1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
//===-- ubsan_diag.cc -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Diagnostic reporting for the UBSan runtime.
//
//===----------------------------------------------------------------------===//
#include "ubsan_diag.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
#include <stdio.h>
using namespace __ubsan;
Location __ubsan::getCallerLocation(uptr CallerLoc) {
if (!CallerLoc)
return Location();
uptr Loc = StackTrace::GetPreviousInstructionPc(CallerLoc);
return getFunctionLocation(Loc, 0);
}
Location __ubsan::getFunctionLocation(uptr Loc, const char **FName) {
if (!Loc)
return Location();
AddressInfo Info;
if (!Symbolizer::GetOrInit()->SymbolizeCode(Loc, &Info, 1) ||
!Info.module || !*Info.module)
return Location(Loc);
if (FName && Info.function)
*FName = Info.function;
if (!Info.file)
return ModuleLocation(Info.module, Info.module_offset);
return SourceLocation(Info.file, Info.line, Info.column);
}
Diag &Diag::operator<<(const TypeDescriptor &V) {
return AddArg(V.getTypeName());
}
Diag &Diag::operator<<(const Value &V) {
if (V.getType().isSignedIntegerTy())
AddArg(V.getSIntValue());
else if (V.getType().isUnsignedIntegerTy())
AddArg(V.getUIntValue());
else if (V.getType().isFloatTy())
AddArg(V.getFloatValue());
else
AddArg("<unknown>");
return *this;
}
/// Hexadecimal printing for numbers too large for Printf to handle directly.
static void PrintHex(UIntMax Val) {
#if HAVE_INT128_T
Printf("0x%08x%08x%08x%08x",
(unsigned int)(Val >> 96),
(unsigned int)(Val >> 64),
(unsigned int)(Val >> 32),
(unsigned int)(Val));
#else
UNREACHABLE("long long smaller than 64 bits?");
#endif
}
static void renderLocation(Location Loc) {
InternalScopedString LocBuffer(1024);
switch (Loc.getKind()) {
case Location::LK_Source: {
SourceLocation SLoc = Loc.getSourceLocation();
if (SLoc.isInvalid())
LocBuffer.append("<unknown>");
else
PrintSourceLocation(&LocBuffer, SLoc.getFilename(), SLoc.getLine(),
SLoc.getColumn());
break;
}
case Location::LK_Module:
PrintModuleAndOffset(&LocBuffer, Loc.getModuleLocation().getModuleName(),
Loc.getModuleLocation().getOffset());
break;
case Location::LK_Memory:
LocBuffer.append("%p", Loc.getMemoryLocation());
break;
case Location::LK_Null:
LocBuffer.append("<unknown>");
break;
}
Printf("%s:", LocBuffer.data());
}
static void renderText(const char *Message, const Diag::Arg *Args) {
for (const char *Msg = Message; *Msg; ++Msg) {
if (*Msg != '%') {
char Buffer[64];
unsigned I;
for (I = 0; Msg[I] && Msg[I] != '%' && I != 63; ++I)
Buffer[I] = Msg[I];
Buffer[I] = '\0';
Printf(Buffer);
Msg += I - 1;
} else {
const Diag::Arg &A = Args[*++Msg - '0'];
switch (A.Kind) {
case Diag::AK_String:
Printf("%s", A.String);
break;
case Diag::AK_Mangled: {
Printf("'%s'", Symbolizer::GetOrInit()->Demangle(A.String));
break;
}
case Diag::AK_SInt:
// 'long long' is guaranteed to be at least 64 bits wide.
if (A.SInt >= INT64_MIN && A.SInt <= INT64_MAX)
Printf("%lld", (long long)A.SInt);
else
PrintHex(A.SInt);
break;
case Diag::AK_UInt:
if (A.UInt <= UINT64_MAX)
Printf("%llu", (unsigned long long)A.UInt);
else
PrintHex(A.UInt);
break;
case Diag::AK_Float: {
// FIXME: Support floating-point formatting in sanitizer_common's
// printf, and stop using snprintf here.
char Buffer[32];
snprintf(Buffer, sizeof(Buffer), "%Lg", (long double)A.Float);
Printf("%s", Buffer);
break;
}
case Diag::AK_Pointer:
Printf("%p", A.Pointer);
break;
}
}
}
}
/// Find the earliest-starting range in Ranges which ends after Loc.
static Range *upperBound(MemoryLocation Loc, Range *Ranges,
unsigned NumRanges) {
Range *Best = 0;
for (unsigned I = 0; I != NumRanges; ++I)
if (Ranges[I].getEnd().getMemoryLocation() > Loc &&
(!Best ||
Best->getStart().getMemoryLocation() >
Ranges[I].getStart().getMemoryLocation()))
Best = &Ranges[I];
return Best;
}
/// Render a snippet of the address space near a location.
static void renderMemorySnippet(const __sanitizer::AnsiColorDecorator &Decor,
MemoryLocation Loc,
Range *Ranges, unsigned NumRanges,
const Diag::Arg *Args) {
const unsigned BytesToShow = 32;
const unsigned MinBytesNearLoc = 4;
// Show at least the 8 bytes surrounding Loc.
MemoryLocation Min = Loc - MinBytesNearLoc, Max = Loc + MinBytesNearLoc;
for (unsigned I = 0; I < NumRanges; ++I) {
Min = __sanitizer::Min(Ranges[I].getStart().getMemoryLocation(), Min);
Max = __sanitizer::Max(Ranges[I].getEnd().getMemoryLocation(), Max);
}
// If we have too many interesting bytes, prefer to show bytes after Loc.
if (Max - Min > BytesToShow)
Min = __sanitizer::Min(Max - BytesToShow, Loc - MinBytesNearLoc);
Max = Min + BytesToShow;
// Emit data.
for (uptr P = Min; P != Max; ++P) {
// FIXME: Check that the address is readable before printing it.
unsigned char C = *reinterpret_cast<const unsigned char*>(P);
Printf("%s%02x", (P % 8 == 0) ? " " : " ", C);
}
Printf("\n");
// Emit highlights.
Printf(Decor.Green());
Range *InRange = upperBound(Min, Ranges, NumRanges);
for (uptr P = Min; P != Max; ++P) {
char Pad = ' ', Byte = ' ';
if (InRange && InRange->getEnd().getMemoryLocation() == P)
InRange = upperBound(P, Ranges, NumRanges);
if (!InRange && P > Loc)
break;
if (InRange && InRange->getStart().getMemoryLocation() < P)
Pad = '~';
if (InRange && InRange->getStart().getMemoryLocation() <= P)
Byte = '~';
char Buffer[] = { Pad, Pad, P == Loc ? '^' : Byte, Byte, 0 };
Printf((P % 8 == 0) ? Buffer : &Buffer[1]);
}
Printf("%s\n", Decor.Default());
// Go over the line again, and print names for the ranges.
InRange = 0;
unsigned Spaces = 0;
for (uptr P = Min; P != Max; ++P) {
if (!InRange || InRange->getEnd().getMemoryLocation() == P)
InRange = upperBound(P, Ranges, NumRanges);
if (!InRange)
break;
Spaces += (P % 8) == 0 ? 2 : 1;
if (InRange && InRange->getStart().getMemoryLocation() == P) {
while (Spaces--)
Printf(" ");
renderText(InRange->getText(), Args);
Printf("\n");
// FIXME: We only support naming one range for now!
break;
}
Spaces += 2;
}
// FIXME: Print names for anything we can identify within the line:
//
// * If we can identify the memory itself as belonging to a particular
// global, stack variable, or dynamic allocation, then do so.
//
// * If we have a pointer-size, pointer-aligned range highlighted,
// determine whether the value of that range is a pointer to an
// entity which we can name, and if so, print that name.
//
// This needs an external symbolizer, or (preferably) ASan instrumentation.
}
Diag::~Diag() {
__sanitizer::AnsiColorDecorator Decor(PrintsToTty());
SpinMutexLock l(&CommonSanitizerReportMutex);
Printf(Decor.Bold());
renderLocation(Loc);
switch (Level) {
case DL_Error:
Printf("%s runtime error: %s%s",
Decor.Red(), Decor.Default(), Decor.Bold());
break;
case DL_Note:
Printf("%s note: %s", Decor.Black(), Decor.Default());
break;
}
renderText(Message, Args);
Printf("%s\n", Decor.Default());
if (Loc.isMemoryLocation())
renderMemorySnippet(Decor, Loc.getMemoryLocation(), Ranges,
NumRanges, Args);
}
|