1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
//== DynamicTypePropagation.cpp -------------------------------- -*- C++ -*--=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This checker defines the rules for dynamic type gathering and propagation.
//
//===----------------------------------------------------------------------===//
#include "ClangSACheckers.h"
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
using namespace clang;
using namespace ento;
namespace {
class DynamicTypePropagation:
public Checker< check::PreCall,
check::PostCall,
check::PostStmt<ImplicitCastExpr>,
check::PostStmt<CXXNewExpr> > {
const ObjCObjectType *getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
CheckerContext &C) const;
/// \brief Return a better dynamic type if one can be derived from the cast.
const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
CheckerContext &C) const;
public:
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostStmt(const ImplicitCastExpr *CastE, CheckerContext &C) const;
void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
};
}
static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
CheckerContext &C) {
assert(Region);
assert(MD);
ASTContext &Ctx = C.getASTContext();
QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));
ProgramStateRef State = C.getState();
State = State->setDynamicTypeInfo(Region, Ty, /*CanBeSubclass=*/false);
C.addTransition(State);
return;
}
void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
// C++11 [class.cdtor]p4: When a virtual function is called directly or
// indirectly from a constructor or from a destructor, including during
// the construction or destruction of the class's non-static data members,
// and the object to which the call applies is the object under
// construction or destruction, the function called is the final overrider
// in the constructor's or destructor's class and not one overriding it in
// a more-derived class.
switch (Ctor->getOriginExpr()->getConstructionKind()) {
case CXXConstructExpr::CK_Complete:
case CXXConstructExpr::CK_Delegating:
// No additional type info necessary.
return;
case CXXConstructExpr::CK_NonVirtualBase:
case CXXConstructExpr::CK_VirtualBase:
if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
recordFixedType(Target, Ctor->getDecl(), C);
return;
}
return;
}
if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
// C++11 [class.cdtor]p4 (see above)
if (!Dtor->isBaseDestructor())
return;
const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
if (!Target)
return;
const Decl *D = Dtor->getDecl();
if (!D)
return;
recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
return;
}
}
void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// We can obtain perfect type info for return values from some calls.
if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
// Get the returned value if it's a region.
const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
if (!RetReg)
return;
ProgramStateRef State = C.getState();
const ObjCMethodDecl *D = Msg->getDecl();
if (D && D->hasRelatedResultType()) {
switch (Msg->getMethodFamily()) {
default:
break;
// We assume that the type of the object returned by alloc and new are the
// pointer to the object of the class specified in the receiver of the
// message.
case OMF_alloc:
case OMF_new: {
// Get the type of object that will get created.
const ObjCMessageExpr *MsgE = Msg->getOriginExpr();
const ObjCObjectType *ObjTy = getObjectTypeForAllocAndNew(MsgE, C);
if (!ObjTy)
return;
QualType DynResTy =
C.getASTContext().getObjCObjectPointerType(QualType(ObjTy, 0));
C.addTransition(State->setDynamicTypeInfo(RetReg, DynResTy, false));
break;
}
case OMF_init: {
// Assume, the result of the init method has the same dynamic type as
// the receiver and propagate the dynamic type info.
const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
if (!RecReg)
return;
DynamicTypeInfo RecDynType = State->getDynamicTypeInfo(RecReg);
C.addTransition(State->setDynamicTypeInfo(RetReg, RecDynType));
break;
}
}
}
return;
}
if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
// We may need to undo the effects of our pre-call check.
switch (Ctor->getOriginExpr()->getConstructionKind()) {
case CXXConstructExpr::CK_Complete:
case CXXConstructExpr::CK_Delegating:
// No additional work necessary.
// Note: This will leave behind the actual type of the object for
// complete constructors, but arguably that's a good thing, since it
// means the dynamic type info will be correct even for objects
// constructed with operator new.
return;
case CXXConstructExpr::CK_NonVirtualBase:
case CXXConstructExpr::CK_VirtualBase:
if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
// We just finished a base constructor. Now we can use the subclass's
// type when resolving virtual calls.
const Decl *D = C.getLocationContext()->getDecl();
recordFixedType(Target, cast<CXXConstructorDecl>(D), C);
}
return;
}
}
}
void DynamicTypePropagation::checkPostStmt(const ImplicitCastExpr *CastE,
CheckerContext &C) const {
// We only track dynamic type info for regions.
const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
if (!ToR)
return;
switch (CastE->getCastKind()) {
default:
break;
case CK_BitCast:
// Only handle ObjCObjects for now.
if (const Type *NewTy = getBetterObjCType(CastE, C))
C.addTransition(C.getState()->setDynamicTypeInfo(ToR, QualType(NewTy,0)));
break;
}
return;
}
void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
CheckerContext &C) const {
if (NewE->isArray())
return;
// We only track dynamic type info for regions.
const MemRegion *MR = C.getSVal(NewE).getAsRegion();
if (!MR)
return;
C.addTransition(C.getState()->setDynamicTypeInfo(MR, NewE->getType(),
/*CanBeSubclass=*/false));
}
const ObjCObjectType *
DynamicTypePropagation::getObjectTypeForAllocAndNew(const ObjCMessageExpr *MsgE,
CheckerContext &C) const {
if (MsgE->getReceiverKind() == ObjCMessageExpr::Class) {
if (const ObjCObjectType *ObjTy
= MsgE->getClassReceiver()->getAs<ObjCObjectType>())
return ObjTy;
}
if (MsgE->getReceiverKind() == ObjCMessageExpr::SuperClass) {
if (const ObjCObjectType *ObjTy
= MsgE->getSuperType()->getAs<ObjCObjectType>())
return ObjTy;
}
const Expr *RecE = MsgE->getInstanceReceiver();
if (!RecE)
return 0;
RecE= RecE->IgnoreParenImpCasts();
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(RecE)) {
const StackFrameContext *SFCtx = C.getStackFrame();
// Are we calling [self alloc]? If this is self, get the type of the
// enclosing ObjC class.
if (DRE->getDecl() == SFCtx->getSelfDecl()) {
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(SFCtx->getDecl()))
if (const ObjCObjectType *ObjTy =
dyn_cast<ObjCObjectType>(MD->getClassInterface()->getTypeForDecl()))
return ObjTy;
}
}
return 0;
}
// Return a better dynamic type if one can be derived from the cast.
// Compare the current dynamic type of the region and the new type to which we
// are casting. If the new type is lower in the inheritance hierarchy, pick it.
const ObjCObjectPointerType *
DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
CheckerContext &C) const {
const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
assert(ToR);
// Get the old and new types.
const ObjCObjectPointerType *NewTy =
CastE->getType()->getAs<ObjCObjectPointerType>();
if (!NewTy)
return 0;
QualType OldDTy = C.getState()->getDynamicTypeInfo(ToR).getType();
if (OldDTy.isNull()) {
return NewTy;
}
const ObjCObjectPointerType *OldTy =
OldDTy->getAs<ObjCObjectPointerType>();
if (!OldTy)
return 0;
// Id the old type is 'id', the new one is more precise.
if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
return NewTy;
// Return new if it's a subclass of old.
const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
if (ToI && FromI && FromI->isSuperClassOf(ToI))
return NewTy;
return 0;
}
void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
mgr.registerChecker<DynamicTypePropagation>();
}
|