1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
|
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the internal per-function state used for llvm translation.
//
//===----------------------------------------------------------------------===//
#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
#define CLANG_CODEGEN_CODEGENFUNCTION_H
#include "CGBuilder.h"
#include "CGDebugInfo.h"
#include "CGValue.h"
#include "EHScopeStack.h"
#include "CodeGenModule.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Type.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/CapturedStmt.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
namespace llvm {
class BasicBlock;
class LLVMContext;
class MDNode;
class Module;
class SwitchInst;
class Twine;
class Value;
class CallSite;
}
namespace clang {
class ASTContext;
class BlockDecl;
class CXXDestructorDecl;
class CXXForRangeStmt;
class CXXTryStmt;
class Decl;
class LabelDecl;
class EnumConstantDecl;
class FunctionDecl;
class FunctionProtoType;
class LabelStmt;
class ObjCContainerDecl;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCImplementationDecl;
class ObjCPropertyImplDecl;
class TargetInfo;
class TargetCodeGenInfo;
class VarDecl;
class ObjCForCollectionStmt;
class ObjCAtTryStmt;
class ObjCAtThrowStmt;
class ObjCAtSynchronizedStmt;
class ObjCAutoreleasePoolStmt;
namespace CodeGen {
class CodeGenTypes;
class CGFunctionInfo;
class CGRecordLayout;
class CGBlockInfo;
class CGCXXABI;
class BlockFlags;
class BlockFieldFlags;
/// The kind of evaluation to perform on values of a particular
/// type. Basically, is the code in CGExprScalar, CGExprComplex, or
/// CGExprAgg?
///
/// TODO: should vectors maybe be split out into their own thing?
enum TypeEvaluationKind {
TEK_Scalar,
TEK_Complex,
TEK_Aggregate
};
/// CodeGenFunction - This class organizes the per-function state that is used
/// while generating LLVM code.
class CodeGenFunction : public CodeGenTypeCache {
CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
friend class CGCXXABI;
public:
/// A jump destination is an abstract label, branching to which may
/// require a jump out through normal cleanups.
struct JumpDest {
JumpDest() : Block(0), ScopeDepth(), Index(0) {}
JumpDest(llvm::BasicBlock *Block,
EHScopeStack::stable_iterator Depth,
unsigned Index)
: Block(Block), ScopeDepth(Depth), Index(Index) {}
bool isValid() const { return Block != 0; }
llvm::BasicBlock *getBlock() const { return Block; }
EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
unsigned getDestIndex() const { return Index; }
// This should be used cautiously.
void setScopeDepth(EHScopeStack::stable_iterator depth) {
ScopeDepth = depth;
}
private:
llvm::BasicBlock *Block;
EHScopeStack::stable_iterator ScopeDepth;
unsigned Index;
};
CodeGenModule &CGM; // Per-module state.
const TargetInfo &Target;
typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
CGBuilderTy Builder;
/// CurFuncDecl - Holds the Decl for the current outermost
/// non-closure context.
const Decl *CurFuncDecl;
/// CurCodeDecl - This is the inner-most code context, which includes blocks.
const Decl *CurCodeDecl;
const CGFunctionInfo *CurFnInfo;
QualType FnRetTy;
llvm::Function *CurFn;
/// CurGD - The GlobalDecl for the current function being compiled.
GlobalDecl CurGD;
/// PrologueCleanupDepth - The cleanup depth enclosing all the
/// cleanups associated with the parameters.
EHScopeStack::stable_iterator PrologueCleanupDepth;
/// ReturnBlock - Unified return block.
JumpDest ReturnBlock;
/// ReturnValue - The temporary alloca to hold the return value. This is null
/// iff the function has no return value.
llvm::Value *ReturnValue;
/// AllocaInsertPoint - This is an instruction in the entry block before which
/// we prefer to insert allocas.
llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
/// \brief API for captured statement code generation.
class CGCapturedStmtInfo {
public:
explicit CGCapturedStmtInfo(const CapturedStmt &S,
CapturedRegionKind K = CR_Default)
: Kind(K), ThisValue(0), CXXThisFieldDecl(0) {
RecordDecl::field_iterator Field =
S.getCapturedRecordDecl()->field_begin();
for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
E = S.capture_end();
I != E; ++I, ++Field) {
if (I->capturesThis())
CXXThisFieldDecl = *Field;
else
CaptureFields[I->getCapturedVar()] = *Field;
}
}
virtual ~CGCapturedStmtInfo();
CapturedRegionKind getKind() const { return Kind; }
void setContextValue(llvm::Value *V) { ThisValue = V; }
// \brief Retrieve the value of the context parameter.
llvm::Value *getContextValue() const { return ThisValue; }
/// \brief Lookup the captured field decl for a variable.
const FieldDecl *lookup(const VarDecl *VD) const {
return CaptureFields.lookup(VD);
}
bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; }
FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
/// \brief Emit the captured statement body.
virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
CGF.EmitStmt(S);
}
/// \brief Get the name of the capture helper.
virtual StringRef getHelperName() const { return "__captured_stmt"; }
private:
/// \brief The kind of captured statement being generated.
CapturedRegionKind Kind;
/// \brief Keep the map between VarDecl and FieldDecl.
llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
/// \brief The base address of the captured record, passed in as the first
/// argument of the parallel region function.
llvm::Value *ThisValue;
/// \brief Captured 'this' type.
FieldDecl *CXXThisFieldDecl;
};
CGCapturedStmtInfo *CapturedStmtInfo;
/// BoundsChecking - Emit run-time bounds checks. Higher values mean
/// potentially higher performance penalties.
unsigned char BoundsChecking;
/// \brief Whether any type-checking sanitizers are enabled. If \c false,
/// calls to EmitTypeCheck can be skipped.
bool SanitizePerformTypeCheck;
/// \brief Sanitizer options to use for this function.
const SanitizerOptions *SanOpts;
/// In ARC, whether we should autorelease the return value.
bool AutoreleaseResult;
const CodeGen::CGBlockInfo *BlockInfo;
llvm::Value *BlockPointer;
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
FieldDecl *LambdaThisCaptureField;
/// \brief A mapping from NRVO variables to the flags used to indicate
/// when the NRVO has been applied to this variable.
llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
EHScopeStack EHStack;
llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
/// Header for data within LifetimeExtendedCleanupStack.
struct LifetimeExtendedCleanupHeader {
/// The size of the following cleanup object.
size_t Size : 29;
/// The kind of cleanup to push: a value from the CleanupKind enumeration.
unsigned Kind : 3;
size_t getSize() const { return Size; }
CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
};
/// i32s containing the indexes of the cleanup destinations.
llvm::AllocaInst *NormalCleanupDest;
unsigned NextCleanupDestIndex;
/// FirstBlockInfo - The head of a singly-linked-list of block layouts.
CGBlockInfo *FirstBlockInfo;
/// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
llvm::BasicBlock *EHResumeBlock;
/// The exception slot. All landing pads write the current exception pointer
/// into this alloca.
llvm::Value *ExceptionSlot;
/// The selector slot. Under the MandatoryCleanup model, all landing pads
/// write the current selector value into this alloca.
llvm::AllocaInst *EHSelectorSlot;
/// Emits a landing pad for the current EH stack.
llvm::BasicBlock *EmitLandingPad();
llvm::BasicBlock *getInvokeDestImpl();
template <class T>
typename DominatingValue<T>::saved_type saveValueInCond(T value) {
return DominatingValue<T>::save(*this, value);
}
public:
/// ObjCEHValueStack - Stack of Objective-C exception values, used for
/// rethrows.
SmallVector<llvm::Value*, 8> ObjCEHValueStack;
/// A class controlling the emission of a finally block.
class FinallyInfo {
/// Where the catchall's edge through the cleanup should go.
JumpDest RethrowDest;
/// A function to call to enter the catch.
llvm::Constant *BeginCatchFn;
/// An i1 variable indicating whether or not the @finally is
/// running for an exception.
llvm::AllocaInst *ForEHVar;
/// An i8* variable into which the exception pointer to rethrow
/// has been saved.
llvm::AllocaInst *SavedExnVar;
public:
void enter(CodeGenFunction &CGF, const Stmt *Finally,
llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
llvm::Constant *rethrowFn);
void exit(CodeGenFunction &CGF);
};
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
/// current full-expression. Safe against the possibility that
/// we're currently inside a conditionally-evaluated expression.
template <class T, class A0>
void pushFullExprCleanup(CleanupKind kind, A0 a0) {
// If we're not in a conditional branch, or if none of the
// arguments requires saving, then use the unconditional cleanup.
if (!isInConditionalBranch())
return EHStack.pushCleanup<T>(kind, a0);
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
EHStack.pushCleanup<CleanupType>(kind, a0_saved);
initFullExprCleanup();
}
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
/// current full-expression. Safe against the possibility that
/// we're currently inside a conditionally-evaluated expression.
template <class T, class A0, class A1>
void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
// If we're not in a conditional branch, or if none of the
// arguments requires saving, then use the unconditional cleanup.
if (!isInConditionalBranch())
return EHStack.pushCleanup<T>(kind, a0, a1);
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
initFullExprCleanup();
}
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
/// current full-expression. Safe against the possibility that
/// we're currently inside a conditionally-evaluated expression.
template <class T, class A0, class A1, class A2>
void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
// If we're not in a conditional branch, or if none of the
// arguments requires saving, then use the unconditional cleanup.
if (!isInConditionalBranch()) {
return EHStack.pushCleanup<T>(kind, a0, a1, a2);
}
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
initFullExprCleanup();
}
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
/// current full-expression. Safe against the possibility that
/// we're currently inside a conditionally-evaluated expression.
template <class T, class A0, class A1, class A2, class A3>
void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
// If we're not in a conditional branch, or if none of the
// arguments requires saving, then use the unconditional cleanup.
if (!isInConditionalBranch()) {
return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
}
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
a2_saved, a3_saved);
initFullExprCleanup();
}
/// \brief Queue a cleanup to be pushed after finishing the current
/// full-expression.
template <class T, class A0, class A1, class A2, class A3>
void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
assert(!isInConditionalBranch() && "can't defer conditional cleanup");
LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
size_t OldSize = LifetimeExtendedCleanupStack.size();
LifetimeExtendedCleanupStack.resize(
LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
new (Buffer) LifetimeExtendedCleanupHeader(Header);
new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
}
/// Set up the last cleaup that was pushed as a conditional
/// full-expression cleanup.
void initFullExprCleanup();
/// PushDestructorCleanup - Push a cleanup to call the
/// complete-object destructor of an object of the given type at the
/// given address. Does nothing if T is not a C++ class type with a
/// non-trivial destructor.
void PushDestructorCleanup(QualType T, llvm::Value *Addr);
/// PushDestructorCleanup - Push a cleanup to call the
/// complete-object variant of the given destructor on the object at
/// the given address.
void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
llvm::Value *Addr);
/// PopCleanupBlock - Will pop the cleanup entry on the stack and
/// process all branch fixups.
void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
/// DeactivateCleanupBlock - Deactivates the given cleanup block.
/// The block cannot be reactivated. Pops it if it's the top of the
/// stack.
///
/// \param DominatingIP - An instruction which is known to
/// dominate the current IP (if set) and which lies along
/// all paths of execution between the current IP and the
/// the point at which the cleanup comes into scope.
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
llvm::Instruction *DominatingIP);
/// ActivateCleanupBlock - Activates an initially-inactive cleanup.
/// Cannot be used to resurrect a deactivated cleanup.
///
/// \param DominatingIP - An instruction which is known to
/// dominate the current IP (if set) and which lies along
/// all paths of execution between the current IP and the
/// the point at which the cleanup comes into scope.
void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
llvm::Instruction *DominatingIP);
/// \brief Enters a new scope for capturing cleanups, all of which
/// will be executed once the scope is exited.
class RunCleanupsScope {
EHScopeStack::stable_iterator CleanupStackDepth;
size_t LifetimeExtendedCleanupStackSize;
bool OldDidCallStackSave;
protected:
bool PerformCleanup;
private:
RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
protected:
CodeGenFunction& CGF;
public:
/// \brief Enter a new cleanup scope.
explicit RunCleanupsScope(CodeGenFunction &CGF)
: PerformCleanup(true), CGF(CGF)
{
CleanupStackDepth = CGF.EHStack.stable_begin();
LifetimeExtendedCleanupStackSize =
CGF.LifetimeExtendedCleanupStack.size();
OldDidCallStackSave = CGF.DidCallStackSave;
CGF.DidCallStackSave = false;
}
/// \brief Exit this cleanup scope, emitting any accumulated
/// cleanups.
~RunCleanupsScope() {
if (PerformCleanup) {
CGF.DidCallStackSave = OldDidCallStackSave;
CGF.PopCleanupBlocks(CleanupStackDepth,
LifetimeExtendedCleanupStackSize);
}
}
/// \brief Determine whether this scope requires any cleanups.
bool requiresCleanups() const {
return CGF.EHStack.stable_begin() != CleanupStackDepth;
}
/// \brief Force the emission of cleanups now, instead of waiting
/// until this object is destroyed.
void ForceCleanup() {
assert(PerformCleanup && "Already forced cleanup");
CGF.DidCallStackSave = OldDidCallStackSave;
CGF.PopCleanupBlocks(CleanupStackDepth,
LifetimeExtendedCleanupStackSize);
PerformCleanup = false;
}
};
class LexicalScope: protected RunCleanupsScope {
SourceRange Range;
SmallVector<const LabelDecl*, 4> Labels;
LexicalScope *ParentScope;
LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
public:
/// \brief Enter a new cleanup scope.
explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
: RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
CGF.CurLexicalScope = this;
if (CGDebugInfo *DI = CGF.getDebugInfo())
DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
}
void addLabel(const LabelDecl *label) {
assert(PerformCleanup && "adding label to dead scope?");
Labels.push_back(label);
}
/// \brief Exit this cleanup scope, emitting any accumulated
/// cleanups.
~LexicalScope() {
if (CGDebugInfo *DI = CGF.getDebugInfo())
DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
// If we should perform a cleanup, force them now. Note that
// this ends the cleanup scope before rescoping any labels.
if (PerformCleanup) ForceCleanup();
}
/// \brief Force the emission of cleanups now, instead of waiting
/// until this object is destroyed.
void ForceCleanup() {
CGF.CurLexicalScope = ParentScope;
RunCleanupsScope::ForceCleanup();
if (!Labels.empty())
rescopeLabels();
}
void rescopeLabels();
};
/// \brief Takes the old cleanup stack size and emits the cleanup blocks
/// that have been added.
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
/// \brief Takes the old cleanup stack size and emits the cleanup blocks
/// that have been added, then adds all lifetime-extended cleanups from
/// the given position to the stack.
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
size_t OldLifetimeExtendedStackSize);
void ResolveBranchFixups(llvm::BasicBlock *Target);
/// The given basic block lies in the current EH scope, but may be a
/// target of a potentially scope-crossing jump; get a stable handle
/// to which we can perform this jump later.
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
return JumpDest(Target,
EHStack.getInnermostNormalCleanup(),
NextCleanupDestIndex++);
}
/// The given basic block lies in the current EH scope, but may be a
/// target of a potentially scope-crossing jump; get a stable handle
/// to which we can perform this jump later.
JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
return getJumpDestInCurrentScope(createBasicBlock(Name));
}
/// EmitBranchThroughCleanup - Emit a branch from the current insert
/// block through the normal cleanup handling code (if any) and then
/// on to \arg Dest.
void EmitBranchThroughCleanup(JumpDest Dest);
/// isObviouslyBranchWithoutCleanups - Return true if a branch to the
/// specified destination obviously has no cleanups to run. 'false' is always
/// a conservatively correct answer for this method.
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
/// popCatchScope - Pops the catch scope at the top of the EHScope
/// stack, emitting any required code (other than the catch handlers
/// themselves).
void popCatchScope();
llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
/// An object to manage conditionally-evaluated expressions.
class ConditionalEvaluation {
llvm::BasicBlock *StartBB;
public:
ConditionalEvaluation(CodeGenFunction &CGF)
: StartBB(CGF.Builder.GetInsertBlock()) {}
void begin(CodeGenFunction &CGF) {
assert(CGF.OutermostConditional != this);
if (!CGF.OutermostConditional)
CGF.OutermostConditional = this;
}
void end(CodeGenFunction &CGF) {
assert(CGF.OutermostConditional != 0);
if (CGF.OutermostConditional == this)
CGF.OutermostConditional = 0;
}
/// Returns a block which will be executed prior to each
/// evaluation of the conditional code.
llvm::BasicBlock *getStartingBlock() const {
return StartBB;
}
};
/// isInConditionalBranch - Return true if we're currently emitting
/// one branch or the other of a conditional expression.
bool isInConditionalBranch() const { return OutermostConditional != 0; }
void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
assert(isInConditionalBranch());
llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
new llvm::StoreInst(value, addr, &block->back());
}
/// An RAII object to record that we're evaluating a statement
/// expression.
class StmtExprEvaluation {
CodeGenFunction &CGF;
/// We have to save the outermost conditional: cleanups in a
/// statement expression aren't conditional just because the
/// StmtExpr is.
ConditionalEvaluation *SavedOutermostConditional;
public:
StmtExprEvaluation(CodeGenFunction &CGF)
: CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
CGF.OutermostConditional = 0;
}
~StmtExprEvaluation() {
CGF.OutermostConditional = SavedOutermostConditional;
CGF.EnsureInsertPoint();
}
};
/// An object which temporarily prevents a value from being
/// destroyed by aggressive peephole optimizations that assume that
/// all uses of a value have been realized in the IR.
class PeepholeProtection {
llvm::Instruction *Inst;
friend class CodeGenFunction;
public:
PeepholeProtection() : Inst(0) {}
};
/// A non-RAII class containing all the information about a bound
/// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
/// this which makes individual mappings very simple; using this
/// class directly is useful when you have a variable number of
/// opaque values or don't want the RAII functionality for some
/// reason.
class OpaqueValueMappingData {
const OpaqueValueExpr *OpaqueValue;
bool BoundLValue;
CodeGenFunction::PeepholeProtection Protection;
OpaqueValueMappingData(const OpaqueValueExpr *ov,
bool boundLValue)
: OpaqueValue(ov), BoundLValue(boundLValue) {}
public:
OpaqueValueMappingData() : OpaqueValue(0) {}
static bool shouldBindAsLValue(const Expr *expr) {
// gl-values should be bound as l-values for obvious reasons.
// Records should be bound as l-values because IR generation
// always keeps them in memory. Expressions of function type
// act exactly like l-values but are formally required to be
// r-values in C.
return expr->isGLValue() ||
expr->getType()->isRecordType() ||
expr->getType()->isFunctionType();
}
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
const OpaqueValueExpr *ov,
const Expr *e) {
if (shouldBindAsLValue(ov))
return bind(CGF, ov, CGF.EmitLValue(e));
return bind(CGF, ov, CGF.EmitAnyExpr(e));
}
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
const OpaqueValueExpr *ov,
const LValue &lv) {
assert(shouldBindAsLValue(ov));
CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
return OpaqueValueMappingData(ov, true);
}
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
const OpaqueValueExpr *ov,
const RValue &rv) {
assert(!shouldBindAsLValue(ov));
CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
OpaqueValueMappingData data(ov, false);
// Work around an extremely aggressive peephole optimization in
// EmitScalarConversion which assumes that all other uses of a
// value are extant.
data.Protection = CGF.protectFromPeepholes(rv);
return data;
}
bool isValid() const { return OpaqueValue != 0; }
void clear() { OpaqueValue = 0; }
void unbind(CodeGenFunction &CGF) {
assert(OpaqueValue && "no data to unbind!");
if (BoundLValue) {
CGF.OpaqueLValues.erase(OpaqueValue);
} else {
CGF.OpaqueRValues.erase(OpaqueValue);
CGF.unprotectFromPeepholes(Protection);
}
}
};
/// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
class OpaqueValueMapping {
CodeGenFunction &CGF;
OpaqueValueMappingData Data;
public:
static bool shouldBindAsLValue(const Expr *expr) {
return OpaqueValueMappingData::shouldBindAsLValue(expr);
}
/// Build the opaque value mapping for the given conditional
/// operator if it's the GNU ?: extension. This is a common
/// enough pattern that the convenience operator is really
/// helpful.
///
OpaqueValueMapping(CodeGenFunction &CGF,
const AbstractConditionalOperator *op) : CGF(CGF) {
if (isa<ConditionalOperator>(op))
// Leave Data empty.
return;
const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
e->getCommon());
}
OpaqueValueMapping(CodeGenFunction &CGF,
const OpaqueValueExpr *opaqueValue,
LValue lvalue)
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
}
OpaqueValueMapping(CodeGenFunction &CGF,
const OpaqueValueExpr *opaqueValue,
RValue rvalue)
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
}
void pop() {
Data.unbind(CGF);
Data.clear();
}
~OpaqueValueMapping() {
if (Data.isValid()) Data.unbind(CGF);
}
};
/// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
/// number that holds the value.
unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
/// BuildBlockByrefAddress - Computes address location of the
/// variable which is declared as __block.
llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
const VarDecl *V);
private:
CGDebugInfo *DebugInfo;
bool DisableDebugInfo;
/// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
/// calling llvm.stacksave for multiple VLAs in the same scope.
bool DidCallStackSave;
/// IndirectBranch - The first time an indirect goto is seen we create a block
/// with an indirect branch. Every time we see the address of a label taken,
/// we add the label to the indirect goto. Every subsequent indirect goto is
/// codegen'd as a jump to the IndirectBranch's basic block.
llvm::IndirectBrInst *IndirectBranch;
/// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
/// decls.
typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
DeclMapTy LocalDeclMap;
/// LabelMap - This keeps track of the LLVM basic block for each C label.
llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
// BreakContinueStack - This keeps track of where break and continue
// statements should jump to.
struct BreakContinue {
BreakContinue(JumpDest Break, JumpDest Continue)
: BreakBlock(Break), ContinueBlock(Continue) {}
JumpDest BreakBlock;
JumpDest ContinueBlock;
};
SmallVector<BreakContinue, 8> BreakContinueStack;
/// SwitchInsn - This is nearest current switch instruction. It is null if
/// current context is not in a switch.
llvm::SwitchInst *SwitchInsn;
/// CaseRangeBlock - This block holds if condition check for last case
/// statement range in current switch instruction.
llvm::BasicBlock *CaseRangeBlock;
/// OpaqueLValues - Keeps track of the current set of opaque value
/// expressions.
llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
// VLASizeMap - This keeps track of the associated size for each VLA type.
// We track this by the size expression rather than the type itself because
// in certain situations, like a const qualifier applied to an VLA typedef,
// multiple VLA types can share the same size expression.
// FIXME: Maybe this could be a stack of maps that is pushed/popped as we
// enter/leave scopes.
llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
/// A block containing a single 'unreachable' instruction. Created
/// lazily by getUnreachableBlock().
llvm::BasicBlock *UnreachableBlock;
/// Counts of the number return expressions in the function.
unsigned NumReturnExprs;
/// Count the number of simple (constant) return expressions in the function.
unsigned NumSimpleReturnExprs;
/// The last regular (non-return) debug location (breakpoint) in the function.
SourceLocation LastStopPoint;
public:
/// A scope within which we are constructing the fields of an object which
/// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
/// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
class FieldConstructionScope {
public:
FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
: CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
CGF.CXXDefaultInitExprThis = This;
}
~FieldConstructionScope() {
CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
}
private:
CodeGenFunction &CGF;
llvm::Value *OldCXXDefaultInitExprThis;
};
/// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
/// is overridden to be the object under construction.
class CXXDefaultInitExprScope {
public:
CXXDefaultInitExprScope(CodeGenFunction &CGF)
: CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
}
~CXXDefaultInitExprScope() {
CGF.CXXThisValue = OldCXXThisValue;
}
public:
CodeGenFunction &CGF;
llvm::Value *OldCXXThisValue;
};
private:
/// CXXThisDecl - When generating code for a C++ member function,
/// this will hold the implicit 'this' declaration.
ImplicitParamDecl *CXXABIThisDecl;
llvm::Value *CXXABIThisValue;
llvm::Value *CXXThisValue;
/// The value of 'this' to use when evaluating CXXDefaultInitExprs within
/// this expression.
llvm::Value *CXXDefaultInitExprThis;
/// CXXStructorImplicitParamDecl - When generating code for a constructor or
/// destructor, this will hold the implicit argument (e.g. VTT).
ImplicitParamDecl *CXXStructorImplicitParamDecl;
llvm::Value *CXXStructorImplicitParamValue;
/// OutermostConditional - Points to the outermost active
/// conditional control. This is used so that we know if a
/// temporary should be destroyed conditionally.
ConditionalEvaluation *OutermostConditional;
/// The current lexical scope.
LexicalScope *CurLexicalScope;
/// The current source location that should be used for exception
/// handling code.
SourceLocation CurEHLocation;
/// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
/// type as well as the field number that contains the actual data.
llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
unsigned> > ByRefValueInfo;
llvm::BasicBlock *TerminateLandingPad;
llvm::BasicBlock *TerminateHandler;
llvm::BasicBlock *TrapBB;
/// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
/// In the kernel metadata node, reference the kernel function and metadata
/// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
/// - A node for the vec_type_hint(<type>) qualifier contains string
/// "vec_type_hint", an undefined value of the <type> data type,
/// and a Boolean that is true if the <type> is integer and signed.
/// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
/// "work_group_size_hint", and three 32-bit integers X, Y and Z.
/// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
/// "reqd_work_group_size", and three 32-bit integers X, Y and Z.
void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
llvm::Function *Fn);
public:
CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
~CodeGenFunction();
CodeGenTypes &getTypes() const { return CGM.getTypes(); }
ASTContext &getContext() const { return CGM.getContext(); }
CGDebugInfo *getDebugInfo() {
if (DisableDebugInfo)
return NULL;
return DebugInfo;
}
void disableDebugInfo() { DisableDebugInfo = true; }
void enableDebugInfo() { DisableDebugInfo = false; }
bool shouldUseFusedARCCalls() {
return CGM.getCodeGenOpts().OptimizationLevel == 0;
}
const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
/// Returns a pointer to the function's exception object and selector slot,
/// which is assigned in every landing pad.
llvm::Value *getExceptionSlot();
llvm::Value *getEHSelectorSlot();
/// Returns the contents of the function's exception object and selector
/// slots.
llvm::Value *getExceptionFromSlot();
llvm::Value *getSelectorFromSlot();
llvm::Value *getNormalCleanupDestSlot();
llvm::BasicBlock *getUnreachableBlock() {
if (!UnreachableBlock) {
UnreachableBlock = createBasicBlock("unreachable");
new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
}
return UnreachableBlock;
}
llvm::BasicBlock *getInvokeDest() {
if (!EHStack.requiresLandingPad()) return 0;
return getInvokeDestImpl();
}
const TargetInfo &getTarget() const { return Target; }
llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
//===--------------------------------------------------------------------===//
// Cleanups
//===--------------------------------------------------------------------===//
typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
llvm::Value *arrayEndPointer,
QualType elementType,
Destroyer *destroyer);
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
llvm::Value *arrayEnd,
QualType elementType,
Destroyer *destroyer);
void pushDestroy(QualType::DestructionKind dtorKind,
llvm::Value *addr, QualType type);
void pushEHDestroy(QualType::DestructionKind dtorKind,
llvm::Value *addr, QualType type);
void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
Destroyer *destroyer, bool useEHCleanupForArray);
void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
QualType type, Destroyer *destroyer,
bool useEHCleanupForArray);
void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
bool useEHCleanupForArray);
llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
Destroyer *destroyer,
bool useEHCleanupForArray,
const VarDecl *VD);
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
QualType type, Destroyer *destroyer,
bool checkZeroLength, bool useEHCleanup);
Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
/// Determines whether an EH cleanup is required to destroy a type
/// with the given destruction kind.
bool needsEHCleanup(QualType::DestructionKind kind) {
switch (kind) {
case QualType::DK_none:
return false;
case QualType::DK_cxx_destructor:
case QualType::DK_objc_weak_lifetime:
return getLangOpts().Exceptions;
case QualType::DK_objc_strong_lifetime:
return getLangOpts().Exceptions &&
CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
}
llvm_unreachable("bad destruction kind");
}
CleanupKind getCleanupKind(QualType::DestructionKind kind) {
return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
}
//===--------------------------------------------------------------------===//
// Objective-C
//===--------------------------------------------------------------------===//
void GenerateObjCMethod(const ObjCMethodDecl *OMD);
void StartObjCMethod(const ObjCMethodDecl *MD,
const ObjCContainerDecl *CD,
SourceLocation StartLoc);
/// GenerateObjCGetter - Synthesize an Objective-C property getter function.
void GenerateObjCGetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID);
void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
const ObjCPropertyImplDecl *propImpl,
const ObjCMethodDecl *GetterMothodDecl,
llvm::Constant *AtomicHelperFn);
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
ObjCMethodDecl *MD, bool ctor);
/// GenerateObjCSetter - Synthesize an Objective-C property setter function
/// for the given property.
void GenerateObjCSetter(ObjCImplementationDecl *IMP,
const ObjCPropertyImplDecl *PID);
void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
const ObjCPropertyImplDecl *propImpl,
llvm::Constant *AtomicHelperFn);
bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
bool IvarTypeWithAggrGCObjects(QualType Ty);
//===--------------------------------------------------------------------===//
// Block Bits
//===--------------------------------------------------------------------===//
llvm::Value *EmitBlockLiteral(const BlockExpr *);
llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
static void destroyBlockInfos(CGBlockInfo *info);
llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
const CGBlockInfo &Info,
llvm::StructType *,
llvm::Constant *BlockVarLayout);
llvm::Function *GenerateBlockFunction(GlobalDecl GD,
const CGBlockInfo &Info,
const DeclMapTy &ldm,
bool IsLambdaConversionToBlock);
llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
const ObjCPropertyImplDecl *PID);
llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
const ObjCPropertyImplDecl *PID);
llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
class AutoVarEmission;
void emitByrefStructureInit(const AutoVarEmission &emission);
void enterByrefCleanup(const AutoVarEmission &emission);
llvm::Value *LoadBlockStruct() {
assert(BlockPointer && "no block pointer set!");
return BlockPointer;
}
void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
void AllocateBlockDecl(const DeclRefExpr *E);
llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
llvm::Type *BuildByRefType(const VarDecl *var);
void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
const CGFunctionInfo &FnInfo);
void StartFunction(GlobalDecl GD,
QualType RetTy,
llvm::Function *Fn,
const CGFunctionInfo &FnInfo,
const FunctionArgList &Args,
SourceLocation StartLoc);
void EmitConstructorBody(FunctionArgList &Args);
void EmitDestructorBody(FunctionArgList &Args);
void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
CallArgList &CallArgs);
void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
void EmitLambdaBlockInvokeBody();
void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
/// EmitReturnBlock - Emit the unified return block, trying to avoid its
/// emission when possible.
void EmitReturnBlock();
/// FinishFunction - Complete IR generation of the current function. It is
/// legal to call this function even if there is no current insertion point.
void FinishFunction(SourceLocation EndLoc=SourceLocation());
void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee,
const ThunkInfo *Thunk);
/// GenerateThunk - Generate a thunk for the given method.
void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
GlobalDecl GD, const ThunkInfo &Thunk);
void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
GlobalDecl GD, const ThunkInfo &Thunk);
void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
FunctionArgList &Args);
void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
ArrayRef<VarDecl *> ArrayIndexes);
/// InitializeVTablePointer - Initialize the vtable pointer of the given
/// subobject.
///
void InitializeVTablePointer(BaseSubobject Base,
const CXXRecordDecl *NearestVBase,
CharUnits OffsetFromNearestVBase,
const CXXRecordDecl *VTableClass);
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
void InitializeVTablePointers(BaseSubobject Base,
const CXXRecordDecl *NearestVBase,
CharUnits OffsetFromNearestVBase,
bool BaseIsNonVirtualPrimaryBase,
const CXXRecordDecl *VTableClass,
VisitedVirtualBasesSetTy& VBases);
void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
/// GetVTablePtr - Return the Value of the vtable pointer member pointed
/// to by This.
llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
/// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
/// expr can be devirtualized.
bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
const CXXMethodDecl *MD);
/// EnterDtorCleanups - Enter the cleanups necessary to complete the
/// given phase of destruction for a destructor. The end result
/// should call destructors on members and base classes in reverse
/// order of their construction.
void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
/// ShouldInstrumentFunction - Return true if the current function should be
/// instrumented with __cyg_profile_func_* calls
bool ShouldInstrumentFunction();
/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
/// instrumentation function with the current function and the call site, if
/// function instrumentation is enabled.
void EmitFunctionInstrumentation(const char *Fn);
/// EmitMCountInstrumentation - Emit call to .mcount.
void EmitMCountInstrumentation();
/// EmitFunctionProlog - Emit the target specific LLVM code to load the
/// arguments for the given function. This is also responsible for naming the
/// LLVM function arguments.
void EmitFunctionProlog(const CGFunctionInfo &FI,
llvm::Function *Fn,
const FunctionArgList &Args);
/// EmitFunctionEpilog - Emit the target specific LLVM code to return the
/// given temporary.
void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
SourceLocation EndLoc);
/// EmitStartEHSpec - Emit the start of the exception spec.
void EmitStartEHSpec(const Decl *D);
/// EmitEndEHSpec - Emit the end of the exception spec.
void EmitEndEHSpec(const Decl *D);
/// getTerminateLandingPad - Return a landing pad that just calls terminate.
llvm::BasicBlock *getTerminateLandingPad();
/// getTerminateHandler - Return a handler (not a landing pad, just
/// a catch handler) that just calls terminate. This is used when
/// a terminate scope encloses a try.
llvm::BasicBlock *getTerminateHandler();
llvm::Type *ConvertTypeForMem(QualType T);
llvm::Type *ConvertType(QualType T);
llvm::Type *ConvertType(const TypeDecl *T) {
return ConvertType(getContext().getTypeDeclType(T));
}
/// LoadObjCSelf - Load the value of self. This function is only valid while
/// generating code for an Objective-C method.
llvm::Value *LoadObjCSelf();
/// TypeOfSelfObject - Return type of object that this self represents.
QualType TypeOfSelfObject();
/// hasAggregateLLVMType - Return true if the specified AST type will map into
/// an aggregate LLVM type or is void.
static TypeEvaluationKind getEvaluationKind(QualType T);
static bool hasScalarEvaluationKind(QualType T) {
return getEvaluationKind(T) == TEK_Scalar;
}
static bool hasAggregateEvaluationKind(QualType T) {
return getEvaluationKind(T) == TEK_Aggregate;
}
/// createBasicBlock - Create an LLVM basic block.
llvm::BasicBlock *createBasicBlock(const Twine &name = "",
llvm::Function *parent = 0,
llvm::BasicBlock *before = 0) {
#ifdef NDEBUG
return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
#else
return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
#endif
}
/// getBasicBlockForLabel - Return the LLVM basicblock that the specified
/// label maps to.
JumpDest getJumpDestForLabel(const LabelDecl *S);
/// SimplifyForwardingBlocks - If the given basic block is only a branch to
/// another basic block, simplify it. This assumes that no other code could
/// potentially reference the basic block.
void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
/// EmitBlock - Emit the given block \arg BB and set it as the insert point,
/// adding a fall-through branch from the current insert block if
/// necessary. It is legal to call this function even if there is no current
/// insertion point.
///
/// IsFinished - If true, indicates that the caller has finished emitting
/// branches to the given block and does not expect to emit code into it. This
/// means the block can be ignored if it is unreachable.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
/// EmitBlockAfterUses - Emit the given block somewhere hopefully
/// near its uses, and leave the insertion point in it.
void EmitBlockAfterUses(llvm::BasicBlock *BB);
/// EmitBranch - Emit a branch to the specified basic block from the current
/// insert block, taking care to avoid creation of branches from dummy
/// blocks. It is legal to call this function even if there is no current
/// insertion point.
///
/// This function clears the current insertion point. The caller should follow
/// calls to this function with calls to Emit*Block prior to generation new
/// code.
void EmitBranch(llvm::BasicBlock *Block);
/// HaveInsertPoint - True if an insertion point is defined. If not, this
/// indicates that the current code being emitted is unreachable.
bool HaveInsertPoint() const {
return Builder.GetInsertBlock() != 0;
}
/// EnsureInsertPoint - Ensure that an insertion point is defined so that
/// emitted IR has a place to go. Note that by definition, if this function
/// creates a block then that block is unreachable; callers may do better to
/// detect when no insertion point is defined and simply skip IR generation.
void EnsureInsertPoint() {
if (!HaveInsertPoint())
EmitBlock(createBasicBlock());
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void ErrorUnsupported(const Stmt *S, const char *Type);
//===--------------------------------------------------------------------===//
// Helpers
//===--------------------------------------------------------------------===//
LValue MakeAddrLValue(llvm::Value *V, QualType T,
CharUnits Alignment = CharUnits()) {
return LValue::MakeAddr(V, T, Alignment, getContext(),
CGM.getTBAAInfo(T));
}
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
CharUnits Alignment;
if (!T->isIncompleteType())
Alignment = getContext().getTypeAlignInChars(T);
return LValue::MakeAddr(V, T, Alignment, getContext(),
CGM.getTBAAInfo(T));
}
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block. The caller is responsible for setting an appropriate alignment on
/// the alloca.
llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
const Twine &Name = "tmp");
/// InitTempAlloca - Provide an initial value for the given alloca.
void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
/// CreateIRTemp - Create a temporary IR object of the given type, with
/// appropriate alignment. This routine should only be used when an temporary
/// value needs to be stored into an alloca (for example, to avoid explicit
/// PHI construction), but the type is the IR type, not the type appropriate
/// for storing in memory.
llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
/// CreateMemTemp - Create a temporary memory object of the given type, with
/// appropriate alignment.
llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
/// CreateAggTemp - Create a temporary memory object for the given
/// aggregate type.
AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
CharUnits Alignment = getContext().getTypeAlignInChars(T);
return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
T.getQualifiers(),
AggValueSlot::IsNotDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
AggValueSlot::IsNotAliased);
}
/// Emit a cast to void* in the appropriate address space.
llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *EvaluateExprAsBool(const Expr *E);
/// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
void EmitIgnoredExpr(const Expr *E);
/// EmitAnyExpr - Emit code to compute the specified expression which can have
/// any type. The result is returned as an RValue struct. If this is an
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
/// the result should be returned.
///
/// \param ignoreResult True if the resulting value isn't used.
RValue EmitAnyExpr(const Expr *E,
AggValueSlot aggSlot = AggValueSlot::ignored(),
bool ignoreResult = false);
// EmitVAListRef - Emit a "reference" to a va_list; this is either the address
// or the value of the expression, depending on how va_list is defined.
llvm::Value *EmitVAListRef(const Expr *E);
/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
/// always be accessible even if no aggregate location is provided.
RValue EmitAnyExprToTemp(const Expr *E);
/// EmitAnyExprToMem - Emits the code necessary to evaluate an
/// arbitrary expression into the given memory location.
void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
Qualifiers Quals, bool IsInitializer);
/// EmitExprAsInit - Emits the code necessary to initialize a
/// location in memory with the given initializer.
void EmitExprAsInit(const Expr *init, const ValueDecl *D,
LValue lvalue, bool capturedByInit);
/// hasVolatileMember - returns true if aggregate type has a volatile
/// member.
bool hasVolatileMember(QualType T) {
if (const RecordType *RT = T->getAs<RecordType>()) {
const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
return RD->hasVolatileMember();
}
return false;
}
/// EmitAggregateCopy - Emit an aggregate assignment.
///
/// The difference to EmitAggregateCopy is that tail padding is not copied.
/// This is required for correctness when assigning non-POD structures in C++.
void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
QualType EltTy) {
bool IsVolatile = hasVolatileMember(EltTy);
EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
true);
}
/// EmitAggregateCopy - Emit an aggregate copy.
///
/// \param isVolatile - True iff either the source or the destination is
/// volatile.
/// \param isAssignment - If false, allow padding to be copied. This often
/// yields more efficient.
void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
QualType EltTy, bool isVolatile=false,
CharUnits Alignment = CharUnits::Zero(),
bool isAssignment = false);
/// StartBlock - Start new block named N. If insert block is a dummy block
/// then reuse it.
void StartBlock(const char *N);
/// GetAddrOfLocalVar - Return the address of a local variable.
llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
llvm::Value *Res = LocalDeclMap[VD];
assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
return Res;
}
/// getOpaqueLValueMapping - Given an opaque value expression (which
/// must be mapped to an l-value), return its mapping.
const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
assert(OpaqueValueMapping::shouldBindAsLValue(e));
llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
it = OpaqueLValues.find(e);
assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
return it->second;
}
/// getOpaqueRValueMapping - Given an opaque value expression (which
/// must be mapped to an r-value), return its mapping.
const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
assert(!OpaqueValueMapping::shouldBindAsLValue(e));
llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
it = OpaqueRValues.find(e);
assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
return it->second;
}
/// getAccessedFieldNo - Given an encoded value and a result number, return
/// the input field number being accessed.
static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
llvm::BasicBlock *GetIndirectGotoBlock();
/// EmitNullInitialization - Generate code to set a value of the given type to
/// null, If the type contains data member pointers, they will be initialized
/// to -1 in accordance with the Itanium C++ ABI.
void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
// EmitVAArg - Generate code to get an argument from the passed in pointer
// and update it accordingly. The return value is a pointer to the argument.
// FIXME: We should be able to get rid of this method and use the va_arg
// instruction in LLVM instead once it works well enough.
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
/// emitArrayLength - Compute the length of an array, even if it's a
/// VLA, and drill down to the base element type.
llvm::Value *emitArrayLength(const ArrayType *arrayType,
QualType &baseType,
llvm::Value *&addr);
/// EmitVLASize - Capture all the sizes for the VLA expressions in
/// the given variably-modified type and store them in the VLASizeMap.
///
/// This function can be called with a null (unreachable) insert point.
void EmitVariablyModifiedType(QualType Ty);
/// getVLASize - Returns an LLVM value that corresponds to the size,
/// in non-variably-sized elements, of a variable length array type,
/// plus that largest non-variably-sized element type. Assumes that
/// the type has already been emitted with EmitVariablyModifiedType.
std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
/// LoadCXXThis - Load the value of 'this'. This function is only valid while
/// generating code for an C++ member function.
llvm::Value *LoadCXXThis() {
assert(CXXThisValue && "no 'this' value for this function");
return CXXThisValue;
}
/// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
/// virtual bases.
// FIXME: Every place that calls LoadCXXVTT is something
// that needs to be abstracted properly.
llvm::Value *LoadCXXVTT() {
assert(CXXStructorImplicitParamValue && "no VTT value for this function");
return CXXStructorImplicitParamValue;
}
/// LoadCXXStructorImplicitParam - Load the implicit parameter
/// for a constructor/destructor.
llvm::Value *LoadCXXStructorImplicitParam() {
assert(CXXStructorImplicitParamValue &&
"no implicit argument value for this function");
return CXXStructorImplicitParamValue;
}
/// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
/// complete class to the given direct base.
llvm::Value *
GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
const CXXRecordDecl *Derived,
const CXXRecordDecl *Base,
bool BaseIsVirtual);
/// GetAddressOfBaseClass - This function will add the necessary delta to the
/// load of 'this' and returns address of the base class.
llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
const CXXRecordDecl *Derived,
CastExpr::path_const_iterator PathBegin,
CastExpr::path_const_iterator PathEnd,
bool NullCheckValue);
llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
const CXXRecordDecl *Derived,
CastExpr::path_const_iterator PathBegin,
CastExpr::path_const_iterator PathEnd,
bool NullCheckValue);
/// GetVTTParameter - Return the VTT parameter that should be passed to a
/// base constructor/destructor with virtual bases.
/// FIXME: VTTs are Itanium ABI-specific, so the definition should move
/// to ItaniumCXXABI.cpp together with all the references to VTT.
llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
bool Delegating);
void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
CXXCtorType CtorType,
const FunctionArgList &Args,
SourceLocation Loc);
// It's important not to confuse this and the previous function. Delegating
// constructors are the C++0x feature. The constructor delegate optimization
// is used to reduce duplication in the base and complete consturctors where
// they are substantially the same.
void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
const FunctionArgList &Args);
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
bool ForVirtualBase, bool Delegating,
llvm::Value *This,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd);
void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
llvm::Value *This, llvm::Value *Src,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd);
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
const ConstantArrayType *ArrayTy,
llvm::Value *ArrayPtr,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd,
bool ZeroInitialization = false);
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
llvm::Value *NumElements,
llvm::Value *ArrayPtr,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd,
bool ZeroInitialization = false);
static Destroyer destroyCXXObject;
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
bool ForVirtualBase, bool Delegating,
llvm::Value *This);
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
llvm::Value *NewPtr, llvm::Value *NumElements);
void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
llvm::Value *Ptr);
llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
QualType DeleteTy);
llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
/// \brief Situations in which we might emit a check for the suitability of a
/// pointer or glvalue.
enum TypeCheckKind {
/// Checking the operand of a load. Must be suitably sized and aligned.
TCK_Load,
/// Checking the destination of a store. Must be suitably sized and aligned.
TCK_Store,
/// Checking the bound value in a reference binding. Must be suitably sized
/// and aligned, but is not required to refer to an object (until the
/// reference is used), per core issue 453.
TCK_ReferenceBinding,
/// Checking the object expression in a non-static data member access. Must
/// be an object within its lifetime.
TCK_MemberAccess,
/// Checking the 'this' pointer for a call to a non-static member function.
/// Must be an object within its lifetime.
TCK_MemberCall,
/// Checking the 'this' pointer for a constructor call.
TCK_ConstructorCall,
/// Checking the operand of a static_cast to a derived pointer type. Must be
/// null or an object within its lifetime.
TCK_DowncastPointer,
/// Checking the operand of a static_cast to a derived reference type. Must
/// be an object within its lifetime.
TCK_DowncastReference
};
/// \brief Emit a check that \p V is the address of storage of the
/// appropriate size and alignment for an object of type \p Type.
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
QualType Type, CharUnits Alignment = CharUnits::Zero());
/// \brief Emit a check that \p Base points into an array object, which
/// we can access at index \p Index. \p Accessed should be \c false if we
/// this expression is used as an lvalue, for instance in "&Arr[Idx]".
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
QualType IndexType, bool Accessed);
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre);
ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
bool isInc, bool isPre);
//===--------------------------------------------------------------------===//
// Declaration Emission
//===--------------------------------------------------------------------===//
/// EmitDecl - Emit a declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitDecl(const Decl &D);
/// EmitVarDecl - Emit a local variable declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitVarDecl(const VarDecl &D);
void EmitScalarInit(const Expr *init, const ValueDecl *D,
LValue lvalue, bool capturedByInit);
void EmitScalarInit(llvm::Value *init, LValue lvalue);
typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
llvm::Value *Address);
/// EmitAutoVarDecl - Emit an auto variable declaration.
///
/// This function can be called with a null (unreachable) insert point.
void EmitAutoVarDecl(const VarDecl &D);
class AutoVarEmission {
friend class CodeGenFunction;
const VarDecl *Variable;
/// The alignment of the variable.
CharUnits Alignment;
/// The address of the alloca. Null if the variable was emitted
/// as a global constant.
llvm::Value *Address;
llvm::Value *NRVOFlag;
/// True if the variable is a __block variable.
bool IsByRef;
/// True if the variable is of aggregate type and has a constant
/// initializer.
bool IsConstantAggregate;
/// Non-null if we should use lifetime annotations.
llvm::Value *SizeForLifetimeMarkers;
struct Invalid {};
AutoVarEmission(Invalid) : Variable(0) {}
AutoVarEmission(const VarDecl &variable)
: Variable(&variable), Address(0), NRVOFlag(0),
IsByRef(false), IsConstantAggregate(false),
SizeForLifetimeMarkers(0) {}
bool wasEmittedAsGlobal() const { return Address == 0; }
public:
static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
llvm::Value *getSizeForLifetimeMarkers() const {
assert(useLifetimeMarkers());
return SizeForLifetimeMarkers;
}
/// Returns the raw, allocated address, which is not necessarily
/// the address of the object itself.
llvm::Value *getAllocatedAddress() const {
return Address;
}
/// Returns the address of the object within this declaration.
/// Note that this does not chase the forwarding pointer for
/// __block decls.
llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
if (!IsByRef) return Address;
return CGF.Builder.CreateStructGEP(Address,
CGF.getByRefValueLLVMField(Variable),
Variable->getNameAsString());
}
};
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
void EmitAutoVarInit(const AutoVarEmission &emission);
void EmitAutoVarCleanups(const AutoVarEmission &emission);
void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
QualType::DestructionKind dtorKind);
void EmitStaticVarDecl(const VarDecl &D,
llvm::GlobalValue::LinkageTypes Linkage);
/// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
/// protectFromPeepholes - Protect a value that we're intending to
/// store to the side, but which will probably be used later, from
/// aggressive peepholing optimizations that might delete it.
///
/// Pass the result to unprotectFromPeepholes to declare that
/// protection is no longer required.
///
/// There's no particular reason why this shouldn't apply to
/// l-values, it's just that no existing peepholes work on pointers.
PeepholeProtection protectFromPeepholes(RValue rvalue);
void unprotectFromPeepholes(PeepholeProtection protection);
//===--------------------------------------------------------------------===//
// Statement Emission
//===--------------------------------------------------------------------===//
/// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
void EmitStopPoint(const Stmt *S);
/// EmitStmt - Emit the code for the statement \arg S. It is legal to call
/// this function even if there is no current insertion point.
///
/// This function may clear the current insertion point; callers should use
/// EnsureInsertPoint if they wish to subsequently generate code without first
/// calling EmitBlock, EmitBranch, or EmitStmt.
void EmitStmt(const Stmt *S);
/// EmitSimpleStmt - Try to emit a "simple" statement which does not
/// necessarily require an insertion point or debug information; typically
/// because the statement amounts to a jump or a container of other
/// statements.
///
/// \return True if the statement was handled.
bool EmitSimpleStmt(const Stmt *S);
llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
AggValueSlot AVS = AggValueSlot::ignored());
llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
bool GetLast = false,
AggValueSlot AVS =
AggValueSlot::ignored());
/// EmitLabel - Emit the block for the given label. It is legal to call this
/// function even if there is no current insertion point.
void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
void EmitLabelStmt(const LabelStmt &S);
void EmitAttributedStmt(const AttributedStmt &S);
void EmitGotoStmt(const GotoStmt &S);
void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
void EmitIfStmt(const IfStmt &S);
void EmitWhileStmt(const WhileStmt &S);
void EmitDoStmt(const DoStmt &S);
void EmitForStmt(const ForStmt &S);
void EmitReturnStmt(const ReturnStmt &S);
void EmitDeclStmt(const DeclStmt &S);
void EmitBreakStmt(const BreakStmt &S);
void EmitContinueStmt(const ContinueStmt &S);
void EmitSwitchStmt(const SwitchStmt &S);
void EmitDefaultStmt(const DefaultStmt &S);
void EmitCaseStmt(const CaseStmt &S);
void EmitCaseStmtRange(const CaseStmt &S);
void EmitAsmStmt(const AsmStmt &S);
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
llvm::Constant *getUnwindResumeFn();
llvm::Constant *getUnwindResumeOrRethrowFn();
void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
void EmitCXXTryStmt(const CXXTryStmt &S);
void EmitSEHTryStmt(const SEHTryStmt &S);
void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
const RecordDecl *RD,
SourceLocation Loc);
//===--------------------------------------------------------------------===//
// LValue Expression Emission
//===--------------------------------------------------------------------===//
/// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
RValue GetUndefRValue(QualType Ty);
/// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
/// and issue an ErrorUnsupported style diagnostic (using the
/// provided Name).
RValue EmitUnsupportedRValue(const Expr *E,
const char *Name);
/// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
/// an ErrorUnsupported style diagnostic (using the provided Name).
LValue EmitUnsupportedLValue(const Expr *E,
const char *Name);
/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield
/// reference. In either case, the LLVM Value* in the LValue structure is
/// guaranteed to be an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of
/// the LLVM value is known: For example, it may not be a pointer to an
/// integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed
/// size, this method guarantees that the returned pointer type will point to
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
/// variable length type, this is not possible.
///
LValue EmitLValue(const Expr *E);
/// \brief Same as EmitLValue but additionally we generate checking code to
/// guard against undefined behavior. This is only suitable when we know
/// that the address will be used to access the object.
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
RValue convertTempToRValue(llvm::Value *addr, QualType type,
SourceLocation Loc);
void EmitAtomicInit(Expr *E, LValue lvalue);
RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
AggValueSlot slot = AggValueSlot::ignored());
void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
/// EmitToMemory - Change a scalar value from its value
/// representation to its in-memory representation.
llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
/// EmitFromMemory - Change a scalar value from its memory
/// representation to its value representation.
llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
/// EmitLoadOfScalar - Load a scalar value from an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation.
llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
unsigned Alignment, QualType Ty,
SourceLocation Loc,
llvm::MDNode *TBAAInfo = 0,
QualType TBAABaseTy = QualType(),
uint64_t TBAAOffset = 0);
/// EmitLoadOfScalar - Load a scalar value from an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation. The l-value must be a simple
/// l-value.
llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
/// EmitStoreOfScalar - Store a scalar value to an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation.
void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
bool Volatile, unsigned Alignment, QualType Ty,
llvm::MDNode *TBAAInfo = 0, bool isInit = false,
QualType TBAABaseTy = QualType(),
uint64_t TBAAOffset = 0);
/// EmitStoreOfScalar - Store a scalar value to an address, taking
/// care to appropriately convert from the memory representation to
/// the LLVM value representation. The l-value must be a simple
/// l-value. The isInit flag indicates whether this is an initialization.
/// If so, atomic qualifiers are ignored and the store is always non-atomic.
void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
/// this method emits the address of the lvalue, then loads the result as an
/// rvalue, returning the rvalue.
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
RValue EmitLoadOfExtVectorElementLValue(LValue V);
RValue EmitLoadOfBitfieldLValue(LValue LV);
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
/// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
/// as EmitStoreThroughLValue.
///
/// \param Result [out] - If non-null, this will be set to a Value* for the
/// bit-field contents after the store, appropriate for use as the result of
/// an assignment to the bit-field.
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
llvm::Value **Result=0);
/// Emit an l-value for an assignment (simple or compound) of complex type.
LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
llvm::Value *&Result);
// Note: only available for agg return types
LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
// Note: only available for agg return types
LValue EmitCallExprLValue(const CallExpr *E);
// Note: only available for agg return types
LValue EmitVAArgExprLValue(const VAArgExpr *E);
LValue EmitDeclRefLValue(const DeclRefExpr *E);
LValue EmitStringLiteralLValue(const StringLiteral *E);
LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
LValue EmitPredefinedLValue(const PredefinedExpr *E);
LValue EmitUnaryOpLValue(const UnaryOperator *E);
LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
bool Accessed = false);
LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
LValue EmitMemberExpr(const MemberExpr *E);
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
LValue EmitInitListLValue(const InitListExpr *E);
LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
LValue EmitCastLValue(const CastExpr *E);
LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
class ConstantEmission {
llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
ConstantEmission(llvm::Constant *C, bool isReference)
: ValueAndIsReference(C, isReference) {}
public:
ConstantEmission() {}
static ConstantEmission forReference(llvm::Constant *C) {
return ConstantEmission(C, true);
}
static ConstantEmission forValue(llvm::Constant *C) {
return ConstantEmission(C, false);
}
LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
bool isReference() const { return ValueAndIsReference.getInt(); }
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
assert(isReference());
return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
refExpr->getType());
}
llvm::Constant *getValue() const {
assert(!isReference());
return ValueAndIsReference.getPointer();
}
};
ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
AggValueSlot slot = AggValueSlot::ignored());
LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
const ObjCIvarDecl *Ivar);
LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
LValue EmitLValueForLambdaField(const FieldDecl *Field);
/// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
/// if the Field is a reference, this will return the address of the reference
/// and not the address of the value stored in the reference.
LValue EmitLValueForFieldInitialization(LValue Base,
const FieldDecl* Field);
LValue EmitLValueForIvar(QualType ObjectTy,
llvm::Value* Base, const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers);
LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
LValue EmitLambdaLValue(const LambdaExpr *E);
LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
LValue EmitStmtExprLValue(const StmtExpr *E);
LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
//===--------------------------------------------------------------------===//
// Scalar Expression Emission
//===--------------------------------------------------------------------===//
/// EmitCall - Generate a call of the given function, expecting the given
/// result type, and using the given argument list which specifies both the
/// LLVM arguments and the types they were derived from.
///
/// \param TargetDecl - If given, the decl of the function in a direct call;
/// used to set attributes on the call (noreturn, etc.).
RValue EmitCall(const CGFunctionInfo &FnInfo,
llvm::Value *Callee,
ReturnValueSlot ReturnValue,
const CallArgList &Args,
const Decl *TargetDecl = 0,
llvm::Instruction **callOrInvoke = 0);
RValue EmitCall(QualType FnType, llvm::Value *Callee,
SourceLocation CallLoc,
ReturnValueSlot ReturnValue,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd,
const Decl *TargetDecl = 0);
RValue EmitCallExpr(const CallExpr *E,
ReturnValueSlot ReturnValue = ReturnValueSlot());
llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
const Twine &name = "");
llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
ArrayRef<llvm::Value*> args,
const Twine &name = "");
llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
const Twine &name = "");
llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
ArrayRef<llvm::Value*> args,
const Twine &name = "");
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
ArrayRef<llvm::Value *> Args,
const Twine &Name = "");
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
const Twine &Name = "");
llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
ArrayRef<llvm::Value*> args,
const Twine &name = "");
llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
const Twine &name = "");
void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
ArrayRef<llvm::Value*> args);
llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
NestedNameSpecifier *Qual,
llvm::Type *Ty);
llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
CXXDtorType Type,
const CXXRecordDecl *RD);
RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
SourceLocation CallLoc,
llvm::Value *Callee,
ReturnValueSlot ReturnValue,
llvm::Value *This,
llvm::Value *ImplicitParam,
QualType ImplicitParamTy,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd);
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
ReturnValueSlot ReturnValue);
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
ReturnValueSlot ReturnValue);
llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
const CXXMethodDecl *MD,
llvm::Value *This);
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
const CXXMethodDecl *MD,
ReturnValueSlot ReturnValue);
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
ReturnValueSlot ReturnValue);
RValue EmitBuiltinExpr(const FunctionDecl *FD,
unsigned BuiltinID, const CallExpr *E);
RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
/// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
/// is unhandled by the current target.
llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
const llvm::CmpInst::Predicate Fp,
const llvm::CmpInst::Predicate Ip,
const llvm::Twine &Name = "");
llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty);
llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitNeonCall(llvm::Function *F,
SmallVectorImpl<llvm::Value*> &O,
const char *name,
unsigned shift = 0, bool rightshift = false);
llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
bool negateForRightShift);
llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
llvm::Type *Ty, bool usgn, const char *name);
llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
const ObjCMethodDecl *MethodWithObjects);
llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
ReturnValueSlot Return = ReturnValueSlot());
/// Retrieves the default cleanup kind for an ARC cleanup.
/// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
CleanupKind getARCCleanupKind() {
return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
? NormalAndEHCleanup : NormalCleanup;
}
// ARC primitives.
void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
void EmitARCDestroyWeak(llvm::Value *addr);
llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
bool ignored);
void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
bool resultIgnored);
llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
bool resultIgnored);
llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
llvm::Value *EmitARCAutorelease(llvm::Value *value);
llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator *e);
std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
llvm::Value *EmitObjCThrowOperand(const Expr *expr);
llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
static Destroyer destroyARCStrongImprecise;
static Destroyer destroyARCStrongPrecise;
static Destroyer destroyARCWeak;
void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
llvm::Value *EmitObjCAutoreleasePoolPush();
llvm::Value *EmitObjCMRRAutoreleasePoolPush();
void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
/// \brief Emits a reference binding to the passed in expression.
RValue EmitReferenceBindingToExpr(const Expr *E);
//===--------------------------------------------------------------------===//
// Expression Emission
//===--------------------------------------------------------------------===//
// Expressions are broken into three classes: scalar, complex, aggregate.
/// EmitScalarExpr - Emit the computation of the specified expression of LLVM
/// scalar type, returning the result.
llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
/// EmitScalarConversion - Emit a conversion from the specified type to the
/// specified destination type, both of which are LLVM scalar types.
llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
QualType DstTy);
/// EmitComplexToScalarConversion - Emit a conversion from the specified
/// complex type to the specified destination type, where the destination type
/// is an LLVM scalar type.
llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
QualType DstTy);
/// EmitAggExpr - Emit the computation of the specified expression
/// of aggregate type. The result is computed into the given slot,
/// which may be null to indicate that the value is not needed.
void EmitAggExpr(const Expr *E, AggValueSlot AS);
/// EmitAggExprToLValue - Emit the computation of the specified expression of
/// aggregate type into a temporary LValue.
LValue EmitAggExprToLValue(const Expr *E);
/// EmitGCMemmoveCollectable - Emit special API for structs with object
/// pointers.
void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
QualType Ty);
/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
/// make sure it survives garbage collection until this point.
void EmitExtendGCLifetime(llvm::Value *object);
/// EmitComplexExpr - Emit the computation of the specified expression of
/// complex type, returning the result.
ComplexPairTy EmitComplexExpr(const Expr *E,
bool IgnoreReal = false,
bool IgnoreImag = false);
/// EmitComplexExprIntoLValue - Emit the given expression of complex
/// type and place its result into the specified l-value.
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
/// EmitStoreOfComplex - Store a complex number into the specified l-value.
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
/// EmitLoadOfComplex - Load a complex number from the specified l-value.
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
/// CreateStaticVarDecl - Create a zero-initialized LLVM global for
/// a static local variable.
llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
const char *Separator,
llvm::GlobalValue::LinkageTypes Linkage);
/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
/// global variable that has already been created for it. If the initializer
/// has a different type than GV does, this may free GV and return a different
/// one. Otherwise it just returns GV.
llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl &D,
llvm::GlobalVariable *GV);
/// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
/// variable with global storage.
void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
bool PerformInit);
/// Call atexit() with a function that passes the given argument to
/// the given function.
void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
llvm::Constant *addr);
/// Emit code in this function to perform a guarded variable
/// initialization. Guarded initializations are used when it's not
/// possible to prove that an initialization will be done exactly
/// once, e.g. with a static local variable or a static data member
/// of a class template.
void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
bool PerformInit);
/// GenerateCXXGlobalInitFunc - Generates code for initializing global
/// variables.
void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
ArrayRef<llvm::Constant *> Decls,
llvm::GlobalVariable *Guard = 0);
/// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
/// variables.
void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
const std::vector<std::pair<llvm::WeakVH,
llvm::Constant*> > &DtorsAndObjects);
void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
const VarDecl *D,
llvm::GlobalVariable *Addr,
bool PerformInit);
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
const Expr *Exp);
void enterFullExpression(const ExprWithCleanups *E) {
if (E->getNumObjects() == 0) return;
enterNonTrivialFullExpression(E);
}
void enterNonTrivialFullExpression(const ExprWithCleanups *E);
void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
//===--------------------------------------------------------------------===//
// Annotations Emission
//===--------------------------------------------------------------------===//
/// Emit an annotation call (intrinsic or builtin).
llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
llvm::Value *AnnotatedVal,
StringRef AnnotationStr,
SourceLocation Location);
/// Emit local annotations for the local variable V, declared by D.
void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
/// Emit field annotations for the given field & value. Returns the
/// annotation result.
llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
//===--------------------------------------------------------------------===//
// Internal Helpers
//===--------------------------------------------------------------------===//
/// ContainsLabel - Return true if the statement contains a label in it. If
/// this statement is not executed normally, it not containing a label means
/// that we can just remove the code.
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
/// containsBreak - Return true if the statement contains a break out of it.
/// If the statement (recursively) contains a switch or loop with a break
/// inside of it, this is fine.
static bool containsBreak(const Stmt *S);
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
/// to a constant, or if it does but contains a label, return false. If it
/// constant folds return true and set the boolean result in Result.
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
/// to a constant, or if it does but contains a label, return false. If it
/// constant folds return true and set the folded value.
bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
/// if statement) to the specified blocks. Based on the condition, this might
/// try to simplify the codegen of the conditional based on the branch.
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
llvm::BasicBlock *FalseBlock);
/// \brief Emit a description of a type in a format suitable for passing to
/// a runtime sanitizer handler.
llvm::Constant *EmitCheckTypeDescriptor(QualType T);
/// \brief Convert a value into a format suitable for passing to a runtime
/// sanitizer handler.
llvm::Value *EmitCheckValue(llvm::Value *V);
/// \brief Emit a description of a source location in a format suitable for
/// passing to a runtime sanitizer handler.
llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
/// \brief Specify under what conditions this check can be recovered
enum CheckRecoverableKind {
/// Always terminate program execution if this check fails
CRK_Unrecoverable,
/// Check supports recovering, allows user to specify which
CRK_Recoverable,
/// Runtime conditionally aborts, always need to support recovery.
CRK_AlwaysRecoverable
};
/// \brief Create a basic block that will call a handler function in a
/// sanitizer runtime with the provided arguments, and create a conditional
/// branch to it.
void EmitCheck(llvm::Value *Checked, StringRef CheckName,
ArrayRef<llvm::Constant *> StaticArgs,
ArrayRef<llvm::Value *> DynamicArgs,
CheckRecoverableKind Recoverable);
/// \brief Create a basic block that will call the trap intrinsic, and emit a
/// conditional branch to it, for the -ftrapv checks.
void EmitTrapCheck(llvm::Value *Checked);
/// EmitCallArg - Emit a single call argument.
void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
/// EmitDelegateCallArg - We are performing a delegate call; that
/// is, the current function is delegating to another one. Produce
/// a r-value suitable for passing the given parameter.
void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
SourceLocation loc);
/// SetFPAccuracy - Set the minimum required accuracy of the given floating
/// point operation, expressed as the maximum relative error in ulp.
void SetFPAccuracy(llvm::Value *Val, float Accuracy);
private:
llvm::MDNode *getRangeForLoadFromType(QualType Ty);
void EmitReturnOfRValue(RValue RV, QualType Ty);
/// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
/// from function arguments into \arg Dst. See ABIArgInfo::Expand.
///
/// \param AI - The first function argument of the expansion.
/// \return The argument following the last expanded function
/// argument.
llvm::Function::arg_iterator
ExpandTypeFromArgs(QualType Ty, LValue Dst,
llvm::Function::arg_iterator AI);
/// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
/// Ty, into individual arguments on the provided vector \arg Args. See
/// ABIArgInfo::Expand.
void ExpandTypeToArgs(QualType Ty, RValue Src,
SmallVectorImpl<llvm::Value *> &Args,
llvm::FunctionType *IRFuncTy);
llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
const Expr *InputExpr, std::string &ConstraintStr);
llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
LValue InputValue, QualType InputType,
std::string &ConstraintStr,
SourceLocation Loc);
/// EmitCallArgs - Emit call arguments for a function.
/// The CallArgTypeInfo parameter is used for iterating over the known
/// argument types of the function being called.
template<typename T>
void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
CallExpr::const_arg_iterator ArgBeg,
CallExpr::const_arg_iterator ArgEnd,
bool ForceColumnInfo = false) {
CGDebugInfo *DI = getDebugInfo();
SourceLocation CallLoc;
if (DI) CallLoc = DI->getLocation();
CallExpr::const_arg_iterator Arg = ArgBeg;
// First, use the argument types that the type info knows about
if (CallArgTypeInfo) {
for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
assert(Arg != ArgEnd && "Running over edge of argument list!");
QualType ArgType = *I;
#ifndef NDEBUG
QualType ActualArgType = Arg->getType();
if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
QualType ActualBaseType =
ActualArgType->getAs<PointerType>()->getPointeeType();
QualType ArgBaseType =
ArgType->getAs<PointerType>()->getPointeeType();
if (ArgBaseType->isVariableArrayType()) {
if (const VariableArrayType *VAT =
getContext().getAsVariableArrayType(ActualBaseType)) {
if (!VAT->getSizeExpr())
ActualArgType = ArgType;
}
}
}
assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
getTypePtr() ==
getContext().getCanonicalType(ActualArgType).getTypePtr() &&
"type mismatch in call argument!");
#endif
EmitCallArg(Args, *Arg, ArgType);
// Each argument expression could modify the debug
// location. Restore it.
if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
}
// Either we've emitted all the call args, or we have a call to a
// variadic function.
assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
"Extra arguments in non-variadic function!");
}
// If we still have any arguments, emit them using the type of the argument.
for (; Arg != ArgEnd; ++Arg) {
EmitCallArg(Args, *Arg, Arg->getType());
// Restore the debug location.
if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
}
}
const TargetCodeGenInfo &getTargetHooks() const {
return CGM.getTargetCodeGenInfo();
}
void EmitDeclMetadata();
CodeGenModule::ByrefHelpers *
buildByrefHelpers(llvm::StructType &byrefType,
const AutoVarEmission &emission);
void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
/// GetPointeeAlignment - Given an expression with a pointer type, emit the
/// value and compute our best estimate of the alignment of the pointee.
std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
};
/// Helper class with most of the code for saving a value for a
/// conditional expression cleanup.
struct DominatingLLVMValue {
typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
/// Answer whether the given value needs extra work to be saved.
static bool needsSaving(llvm::Value *value) {
// If it's not an instruction, we don't need to save.
if (!isa<llvm::Instruction>(value)) return false;
// If it's an instruction in the entry block, we don't need to save.
llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
return (block != &block->getParent()->getEntryBlock());
}
/// Try to save the given value.
static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
if (!needsSaving(value)) return saved_type(value, false);
// Otherwise we need an alloca.
llvm::Value *alloca =
CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
CGF.Builder.CreateStore(value, alloca);
return saved_type(alloca, true);
}
static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
if (!value.getInt()) return value.getPointer();
return CGF.Builder.CreateLoad(value.getPointer());
}
};
/// A partial specialization of DominatingValue for llvm::Values that
/// might be llvm::Instructions.
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
typedef T *type;
static type restore(CodeGenFunction &CGF, saved_type value) {
return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
}
};
/// A specialization of DominatingValue for RValue.
template <> struct DominatingValue<RValue> {
typedef RValue type;
class saved_type {
enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
AggregateAddress, ComplexAddress };
llvm::Value *Value;
Kind K;
saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
public:
static bool needsSaving(RValue value);
static saved_type save(CodeGenFunction &CGF, RValue value);
RValue restore(CodeGenFunction &CGF);
// implementations in CGExprCXX.cpp
};
static bool needsSaving(type value) {
return saved_type::needsSaving(value);
}
static saved_type save(CodeGenFunction &CGF, type value) {
return saved_type::save(CGF, value);
}
static type restore(CodeGenFunction &CGF, saved_type value) {
return value.restore(CGF);
}
};
} // end namespace CodeGen
} // end namespace clang
#endif
|