setSize(2);
return 2;
}
}
if (NDeref) --(*NDeref);
return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
}
unsigned Root = makeUnary();
unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
NodeVec[Root].setSize(Sz);
return Sz;
} else if (const ArraySubscriptExpr *ASE =
dyn_cast<ArraySubscriptExpr>(Exp)) {
unsigned Root = makeIndex();
unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
Sz += buildSExpr(ASE->getIdx(), CallCtx);
NodeVec[Root].setSize(Sz);
return Sz;
} else if (const AbstractConditionalOperator *CE =
dyn_cast<AbstractConditionalOperator>(Exp)) {
unsigned Root = makeUnknown(3);
unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
NodeVec[Root].setSize(Sz);
return Sz;
} else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
unsigned Root = makeUnknown(3);
unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
Sz += buildSExpr(CE->getLHS(), CallCtx);
Sz += buildSExpr(CE->getRHS(), CallCtx);
NodeVec[Root].setSize(Sz);
return Sz;
} else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
} else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
} else if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
} else if (const CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
} else if (isa<CharacterLiteral>(Exp) ||
isa<CXXNullPtrLiteralExpr>(Exp) ||
isa<GNUNullExpr>(Exp) ||
isa<CXXBoolLiteralExpr>(Exp) ||
isa<FloatingLiteral>(Exp) ||
isa<ImaginaryLiteral>(Exp) ||
isa<IntegerLiteral>(Exp) ||
isa<StringLiteral>(Exp) ||
isa<ObjCStringLiteral>(Exp)) {
makeNop();
return 1; // FIXME: Ignore literals for now
} else {
makeNop();
return 1; // Ignore. FIXME: mark as invalid expression?
}
}
/// \brief Construct a SExpr from an expression.
/// \param MutexExp The original mutex expression within an attribute
/// \param DeclExp An expression involving the Decl on which the attribute
/// occurs.
/// \param D The declaration to which the lock/unlock attribute is attached.
void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp,
const NamedDecl *D, VarDecl *SelfDecl = 0) {
CallingContext CallCtx(D);
if (MutexExp) {
if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
if (SLit->getString() == StringRef("*"))
// The "*" expr is a universal lock, which essentially turns off
// checks until it is removed from the lockset.
makeUniversal();
else
// Ignore other string literals for now.
makeNop();
return;
}
}
// If we are processing a raw attribute expression, with no substitutions.
if (DeclExp == 0) {
buildSExpr(MutexExp, 0);
return;
}
// Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
// for formal parameters when we call buildMutexID later.
if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
CallCtx.SelfArg = ME->getBase();
CallCtx.SelfArrow = ME->isArrow();
} else if (const CXXMemberCallExpr *CE =
dyn_cast<CXXMemberCallExpr>(DeclExp)) {
CallCtx.SelfArg = CE->getImplicitObjectArgument();
CallCtx.SelfArrow = isCalleeArrow(CE->getCallee());
CallCtx.NumArgs = CE->getNumArgs();
CallCtx.FunArgs = CE->getArgs();
} else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
CallCtx.NumArgs = CE->getNumArgs();
CallCtx.FunArgs = CE->getArgs();
} else if (const CXXConstructExpr *CE =
dyn_cast<CXXConstructExpr>(DeclExp)) {
CallCtx.SelfArg = 0; // Will be set below
CallCtx.NumArgs = CE->getNumArgs();
CallCtx.FunArgs = CE->getArgs();
} else if (D && isa<CXXDestructorDecl>(D)) {
// There's no such thing as a "destructor call" in the AST.
CallCtx.SelfArg = DeclExp;
}
// Hack to handle constructors, where self cannot be recovered from
// the expression.
if (SelfDecl && !CallCtx.SelfArg) {
DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
SelfDecl->getLocation());
CallCtx.SelfArg = &SelfDRE;
// If the attribute has no arguments, then assume the argument is "this".
if (MutexExp == 0)
buildSExpr(CallCtx.SelfArg, 0);
else // For most attributes.
buildSExpr(MutexExp, &CallCtx);
return;
}
// If the attribute has no arguments, then assume the argument is "this".
if (MutexExp == 0)
buildSExpr(CallCtx.SelfArg, 0);
else // For most attributes.
buildSExpr(MutexExp, &CallCtx);
}
/// \brief Get index of next sibling of node i.
unsigned getNextSibling(unsigned i) const {
return i + NodeVec[i].size();
}
public:
explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
/// \param MutexExp The original mutex expression within an attribute
/// \param DeclExp An expression involving the Decl on which the attribute
/// occurs.
/// \param D The declaration to which the lock/unlock attribute is attached.
/// Caller must check isValid() after construction.
SExpr(const Expr* MutexExp, const Expr *DeclExp, const NamedDecl* D,
VarDecl *SelfDecl=0) {
buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl);
}
/// Return true if this is a valid decl sequence.
/// Caller must call this by hand after construction to handle errors.
bool isValid() const {
return !NodeVec.empty();
}
bool shouldIgnore() const {
// Nop is a mutex that we have decided to deliberately ignore.
assert(NodeVec.size() > 0 && "Invalid Mutex");
return NodeVec[0].kind() == EOP_Nop;
}
bool isUniversal() const {
assert(NodeVec.size() > 0 && "Invalid Mutex");
return NodeVec[0].kind() == EOP_Universal;
}
/// Issue a warning about an invalid lock expression
static void warnInvalidLock(ThreadSafetyHandler &Handler,
const Expr *MutexExp,
const Expr *DeclExp, const NamedDecl* D) {
SourceLocation Loc;
if (DeclExp)
Loc = DeclExp->getExprLoc();
// FIXME: add a note about the attribute location in MutexExp or D
if (Loc.isValid())
Handler.handleInvalidLockExp(Loc);
}
bool operator==(const SExpr &other) const {
return NodeVec == other.NodeVec;
}
bool operator!=(const SExpr &other) const {
return !(*this == other);
}
bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
if (NodeVec[i].matches(Other.NodeVec[j])) {
unsigned ni = NodeVec[i].arity();
unsigned nj = Other.NodeVec[j].arity();
unsigned n = (ni < nj) ? ni : nj;
bool Result = true;
unsigned ci = i+1; // first child of i
unsigned cj = j+1; // first child of j
for (unsigned k = 0; k < n;
++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
Result = Result && matches(Other, ci, cj);
}
return Result;
}
return false;
}
// A partial match between a.mu and b.mu returns true a and b have the same
// type (and thus mu refers to the same mutex declaration), regardless of
// whether a and b are different objects or not.
bool partiallyMatches(const SExpr &Other) const {
if (NodeVec[0].kind() == EOP_Dot)
return NodeVec[0].matches(Other.NodeVec[0]);
return false;
}
/// \brief Pretty print a lock expression for use in error messages.
std::string toString(unsigned i = 0) const {
assert(isValid());
if (i >= NodeVec.size())
return "";
const SExprNode* N = &NodeVec[i];
switch (N->kind()) {
case EOP_Nop:
return "_";
case EOP_Wildcard:
return "(?)";
case EOP_Universal:
return "*";
case EOP_This:
return "this";
case EOP_NVar:
case EOP_LVar: {
return N->getNamedDecl()->getNameAsString();
}
case EOP_Dot: {
if (NodeVec[i+1].kind() == EOP_Wildcard) {
std::string S = "&";
S += N->getNamedDecl()->getQualifiedNameAsString();
return S;
}
std::string FieldName = N->getNamedDecl()->getNameAsString();
if (NodeVec[i+1].kind() == EOP_This)
return FieldName;
std::string S = toString(i+1);
if (N->isArrow())
return S + "->" + FieldName;
else
return S + "." + FieldName;
}
case EOP_Call: {
std::string S = toString(i+1) + "(";
unsigned NumArgs = N->arity()-1;
unsigned ci = getNextSibling(i+1);
for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
S += toString(ci);
if (k+1 < NumArgs) S += ",";
}
S += ")";
return S;
}
case EOP_MCall: {
std::string S = "";
if (NodeVec[i+1].kind() != EOP_This)
S = toString(i+1) + ".";
if (const NamedDecl *D = N->getFunctionDecl())
S += D->getNameAsString() + "(";
else
S += "#(";
unsigned NumArgs = N->arity()-1;
unsigned ci = getNextSibling(i+1);
for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
S += toString(ci);
if (k+1 < NumArgs) S += ",";
}
S += ")";
return S;
}
case EOP_Index: {
std::string S1 = toString(i+1);
std::string S2 = toString(i+1 + NodeVec[i+1].size());
return S1 + "[" + S2 + "]";
}
case EOP_Unary: {
std::string S = toString(i+1);
return "#" + S;
}
case EOP_Binary: {
std::string S1 = toString(i+1);
std::string S2 = toString(i+1 + NodeVec[i+1].size());
return "(" + S1 + "#" + S2 + ")";
}
case EOP_Unknown: {
unsigned NumChildren = N->arity();
if (NumChildren == 0)
return "(...)";
std::string S = "(";
unsigned ci = i+1;
for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
S += toString(ci);
if (j+1 < NumChildren) S += "#";
}
S += ")";
return S;
}
}
return "";
}
};
/// \brief A short list of SExprs
class MutexIDList : public SmallVector<SExpr, 3> {
public:
/// \brief Return true if the list contains the specified SExpr
/// Performs a linear search, because these lists are almost always very small.
bool contains(const SExpr& M) {
for (iterator I=begin(),E=end(); I != E; ++I)
if ((*I) == M) return true;
return false;
}
/// \brief Push M onto list, bud discard duplicates
void push_back_nodup(const SExpr& M) {
if (!contains(M)) push_back(M);
}
};
/// \brief This is a helper class that stores info about the most recent
/// accquire of a Lock.
///
/// The main body of the analysis maps MutexIDs to LockDatas.
struct LockData {
SourceLocation AcquireLoc;
/// \brief LKind stores whether a lock is held shared or exclusively.
/// Note that this analysis does not currently support either re-entrant
/// locking or lock "upgrading" and "downgrading" between exclusive and
/// shared.
///
/// FIXME: add support for re-entrant locking and lock up/downgrading
LockKind LKind;
bool Asserted; // for asserted locks
bool Managed; // for ScopedLockable objects
SExpr UnderlyingMutex; // for ScopedLockable objects
LockData(SourceLocation AcquireLoc, LockKind LKind, bool M=false,
bool Asrt=false)
: AcquireLoc(AcquireLoc), LKind(LKind), Asserted(Asrt), Managed(M),
UnderlyingMutex(Decl::EmptyShell())
{}
LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
: AcquireLoc(AcquireLoc), LKind(LKind), Asserted(false), Managed(false),
UnderlyingMutex(Mu)
{}
bool operator==(const LockData &other) const {
return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
}
bool operator!=(const LockData &other) const {
return !(*this == other);
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(AcquireLoc.getRawEncoding());
ID.AddInteger(LKind);
}
bool isAtLeast(LockKind LK) {
return (LK == LK_Shared) || (LKind == LK_Exclusive);
}
};
/// \brief A FactEntry stores a single fact that is known at a particular point
/// in the program execution. Currently, this is information regarding a lock
/// that is held at that point.
struct FactEntry {
SExpr MutID;
LockData LDat;
FactEntry(const SExpr& M, const LockData& L)
: MutID(M), LDat(L)
{ }
};
typedef unsigned short FactID;
/// \brief FactManager manages the memory for all facts that are created during
/// the analysis of a single routine.
class FactManager {
private:
std::vector<FactEntry> Facts;
public:
FactID newLock(const SExpr& M, const LockData& L) {
Facts.push_back(FactEntry(M,L));
return static_cast<unsigned short>(Facts.size() - 1);
}
const FactEntry& operator[](FactID F) const { return Facts[F]; }
FactEntry& operator[](FactID F) { return Facts[F]; }
};
/// \brief A FactSet is the set of facts that are known to be true at a
/// particular program point. FactSets must be small, because they are
/// frequently copied, and are thus implemented as a set of indices into a
/// table maintained by a FactManager. A typical FactSet only holds 1 or 2
/// locks, so we can get away with doing a linear search for lookup. Note
/// that a hashtable or map is inappropriate in this case, because lookups
/// may involve partial pattern matches, rather than exact matches.
class FactSet {
private:
typedef SmallVector<FactID, 4> FactVec;
FactVec FactIDs;
public:
typedef FactVec::iterator iterator;
typedef FactVec::const_iterator const_iterator;
iterator begin() { return FactIDs.begin(); }
const_iterator begin() const { return FactIDs.begin(); }
iterator end() { return FactIDs.end(); }
const_iterator end() const { return FactIDs.end(); }
bool isEmpty() const { return FactIDs.size() == 0; }
FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
FactID F = FM.newLock(M, L);
FactIDs.push_back(F);
return F;
}
bool removeLock(FactManager& FM, const SExpr& M) {
unsigned n = FactIDs.size();
if (n == 0)
return false;
for (unsigned i = 0; i < n-1; ++i) {
if (FM[FactIDs[i]].MutID.matches(M)) {
FactIDs[i] = FactIDs[n-1];
FactIDs.pop_back();
return true;
}
}
if (FM[FactIDs[n-1]].MutID.matches(M)) {
FactIDs.pop_back();
return true;
}
return false;
}
// Returns an iterator
iterator findLockIter(FactManager &FM, const SExpr &M) {
for (iterator I = begin(), E = end(); I != E; ++I) {
const SExpr &Exp = FM[*I].MutID;
if (Exp.matches(M))
return I;
}
return end();
}
LockData* findLock(FactManager &FM, const SExpr &M) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
const SExpr &Exp = FM[*I].MutID;
if (Exp.matches(M))
return &FM[*I].LDat;
}
return 0;
}
LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
const SExpr &Exp = FM[*I].MutID;
if (Exp.matches(M) || Exp.isUniversal())
return &FM[*I].LDat;
}
return 0;
}
FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
for (const_iterator I=begin(), E=end(); I != E; ++I) {
const SExpr& Exp = FM[*I].MutID;
if (Exp.partiallyMatches(M)) return &FM[*I];
}
return 0;
}
};
/// A Lockset maps each SExpr (defined above) to information about how it has
/// been locked.
typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
class LocalVariableMap;
/// A side (entry or exit) of a CFG node.
enum CFGBlockSide { CBS_Entry, CBS_Exit };
/// CFGBlockInfo is a struct which contains all the information that is
/// maintained for each block in the CFG. See LocalVariableMap for more
/// information about the contexts.
struct CFGBlockInfo {
FactSet EntrySet; // Lockset held at entry to block
FactSet ExitSet; // Lockset held at exit from block
LocalVarContext EntryContext; // Context held at entry to block
LocalVarContext ExitContext; // Context held at exit from block
SourceLocation EntryLoc; // Location of first statement in block
SourceLocation ExitLoc; // Location of last statement in block.
unsigned EntryIndex; // Used to replay contexts later
bool Reachable; // Is this block reachable?
const FactSet &getSet(CFGBlockSide Side) const {
return Side == CBS_Entry ? EntrySet : ExitSet;
}
SourceLocation getLocation(CFGBlockSide Side) const {
return Side == CBS_Entry ? EntryLoc : ExitLoc;
}
private:
CFGBlockInfo(LocalVarContext EmptyCtx)
: EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
{ }
public:
static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
};
// A LocalVariableMap maintains a map from local variables to their currently
// valid definitions. It provides SSA-like functionality when traversing the
// CFG. Like SSA, each definition or assignment to a variable is assigned a
// unique name (an integer), which acts as the SSA name for that definition.
// The total set of names is shared among all CFG basic blocks.
// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
// with their SSA-names. Instead, we compute a Context for each point in the
// code, which maps local variables to the appropriate SSA-name. This map
// changes with each assignment.
//
// The map is computed in a single pass over the CFG. Subsequent analyses can
// then query the map to find the appropriate Context for a statement, and use
// that Context to look up the definitions of variables.
class LocalVariableMap {
public:
typedef LocalVarContext Context;
/// A VarDefinition consists of an expression, representing the value of the
/// variable, along with the context in which that expression should be
/// interpreted. A reference VarDefinition does not itself contain this
/// information, but instead contains a pointer to a previous VarDefinition.
struct VarDefinition {
public:
friend class LocalVariableMap;
const NamedDecl *Dec; // The original declaration for this variable.
const Expr *Exp; // The expression for this variable, OR
unsigned Ref; // Reference to another VarDefinition
Context Ctx; // The map with which Exp should be interpreted.
bool isReference() { return !Exp; }
private:
// Create ordinary variable definition
VarDefinition(const NamedDecl *D, const Expr *E, Context C)
: Dec(D), Exp(E), Ref(0), Ctx(C)
{ }
// Create reference to previous definition
VarDefinition(const NamedDecl *D, unsigned R, Context C)
: Dec(D), Exp(0), Ref(R), Ctx(C)
{ }
};
private:
Context::Factory ContextFactory;
std::vector<VarDefinition> VarDefinitions;
std::vector<unsigned> CtxIndices;
std::vector<std::pair<Stmt*, Context> > SavedContexts;
public:
LocalVariableMap() {
// index 0 is a placeholder for undefined variables (aka phi-nodes).
VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
}
/// Look up a definition, within the given context.
const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
const unsigned *i = Ctx.lookup(D);
if (!i)
return 0;
assert(*i < VarDefinitions.size());
return &VarDefinitions[*i];
}
/// Look up the definition for D within the given context. Returns
/// NULL if the expression is not statically known. If successful, also
/// modifies Ctx to hold the context of the return Expr.
const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
const unsigned *P = Ctx.lookup(D);
if (!P)
return 0;
unsigned i = *P;
while (i > 0) {
if (VarDefinitions[i].Exp) {
Ctx = VarDefinitions[i].Ctx;
return VarDefinitions[i].Exp;
}
i = VarDefinitions[i].Ref;
}
return 0;
}
Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
/// Return the next context after processing S. This function is used by
/// clients of the class to get the appropriate context when traversing the
/// CFG. It must be called for every assignment or DeclStmt.
Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
if (SavedContexts[CtxIndex+1].first == S) {
CtxIndex++;
Context Result = SavedContexts[CtxIndex].second;
return Result;
}
return C;
}
void dumpVarDefinitionName(unsigned i) {
if (i == 0) {
llvm::errs() << "Undefined";
return;
}
const NamedDecl *Dec = VarDefinitions[i].Dec;
if (!Dec) {
llvm::errs() << "<<NULL>>";
return;
}
Dec->printName(llvm::errs());
llvm::errs() << "." << i << " " << ((const void*) Dec);
}
/// Dumps an ASCII representation of the variable map to llvm::errs()
void dump() {
for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
const Expr *Exp = VarDefinitions[i].Exp;
unsigned Ref = VarDefinitions[i].Ref;
dumpVarDefinitionName(i);
llvm::errs() << " = ";
if (Exp) Exp->dump();
else {
dumpVarDefinitionName(Ref);
llvm::errs() << "\n";
}
}
}
/// Dumps an ASCII representation of a Context to llvm::errs()
void dumpContext(Context C) {
for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
const NamedDecl *D = I.getKey();
D->printName(llvm::errs());
const unsigned *i = C.lookup(D);
llvm::errs() << " -> ";
dumpVarDefinitionName(*i);
llvm::errs() << "\n";
}
}
/// Builds the variable map.
void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
std::vector<CFGBlockInfo> &BlockInfo);
protected:
// Get the current context index
unsigned getContextIndex() { return SavedContexts.size()-1; }
// Save the current context for later replay
void saveContext(Stmt *S, Context C) {
SavedContexts.push_back(std::make_pair(S,C));
}
// Adds a new definition to the given context, and returns a new context.
// This method should be called when declaring a new variable.
Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
assert(!Ctx.contains(D));
unsigned newID = VarDefinitions.size();
Context NewCtx = ContextFactory.add(Ctx, D, newID);
VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
return NewCtx;
}
// Add a new reference to an existing definition.
Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
unsigned newID = VarDefinitions.size();
Context NewCtx = ContextFactory.add(Ctx, D, newID);
VarDefinitions.push_back(VarDefinition(D, i, Ctx));
return NewCtx;
}
// Updates a definition only if that definition is already in the map.
// This method should be called when assigning to an existing variable.
Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
if (Ctx.contains(D)) {
unsigned newID = VarDefinitions.size();
Context NewCtx = ContextFactory.remove(Ctx, D);
NewCtx = ContextFactory.add(NewCtx, D, newID);
VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
return NewCtx;
}
return Ctx;
}
// Removes a definition from the context, but keeps the variable name
// as a valid variable. The index 0 is a placeholder for cleared definitions.
Context clearDefinition(const NamedDecl *D, Context Ctx) {
Context NewCtx = Ctx;
if (NewCtx.contains(D)) {
NewCtx = ContextFactory.remove(NewCtx, D);
NewCtx = ContextFactory.add(NewCtx, D, 0);
}
return NewCtx;
}
// Remove a definition entirely frmo the context.
Context removeDefinition(const NamedDecl *D, Context Ctx) {
Context NewCtx = Ctx;
if (NewCtx.contains(D)) {
NewCtx = ContextFactory.remove(NewCtx, D);
}
return NewCtx;
}
Context intersectContexts(Context C1, Context C2);
Context createReferenceContext(Context C);
void intersectBackEdge(Context C1, Context C2);
friend class VarMapBuilder;
};
// This has to be defined after LocalVariableMap.
CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
return CFGBlockInfo(M.getEmptyContext());
}
/// Visitor which builds a LocalVariableMap
class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
public:
LocalVariableMap* VMap;
LocalVariableMap::Context Ctx;
VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
: VMap(VM), Ctx(C) {}
void VisitDeclStmt(DeclStmt *S);
void VisitBinaryOperator(BinaryOperator *BO);
};
// Add new local variables to the variable map
void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
bool modifiedCtx = false;
DeclGroupRef DGrp = S->getDeclGroup();
for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
Expr *E = VD->getInit();
// Add local variables with trivial type to the variable map
QualType T = VD->getType();
if (T.isTrivialType(VD->getASTContext())) {
Ctx = VMap->addDefinition(VD, E, Ctx);
modifiedCtx = true;
}
}
}
if (modifiedCtx)
VMap->saveContext(S, Ctx);
}
// Update local variable definitions in variable map
void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
if (!BO->isAssignmentOp())
return;
Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
// Update the variable map and current context.
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
ValueDecl *VDec = DRE->getDecl();
if (Ctx.lookup(VDec)) {
if (BO->getOpcode() == BO_Assign)
Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
else
// FIXME -- handle compound assignment operators
Ctx = VMap->clearDefinition(VDec, Ctx);
VMap->saveContext(BO, Ctx);
}
}
}
// Computes the intersection of two contexts. The intersection is the
// set of variables which have the same definition in both contexts;
// variables with different definitions are discarded.
LocalVariableMap::Context
LocalVariableMap::intersectContexts(Context C1, Context C2) {
Context Result = C1;
for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
const NamedDecl *Dec = I.getKey();
unsigned i1 = I.getData();
const unsigned *i2 = C2.lookup(Dec);
if (!i2) // variable doesn't exist on second path
Result = removeDefinition(Dec, Result);
else if (*i2 != i1) // variable exists, but has different definition
Result = clearDefinition(Dec, Result);
}
return Result;
}
// For every variable in C, create a new variable that refers to the
// definition in C. Return a new context that contains these new variables.
// (We use this for a naive implementation of SSA on loop back-edges.)
LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
Context Result = getEmptyContext();
for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
const NamedDecl *Dec = I.getKey();
unsigned i = I.getData();
Result = addReference(Dec, i, Result);
}
return Result;
}
// This routine also takes the intersection of C1 and C2, but it does so by
// altering the VarDefinitions. C1 must be the result of an earlier call to
// createReferenceContext.
void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
const NamedDecl *Dec = I.getKey();
unsigned i1 = I.getData();
VarDefinition *VDef = &VarDefinitions[i1];
assert(VDef->isReference());
const unsigned *i2 = C2.lookup(Dec);
if (!i2 || (*i2 != i1))
VDef->Ref = 0; // Mark this variable as undefined
}
}
// Traverse the CFG in topological order, so all predecessors of a block
// (excluding back-edges) are visited before the block itself. At
// each point in the code, we calculate a Context, which holds the set of
// variable definitions which are visible at that point in execution.
// Visible variables are mapped to their definitions using an array that
// contains all definitions.
//
// At join points in the CFG, the set is computed as the intersection of
// the incoming sets along each edge, E.g.
//
// { Context | VarDefinitions }
// int x = 0; { x -> x1 | x1 = 0 }
// int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
// if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
// else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
// ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
//
// This is essentially a simpler and more naive version of the standard SSA
// algorithm. Those definitions that remain in the intersection are from blocks
// that strictly dominate the current block. We do not bother to insert proper
// phi nodes, because they are not used in our analysis; instead, wherever
// a phi node would be required, we simply remove that definition from the
// context (E.g. x above).
//
// The initial traversal does not capture back-edges, so those need to be
// handled on a separate pass. Whenever the first pass encounters an
// incoming back edge, it duplicates the context, creating new definitions
// that refer back to the originals. (These correspond to places where SSA
// might have to insert a phi node.) On the second pass, these definitions are
// set to NULL if the variable has changed on the back-edge (i.e. a phi
// node was actually required.) E.g.
//
// { Context | VarDefinitions }
// int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
// while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
// x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
// ... { y -> y1 | x3 = 2, x2 = 1, ... }
//
void LocalVariableMap::traverseCFG(CFG *CFGraph,
PostOrderCFGView *SortedGraph,
std::vector<CFGBlockInfo> &BlockInfo) {
PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
CtxIndices.resize(CFGraph->getNumBlockIDs());
for (PostOrderCFGView::iterator I = SortedGraph->begin(),
E = SortedGraph->end(); I!= E; ++I) {
const CFGBlock *CurrBlock = *I;
int CurrBlockID = CurrBlock->getBlockID();
CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
VisitedBlocks.insert(CurrBlock);
// Calculate the entry context for the current block
bool HasBackEdges = false;
bool CtxInit = true;
for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
PE = CurrBlock->pred_end(); PI != PE; ++PI) {
// if *PI -> CurrBlock is a back edge, so skip it
if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
HasBackEdges = true;
continue;
}
int PrevBlockID = (*PI)->getBlockID();
CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
if (CtxInit) {
CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
CtxInit = false;
}
else {
CurrBlockInfo->EntryContext =
intersectContexts(CurrBlockInfo->EntryContext,
PrevBlockInfo->ExitContext);
}
}
// Duplicate the context if we have back-edges, so we can call
// intersectBackEdges later.
if (HasBackEdges)
CurrBlockInfo->EntryContext =
createReferenceContext(CurrBlockInfo->EntryContext);
// Create a starting context index for the current block
saveContext(0, CurrBlockInfo->EntryContext);
CurrBlockInfo->EntryIndex = getContextIndex();
// Visit all the statements in the basic block.
VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
BE = CurrBlock->end(); BI != BE; ++BI) {
switch (BI->getKind()) {
case CFGElement::Statement: {
CFGStmt CS = BI->castAs<CFGStmt>();
VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
break;
}
default:
break;
}
}
CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
// Mark variables on back edges as "unknown" if they've been changed.
for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
SE = CurrBlock->succ_end(); SI != SE; ++SI) {
// if CurrBlock -> *SI is *not* a back edge
if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
continue;
CFGBlock *FirstLoopBlock = *SI;
Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
Context LoopEnd = CurrBlockInfo->ExitContext;
intersectBackEdge(LoopBegin, LoopEnd);
}
}
// Put an extra entry at the end of the indexed context array
unsigned exitID = CFGraph->getExit().getBlockID();
saveContext(0, BlockInfo[exitID].ExitContext);
}
/// Find the appropriate source locations to use when producing diagnostics for
/// each block in the CFG.
static void findBlockLocations(CFG *CFGraph,
PostOrderCFGView *SortedGraph,
std::vector<CFGBlockInfo> &BlockInfo) {
for (PostOrderCFGView::iterator I = SortedGraph->begin(),
E = SortedGraph->end(); I!= E; ++I) {
const CFGBlock *CurrBlock = *I;
CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
// Find the source location of the last statement in the block, if the
// block is not empty.
if (const Stmt *S = CurrBlock->getTerminator()) {
CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
} else {
for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
BE = CurrBlock->rend(); BI != BE; ++BI) {
// FIXME: Handle other CFGElement kinds.
if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
break;
}
}
}
if (!CurrBlockInfo->ExitLoc.isInvalid()) {
// This block contains at least one statement. Find the source location
// of the first statement in the block.
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
BE = CurrBlock->end(); BI != BE; ++BI) {
// FIXME: Handle other CFGElement kinds.
if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
break;
}
}
} else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
CurrBlock != &CFGraph->getExit()) {
// The block is empty, and has a single predecessor. Use its exit
// location.
CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
}
}
}
/// \brief Class which implements the core thread safety analysis routines.
class ThreadSafetyAnalyzer {
friend class BuildLockset;
ThreadSafetyHandler &Handler;
LocalVariableMap LocalVarMap;
FactManager FactMan;
std::vector<CFGBlockInfo> BlockInfo;
public:
ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
void removeLock(FactSet &FSet, const SExpr &Mutex,
SourceLocation UnlockLoc, bool FullyRemove=false);
template <typename AttrType>
void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
const NamedDecl *D, VarDecl *SelfDecl=0);
template <class AttrType>
void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
const NamedDecl *D,
const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
Expr *BrE, bool Neg);
const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
bool &Negate);
void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
const CFGBlock* PredBlock,
const CFGBlock *CurrBlock);
void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
SourceLocation JoinLoc,
LockErrorKind LEK1, LockErrorKind LEK2,
bool Modify=true);
void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
SourceLocation JoinLoc, LockErrorKind LEK1,
bool Modify=true) {
intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
}
void runAnalysis(AnalysisDeclContext &AC);
};
/// \brief Add a new lock to the lockset, warning if the lock is already there.
/// \param Mutex -- the Mutex expression for the lock
/// \param LDat -- the LockData for the lock
void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
const LockData &LDat) {
// FIXME: deal with acquired before/after annotations.
// FIXME: Don't always warn when we have support for reentrant locks.
if (Mutex.shouldIgnore())
return;
if (FSet.findLock(FactMan, Mutex)) {
if (!LDat.Asserted)
Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
} else {
FSet.addLock(FactMan, Mutex, LDat);
}
}
/// \brief Remove a lock from the lockset, warning if the lock is not there.
/// \param Mutex The lock expression corresponding to the lock to be removed
/// \param UnlockLoc The source location of the unlock (only used in error msg)
void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
const SExpr &Mutex,
SourceLocation UnlockLoc,
bool FullyRemove) {
if (Mutex.shouldIgnore())
return;
const LockData *LDat = FSet.findLock(FactMan, Mutex);
if (!LDat) {
Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
return;
}
if (LDat->UnderlyingMutex.isValid()) {
// This is scoped lockable object, which manages the real mutex.
if (FullyRemove) {
// We're destroying the managing object.
// Remove the underlying mutex if it exists; but don't warn.
if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
FSet.removeLock(FactMan, LDat->UnderlyingMutex);
} else {
// We're releasing the underlying mutex, but not destroying the
// managing object. Warn on dual release.
if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
UnlockLoc);
}
FSet.removeLock(FactMan, LDat->UnderlyingMutex);
return;
}
}
FSet.removeLock(FactMan, Mutex);
}
/// \brief Extract the list of mutexIDs from the attribute on an expression,
/// and push them onto Mtxs, discarding any duplicates.
template <typename AttrType>
void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
Expr *Exp, const NamedDecl *D,
VarDecl *SelfDecl) {
typedef typename AttrType::args_iterator iterator_type;
if (Attr->args_size() == 0) {
// The mutex held is the "this" object.
SExpr Mu(0, Exp, D, SelfDecl);
if (!Mu.isValid())
SExpr::warnInvalidLock(Handler, 0, Exp, D);
else
Mtxs.push_back_nodup(Mu);
return;
}
for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
SExpr Mu(*I, Exp, D, SelfDecl);
if (!Mu.isValid())
SExpr::warnInvalidLock(Handler, *I, Exp, D);
else
Mtxs.push_back_nodup(Mu);
}
}
/// \brief Extract the list of mutexIDs from a trylock attribute. If the
/// trylock applies to the given edge, then push them onto Mtxs, discarding
/// any duplicates.
template <class AttrType>
void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
Expr *Exp, const NamedDecl *D,
const CFGBlock *PredBlock,
const CFGBlock *CurrBlock,
Expr *BrE, bool Neg) {
// Find out which branch has the lock
bool branch = 0;
if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
branch = BLE->getValue();
}
else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
branch = ILE->getValue().getBoolValue();
}
int branchnum = branch ? 0 : 1;
if (Neg) branchnum = !branchnum;
// If we've taken the trylock branch, then add the lock
int i = 0;
for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
if (*SI == CurrBlock && i == branchnum) {
getMutexIDs(Mtxs, Attr, Exp, D);
}
}
}
bool getStaticBooleanValue(Expr* E, bool& TCond) {
if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
TCond = false;
return true;
} else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
TCond = BLE->getValue();
return true;
} else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
TCond = ILE->getValue().getBoolValue();
return true;
} else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
return getStaticBooleanValue(CE->getSubExpr(), TCond);
}
return false;
}
// If Cond can be traced back to a function call, return the call expression.
// The negate variable should be called with false, and will be set to true
// if the function call is negated, e.g. if (!mu.tryLock(...))
const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
LocalVarContext C,
bool &Negate) {
if (!Cond)
return 0;
if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
return CallExp;
}
else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
}
else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
}
else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
}
else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
return getTrylockCallExpr(E, C, Negate);
}
else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
if (UOP->getOpcode() == UO_LNot) {
Negate = !Negate;
return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
}
return 0;
}
else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
if (BOP->getOpcode() == BO_NE)
Negate = !Negate;
bool TCond = false;
if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
if (!TCond) Negate = !Negate;
return getTrylockCallExpr(BOP->getLHS(), C, Negate);
}
TCond = false;
if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
if (!TCond) Negate = !Negate;
return getTrylockCallExpr(BOP->getRHS(), C, Negate);
}
return 0;
}
if (BOP->getOpcode() == BO_LAnd) {
// LHS must have been evaluated in a different block.
return getTrylockCallExpr(BOP->getRHS(), C, Negate);
}
if (BOP->getOpcode() == BO_LOr) {
return getTrylockCallExpr(BOP->getRHS(), C, Negate);
}
return 0;
}
return 0;
}
/// \brief Find the lockset that holds on the edge between PredBlock
/// and CurrBlock. The edge set is the exit set of PredBlock (passed
/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
const FactSet &ExitSet,
const CFGBlock *PredBlock,
const CFGBlock *CurrBlock) {
Result = ExitSet;
const Stmt *Cond = PredBlock->getTerminatorCondition();
if (!Cond)
return;
bool Negate = false;
const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
CallExpr *Exp =
const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
if (!Exp)
return;
NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
if(!FunDecl || !FunDecl->hasAttrs())
return;
MutexIDList ExclusiveLocksToAdd;
MutexIDList SharedLocksToAdd;
// If the condition is a call to a Trylock function, then grab the attributes
AttrVec &ArgAttrs = FunDecl->getAttrs();
for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
Attr *Attr = ArgAttrs[i];
switch (Attr->getKind()) {
case attr::ExclusiveTrylockFunction: {
ExclusiveTrylockFunctionAttr *A =
cast<ExclusiveTrylockFunctionAttr>(Attr);
getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
PredBlock, CurrBlock, A->getSuccessValue(), Negate);
break;
}
case attr::SharedTrylockFunction: {
SharedTrylockFunctionAttr *A =
cast<SharedTrylockFunctionAttr>(Attr);
getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
PredBlock, CurrBlock, A->getSuccessValue(), Negate);
break;
}
default:
break;
}
}
// Add and remove locks.
SourceLocation Loc = Exp->getExprLoc();
for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
addLock(Result, ExclusiveLocksToAdd[i],
LockData(Loc, LK_Exclusive));
}
for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
addLock(Result, SharedLocksToAdd[i],
LockData(Loc, LK_Shared));
}
}
/// \brief We use this class to visit different types of expressions in
/// CFGBlocks, and build up the lockset.
/// An expression may cause us to add or remove locks from the lockset, or else
/// output error messages related to missing locks.
/// FIXME: In future, we may be able to not inherit from a visitor.
class BuildLockset : public StmtVisitor<BuildLockset> {
friend class ThreadSafetyAnalyzer;
ThreadSafetyAnalyzer *Analyzer;
FactSet FSet;
LocalVariableMap::Context LVarCtx;
unsigned CtxIndex;
// Helper functions
const ValueDecl *getValueDecl(const Expr *Exp);
void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
Expr *MutexExp, ProtectedOperationKind POK);
void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp);
void checkAccess(const Expr *Exp, AccessKind AK);
void checkPtAccess(const Expr *Exp, AccessKind AK);
void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
public:
BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
: StmtVisitor<BuildLockset>(),
Analyzer(Anlzr),
FSet(Info.EntrySet),
LVarCtx(Info.EntryContext),
CtxIndex(Info.EntryIndex)
{}
void VisitUnaryOperator(UnaryOperator *UO);
void VisitBinaryOperator(BinaryOperator *BO);
void VisitCastExpr(CastExpr *CE);
void VisitCallExpr(CallExpr *Exp);
void VisitCXXConstructExpr(CXXConstructExpr *Exp);
void VisitDeclStmt(DeclStmt *S);
};
/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
const ValueDecl *BuildLockset::getValueDecl(const Expr *Exp) {
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Exp))
return getValueDecl(CE->getSubExpr());
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
return DR->getDecl();
if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
return ME->getMemberDecl();
return 0;
}
/// \brief Warn if the LSet does not contain a lock sufficient to protect access
/// of at least the passed in AccessKind.
void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
AccessKind AK, Expr *MutexExp,
ProtectedOperationKind POK) {
LockKind LK = getLockKindFromAccessKind(AK);
SExpr Mutex(MutexExp, Exp, D);
if (!Mutex.isValid()) {
SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
return;
} else if (Mutex.shouldIgnore()) {
return;
}
LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
bool NoError = true;
if (!LDat) {
// No exact match found. Look for a partial match.
FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
if (FEntry) {
// Warn that there's no precise match.
LDat = &FEntry->LDat;
std::string PartMatchStr = FEntry->MutID.toString();
StringRef PartMatchName(PartMatchStr);
Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
Exp->getExprLoc(), &PartMatchName);
} else {
// Warn that there's no match at all.
Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
Exp->getExprLoc());
}
NoError = false;
}
// Make sure the mutex we found is the right kind.
if (NoError && LDat && !LDat->isAtLeast(LK))
Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
Exp->getExprLoc());
}
/// \brief Warn if the LSet contains the given lock.
void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr* Exp,
Expr *MutexExp) {
SExpr Mutex(MutexExp, Exp, D);
if (!Mutex.isValid()) {
SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
return;
}
LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
if (LDat) {
std::string DeclName = D->getNameAsString();
StringRef DeclNameSR (DeclName);
Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(),
Exp->getExprLoc());
}
}
/// \brief Checks guarded_by and pt_guarded_by attributes.
/// Whenever we identify an access (read or write) to a DeclRefExpr that is
/// marked with guarded_by, we must ensure the appropriate mutexes are held.
/// Similarly, we check if the access is to an expression that dereferences
/// a pointer marked with pt_guarded_by.
void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) {
Exp = Exp->IgnoreParenCasts();
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
// For dereferences
if (UO->getOpcode() == clang::UO_Deref)
checkPtAccess(UO->getSubExpr(), AK);
return;
}
if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
if (Analyzer->Handler.issueBetaWarnings()) {
checkPtAccess(AE->getLHS(), AK);
return;
}
}
if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
if (ME->isArrow())
checkPtAccess(ME->getBase(), AK);
else
checkAccess(ME->getBase(), AK);
}
const ValueDecl *D = getValueDecl(Exp);
if (!D || !D->hasAttrs())
return;
if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
Exp->getExprLoc());
const AttrVec &ArgAttrs = D->getAttrs();
for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
}
/// \brief Checks pt_guarded_by and pt_guarded_var attributes.
void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
if (Analyzer->Handler.issueBetaWarnings()) {
while (true) {
if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
Exp = PE->getSubExpr();
continue;
}
if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
if (CE->getCastKind() == CK_ArrayToPointerDecay) {
// If it's an actual array, and not a pointer, then it's elements
// are protected by GUARDED_BY, not PT_GUARDED_BY;
checkAccess(CE->getSubExpr(), AK);
return;
}
Exp = CE->getSubExpr();
continue;
}
break;
}
}
else
Exp = Exp->IgnoreParenCasts();
const ValueDecl *D = getValueDecl(Exp);
if (!D || !D->hasAttrs())
return;
if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
Exp->getExprLoc());
const AttrVec &ArgAttrs = D->getAttrs();
for (unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
if (PtGuardedByAttr *GBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarDereference);
}
/// \brief Process a function call, method call, constructor call,
/// or destructor call. This involves looking at the attributes on the
/// corresponding function/method/constructor/destructor, issuing warnings,
/// and updating the locksets accordingly.
///
/// FIXME: For classes annotated with one of the guarded annotations, we need
/// to treat const method calls as reads and non-const method calls as writes,
/// and check that the appropriate locks are held. Non-const method calls with
/// the same signature as const method calls can be also treated as reads.
///
void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
SourceLocation Loc = Exp->getExprLoc();
const AttrVec &ArgAttrs = D->getAttrs();
MutexIDList ExclusiveLocksToAdd;
MutexIDList SharedLocksToAdd;
MutexIDList LocksToRemove;
for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
Attr *At = const_cast<Attr*>(ArgAttrs[i]);
switch (At->getKind()) {
// When we encounter an exclusive lock function, we need to add the lock
// to our lockset with kind exclusive.
case attr::ExclusiveLockFunction: {
ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D, VD);
break;
}
// When we encounter a shared lock function, we need to add the lock
// to our lockset with kind shared.
case attr::SharedLockFunction: {
SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D, VD);
break;
}
// An assert will add a lock to the lockset, but will not generate
// a warning if it is already there, and will not generate a warning
// if it is not removed.
case attr::AssertExclusiveLock: {
AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
MutexIDList AssertLocks;
Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
for (unsigned i=0,n=AssertLocks.size(); i<n; ++i) {
Analyzer->addLock(FSet, AssertLocks[i],
LockData(Loc, LK_Exclusive, false, true));
}
break;
}
case attr::AssertSharedLock: {
AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
MutexIDList AssertLocks;
Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
for (unsigned i=0,n=AssertLocks.size(); i<n; ++i) {
Analyzer->addLock(FSet, AssertLocks[i],
LockData(Loc, LK_Shared, false, true));
}
break;
}
// When we encounter an unlock function, we need to remove unlocked
// mutexes from the lockset, and flag a warning if they are not there.
case attr::UnlockFunction: {
UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
Analyzer->getMutexIDs(LocksToRemove, A, Exp, D, VD);
break;
}
case attr::ExclusiveLocksRequired: {
ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
for (ExclusiveLocksRequiredAttr::args_iterator
I = A->args_begin(), E = A->args_end(); I != E; ++I)
warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
break;
}
case attr::SharedLocksRequired: {
SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
E = A->args_end(); I != E; ++I)
warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
break;
}
case attr::LocksExcluded: {
LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
for (LocksExcludedAttr::args_iterator I = A->args_begin(),
E = A->args_end(); I != E; ++I) {
warnIfMutexHeld(D, Exp, *I);
}
break;
}
// Ignore other (non thread-safety) attributes
default:
break;
}
}
// Figure out if we're calling the constructor of scoped lockable class
bool isScopedVar = false;
if (VD) {
if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
const CXXRecordDecl* PD = CD->getParent();
if (PD && PD->getAttr<ScopedLockableAttr>())
isScopedVar = true;
}
}
// Add locks.
for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
LockData(Loc, LK_Exclusive, isScopedVar));
}
for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
Analyzer->addLock(FSet, SharedLocksToAdd[i],
LockData(Loc, LK_Shared, isScopedVar));
}
// Add the managing object as a dummy mutex, mapped to the underlying mutex.
// FIXME -- this doesn't work if we acquire multiple locks.
if (isScopedVar) {
SourceLocation MLoc = VD->getLocation();
DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
SExpr SMutex(&DRE, 0, 0);
for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
ExclusiveLocksToAdd[i]));
}
for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
SharedLocksToAdd[i]));
}
}
// Remove locks.
// FIXME -- should only fully remove if the attribute refers to 'this'.
bool Dtor = isa<CXXDestructorDecl>(D);
for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
}
}
/// \brief For unary operations which read and write a variable, we need to
/// check whether we hold any required mutexes. Reads are checked in
/// VisitCastExpr.
void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
switch (UO->getOpcode()) {
case clang::UO_PostDec:
case clang::UO_PostInc:
case clang::UO_PreDec:
case clang::UO_PreInc: {
checkAccess(UO->getSubExpr(), AK_Written);
break;
}
default:
break;
}
}
/// For binary operations which assign to a variable (writes), we need to check
/// whether we hold any required mutexes.
/// FIXME: Deal with non-primitive types.
void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
if (!BO->isAssignmentOp())
return;
// adjust the context
LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
checkAccess(BO->getLHS(), AK_Written);
}
/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
/// need to ensure we hold any required mutexes.
/// FIXME: Deal with non-primitive types.
void BuildLockset::VisitCastExpr(CastExpr *CE) {
if (CE->getCastKind() != CK_LValueToRValue)
return;
checkAccess(CE->getSubExpr(), AK_Read);
}
void BuildLockset::VisitCallExpr(CallExpr *Exp) {
if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
// ME can be null when calling a method pointer
CXXMethodDecl *MD = CE->getMethodDecl();
if (ME && MD) {
if (ME->isArrow()) {
if (MD->isConst()) {
checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
} else { // FIXME -- should be AK_Written
checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
}
} else {
if (MD->isConst())
checkAccess(CE->getImplicitObjectArgument(), AK_Read);
else // FIXME -- should be AK_Written
checkAccess(CE->getImplicitObjectArgument(), AK_Read);
}
}
} else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
switch (OE->getOperator()) {
case OO_Equal: {
const Expr *Target = OE->getArg(0);
const Expr *Source = OE->getArg(1);
checkAccess(Target, AK_Written);
checkAccess(Source, AK_Read);
break;
}
case OO_Star:
case OO_Arrow:
case OO_Subscript: {
if (Analyzer->Handler.issueBetaWarnings()) {
const Expr *Obj = OE->getArg(0);
checkAccess(Obj, AK_Read);
checkPtAccess(Obj, AK_Read);
}
break;
}
default: {
const Expr *Obj = OE->getArg(0);
checkAccess(Obj, AK_Read);
break;
}
}
}
NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
if(!D || !D->hasAttrs())
return;
handleCall(Exp, D);
}
void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
const CXXConstructorDecl *D = Exp->getConstructor();
if (D && D->isCopyConstructor()) {
const Expr* Source = Exp->getArg(0);
checkAccess(Source, AK_Read);
}
// FIXME -- only handles constructors in DeclStmt below.
}
void BuildLockset::VisitDeclStmt(DeclStmt *S) {
// adjust the context
LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
DeclGroupRef DGrp = S->getDeclGroup();
for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
Decl *D = *I;
if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
Expr *E = VD->getInit();
// handle constructors that involve temporaries
if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
E = EWC->getSubExpr();
if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
if (!CtorD || !CtorD->hasAttrs())
return;
handleCall(CE, CtorD, VD);
}
}
}
}
/// \brief Compute the intersection of two locksets and issue warnings for any
/// locks in the symmetric difference.
///
/// This function is used at a merge point in the CFG when comparing the lockset
/// of each branch being merged. For example, given the following sequence:
/// A; if () then B; else C; D; we need to check that the lockset after B and C
/// are the same. In the event of a difference, we use the intersection of these
/// two locksets at the start of D.
///
/// \param FSet1 The first lockset.
/// \param FSet2 The second lockset.
/// \param JoinLoc The location of the join point for error reporting
/// \param LEK1 The error message to report if a mutex is missing from LSet1
/// \param LEK2 The error message to report if a mutex is missing from Lset2
void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
const FactSet &FSet2,
SourceLocation JoinLoc,
LockErrorKind LEK1,
LockErrorKind LEK2,
bool Modify) {
FactSet FSet1Orig = FSet1;
// Find locks in FSet2 that conflict or are not in FSet1, and warn.
for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
I != E; ++I) {
const SExpr &FSet2Mutex = FactMan[*I].MutID;
const LockData &LDat2 = FactMan[*I].LDat;
FactSet::iterator I1 = FSet1.findLockIter(FactMan, FSet2Mutex);
if (I1 != FSet1.end()) {
const LockData* LDat1 = &FactMan[*I1].LDat;
if (LDat1->LKind != LDat2.LKind) {
Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
LDat2.AcquireLoc,
LDat1->AcquireLoc);
if (Modify && LDat1->LKind != LK_Exclusive) {
// Take the exclusive lock, which is the one in FSet2.
*I1 = *I;
}
}
else if (LDat1->Asserted && !LDat2.Asserted) {
// The non-asserted lock in FSet2 is the one we want to track.
*I1 = *I;
}
} else {
if (LDat2.UnderlyingMutex.isValid()) {
if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
// If this is a scoped lock that manages another mutex, and if the
// underlying mutex is still held, then warn about the underlying
// mutex.
Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
LDat2.AcquireLoc,
JoinLoc, LEK1);
}
}
else if (!LDat2.Managed && !FSet2Mutex.isUniversal() && !LDat2.Asserted)
Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
LDat2.AcquireLoc,
JoinLoc, LEK1);
}
}
// Find locks in FSet1 that are not in FSet2, and remove them.
for (FactSet::const_iterator I = FSet1Orig.begin(), E = FSet1Orig.end();
I != E; ++I) {
const SExpr &FSet1Mutex = FactMan[*I].MutID;
const LockData &LDat1 = FactMan[*I].LDat;
if (!FSet2.findLock(FactMan, FSet1Mutex)) {
if (LDat1.UnderlyingMutex.isValid()) {
if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
// If this is a scoped lock that manages another mutex, and if the
// underlying mutex is still held, then warn about the underlying
// mutex.
Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
LDat1.AcquireLoc,
JoinLoc, LEK1);
}
}
else if (!LDat1.Managed && !FSet1Mutex.isUniversal() && !LDat1.Asserted)
Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
LDat1.AcquireLoc,
JoinLoc, LEK2);
if (Modify)
FSet1.removeLock(FactMan, FSet1Mutex);
}
}
}
// Return true if block B never continues to its successors.
inline bool neverReturns(const CFGBlock* B) {
if (B->hasNoReturnElement())
return true;
if (B->empty())
return false;
CFGElement Last = B->back();
if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
if (isa<CXXThrowExpr>(S->getStmt()))
return true;
}
return false;
}
/// \brief Check a function's CFG for thread-safety violations.
///
/// We traverse the blocks in the CFG, compute the set of mutexes that are held
/// at the end of each block, and issue warnings for thread safety violations.
/// Each block in the CFG is traversed exactly once.
void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
CFG *CFGraph = AC.getCFG();
if (!CFGraph) return;
const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
// AC.dumpCFG(true);
if (!D)
return; // Ignore anonymous functions for now.
if (D->getAttr<NoThreadSafetyAnalysisAttr>())
return;
// FIXME: Do something a bit more intelligent inside constructor and
// destructor code. Constructors and destructors must assume unique access
// to 'this', so checks on member variable access is disabled, but we should
// still enable checks on other objects.
if (isa<CXXConstructorDecl>(D))
return; // Don't check inside constructors.
if (isa<CXXDestructorDecl>(D))
return; // Don't check inside destructors.
BlockInfo.resize(CFGraph->getNumBlockIDs(),
CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
// We need to explore the CFG via a "topological" ordering.
// That way, we will be guaranteed to have information about required
// predecessor locksets when exploring a new block.
PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
// Mark entry block as reachable
BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
// Compute SSA names for local variables
LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
// Fill in source locations for all CFGBlocks.
findBlockLocations(CFGraph, SortedGraph, BlockInfo);
MutexIDList ExclusiveLocksAcquired;
MutexIDList SharedLocksAcquired;
MutexIDList LocksReleased;
// Add locks from exclusive_locks_required and shared_locks_required
// to initial lockset. Also turn off checking for lock and unlock functions.
// FIXME: is there a more intelligent way to check lock/unlock functions?
if (!SortedGraph->empty() && D->hasAttrs()) {
const CFGBlock *FirstBlock = *SortedGraph->begin();
FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
const AttrVec &ArgAttrs = D->getAttrs();
MutexIDList ExclusiveLocksToAdd;
MutexIDList SharedLocksToAdd;
SourceLocation Loc = D->getLocation();
for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
Attr *Attr = ArgAttrs[i];
Loc = Attr->getLocation();
if (ExclusiveLocksRequiredAttr *A
= dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
} else if (SharedLocksRequiredAttr *A
= dyn_cast<SharedLocksRequiredAttr>(Attr)) {
getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
} else if (UnlockFunctionAttr *A = dyn_cast<UnlockFunctionAttr>(Attr)) {
// UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
// We must ignore such methods.
if (A->args_size() == 0)
return;
// FIXME -- deal with exclusive vs. shared unlock functions?
getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
getMutexIDs(LocksReleased, A, (Expr*) 0, D);
} else if (ExclusiveLockFunctionAttr *A
= dyn_cast<ExclusiveLockFunctionAttr>(Attr)) {
if (A->args_size() == 0)
return;
getMutexIDs(ExclusiveLocksAcquired, A, (Expr*) 0, D);
} else if (SharedLockFunctionAttr *A
= dyn_cast<SharedLockFunctionAttr>(Attr)) {
if (A->args_size() == 0)
return;
getMutexIDs(SharedLocksAcquired, A, (Expr*) 0, D);
} else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
// Don't try to check trylock functions for now
return;
} else if (isa<SharedTrylockFunctionAttr>(Attr)) {
// Don't try to check trylock functions for now
return;
}
}
// FIXME -- Loc can be wrong here.
for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
addLock(InitialLockset, ExclusiveLocksToAdd[i],
LockData(Loc, LK_Exclusive));
}
for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
addLock(InitialLockset, SharedLocksToAdd[i],
LockData(Loc, LK_Shared));
}
}
for (PostOrderCFGView::iterator I = SortedGraph->begin(),
E = SortedGraph->end(); I!= E; ++I) {
const CFGBlock *CurrBlock = *I;
int CurrBlockID = CurrBlock->getBlockID();
CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
// Use the default initial lockset in case there are no predecessors.
VisitedBlocks.insert(CurrBlock);
// Iterate through the predecessor blocks and warn if the lockset for all
// predecessors is not the same. We take the entry lockset of the current
// block to be the intersection of all previous locksets.
// FIXME: By keeping the intersection, we may output more errors in future
// for a lock which is not in the intersection, but was in the union. We
// may want to also keep the union in future. As an example, let's say
// the intersection contains Mutex L, and the union contains L and M.
// Later we unlock M. At this point, we would output an error because we
// never locked M; although the real error is probably that we forgot to
// lock M on all code paths. Conversely, let's say that later we lock M.
// In this case, we should compare against the intersection instead of the
// union because the real error is probably that we forgot to unlock M on
// all code paths.
bool LocksetInitialized = false;
SmallVector<CFGBlock *, 8> SpecialBlocks;
for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
PE = CurrBlock->pred_end(); PI != PE; ++PI) {
// if *PI -> CurrBlock is a back edge
if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
continue;
int PrevBlockID = (*PI)->getBlockID();
CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
// Ignore edges from blocks that can't return.
if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
continue;
// Okay, we can reach this block from the entry.
CurrBlockInfo->Reachable = true;
// If the previous block ended in a 'continue' or 'break' statement, then
// a difference in locksets is probably due to a bug in that block, rather
// than in some other predecessor. In that case, keep the other
// predecessor's lockset.
if (const Stmt *Terminator = (*PI)->getTerminator()) {
if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
SpecialBlocks.push_back(*PI);
continue;
}
}
FactSet PrevLockset;
getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
if (!LocksetInitialized) {
CurrBlockInfo->EntrySet = PrevLockset;
LocksetInitialized = true;
} else {
intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
CurrBlockInfo->EntryLoc,
LEK_LockedSomePredecessors);
}
}
// Skip rest of block if it's not reachable.
if (!CurrBlockInfo->Reachable)
continue;
// Process continue and break blocks. Assume that the lockset for the
// resulting block is unaffected by any discrepancies in them.
for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
SpecialI < SpecialN; ++SpecialI) {
CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
int PrevBlockID = PrevBlock->getBlockID();
CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
if (!LocksetInitialized) {
CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
LocksetInitialized = true;
} else {
// Determine whether this edge is a loop terminator for diagnostic
// purposes. FIXME: A 'break' statement might be a loop terminator, but
// it might also be part of a switch. Also, a subsequent destructor
// might add to the lockset, in which case the real issue might be a
// double lock on the other path.
const Stmt *Terminator = PrevBlock->getTerminator();
bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
FactSet PrevLockset;
getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
PrevBlock, CurrBlock);
// Do not update EntrySet.
intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
PrevBlockInfo->ExitLoc,
IsLoop ? LEK_LockedSomeLoopIterations
: LEK_LockedSomePredecessors,
false);
}
}
BuildLockset LocksetBuilder(this, *CurrBlockInfo);
// Visit all the statements in the basic block.
for (CFGBlock::const_iterator BI = CurrBlock->begin(),
BE = CurrBlock->end(); BI != BE; ++BI) {
switch (BI->getKind()) {
case CFGElement::Statement: {
CFGStmt CS = BI->castAs<CFGStmt>();
LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
break;
}
// Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
case CFGElement::AutomaticObjectDtor: {
CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
AD.getDestructorDecl(AC.getASTContext()));
if (!DD->hasAttrs())
break;
// Create a dummy expression,
VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
AD.getTriggerStmt()->getLocEnd());
LocksetBuilder.handleCall(&DRE, DD);
break;
}
default:
break;
}
}
CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
// For every back edge from CurrBlock (the end of the loop) to another block
// (FirstLoopBlock) we need to check that the Lockset of Block is equal to
// the one held at the beginning of FirstLoopBlock. We can look up the
// Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
SE = CurrBlock->succ_end(); SI != SE; ++SI) {
// if CurrBlock -> *SI is *not* a back edge
if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
continue;
CFGBlock *FirstLoopBlock = *SI;
CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
PreLoop->EntryLoc,
LEK_LockedSomeLoopIterations,
false);
}
}
CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
// Skip the final check if the exit block is unreachable.
if (!Final->Reachable)
return;
// By default, we expect all locks held on entry to be held on exit.
FactSet ExpectedExitSet = Initial->EntrySet;
// Adjust the expected exit set by adding or removing locks, as declared
// by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
// issue the appropriate warning.
// FIXME: the location here is not quite right.
for (unsigned i=0,n=ExclusiveLocksAcquired.size(); i<n; ++i) {
ExpectedExitSet.addLock(FactMan, ExclusiveLocksAcquired[i],
LockData(D->getLocation(), LK_Exclusive));
}
for (unsigned i=0,n=SharedLocksAcquired.size(); i<n; ++i) {
ExpectedExitSet.addLock(FactMan, SharedLocksAcquired[i],
LockData(D->getLocation(), LK_Shared));
}
for (unsigned i=0,n=LocksReleased.size(); i<n; ++i) {
ExpectedExitSet.removeLock(FactMan, LocksReleased[i]);
}
// FIXME: Should we call this function for all blocks which exit the function?
intersectAndWarn(ExpectedExitSet, Final->ExitSet,
Final->ExitLoc,
LEK_LockedAtEndOfFunction,
LEK_NotLockedAtEndOfFunction,
false);
}
} // end anonymous namespace
namespace clang {
namespace thread_safety {
/// \brief Check a function's CFG for thread-safety violations.
///
/// We traverse the blocks in the CFG, compute the set of mutexes that are held
/// at the end of each block, and issue warnings for thread safety violations.
/// Each block in the CFG is traversed exactly once.
void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
ThreadSafetyHandler &Handler) {
ThreadSafetyAnalyzer Analyzer(Handler);
Analyzer.runAnalysis(AC);
}
/// \brief Helper function that returns a LockKind required for the given level
/// of access.
LockKind getLockKindFromAccessKind(AccessKind AK) {
switch (AK) {
case AK_Read :
return LK_Shared;
case AK_Written :
return LK_Exclusive;
}
llvm_unreachable("Unknown AccessKind");
}
}} // end namespace clang::thread_safety
|