1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
|
//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
// Details of the algorithm:
// http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asan"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InstVisitor.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/SpecialCaseList.h"
#include <algorithm>
#include <string>
using namespace llvm;
static const uint64_t kDefaultShadowScale = 3;
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000; // < 2G.
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa8000;
static const size_t kMinStackMallocSize = 1 << 6; // 64B
static const size_t kMaxStackMallocSize = 1 << 16; // 64K
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
static const char *const kAsanModuleCtorName = "asan.module_ctor";
static const char *const kAsanModuleDtorName = "asan.module_dtor";
static const int kAsanCtorAndCtorPriority = 1;
static const char *const kAsanReportErrorTemplate = "__asan_report_";
static const char *const kAsanReportLoadN = "__asan_report_load_n";
static const char *const kAsanReportStoreN = "__asan_report_store_n";
static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
static const char *const kAsanUnregisterGlobalsName =
"__asan_unregister_globals";
static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
static const char *const kAsanInitName = "__asan_init_v3";
static const char *const kAsanCovName = "__sanitizer_cov";
static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
static const char *const kAsanMappingOffsetName = "__asan_mapping_offset";
static const char *const kAsanMappingScaleName = "__asan_mapping_scale";
static const int kMaxAsanStackMallocSizeClass = 10;
static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
static const char *const kAsanGenPrefix = "__asan_gen_";
static const char *const kAsanPoisonStackMemoryName =
"__asan_poison_stack_memory";
static const char *const kAsanUnpoisonStackMemoryName =
"__asan_unpoison_stack_memory";
static const char *const kAsanOptionDetectUAR =
"__asan_option_detect_stack_use_after_return";
// These constants must match the definitions in the run-time library.
static const int kAsanStackLeftRedzoneMagic = 0xf1;
static const int kAsanStackMidRedzoneMagic = 0xf2;
static const int kAsanStackRightRedzoneMagic = 0xf3;
static const int kAsanStackPartialRedzoneMagic = 0xf4;
#ifndef NDEBUG
static const int kAsanStackAfterReturnMagic = 0xf5;
#endif
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;
// Command-line flags.
// This flag may need to be replaced with -f[no-]asan-reads.
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
cl::desc("use instrumentation with slow path for all accesses"),
cl::Hidden, cl::init(false));
// This flag limits the number of instructions to be instrumented
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
// set it to 10000.
static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
cl::init(10000),
cl::desc("maximal number of instructions to instrument in any given BB"),
cl::Hidden);
// This flag may need to be replaced with -f[no]asan-stack.
static cl::opt<bool> ClStack("asan-stack",
cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
// This flag may need to be replaced with -f[no]asan-use-after-return.
static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
// This flag may need to be replaced with -f[no]asan-globals.
static cl::opt<bool> ClGlobals("asan-globals",
cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClCoverage("asan-coverage",
cl::desc("ASan coverage"), cl::Hidden, cl::init(false));
static cl::opt<bool> ClInitializers("asan-initialization-order",
cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false));
static cl::opt<bool> ClMemIntrin("asan-memintrin",
cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClRealignStack("asan-realign-stack",
cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true));
static cl::opt<std::string> ClBlacklistFile("asan-blacklist",
cl::desc("File containing the list of objects to ignore "
"during instrumentation"), cl::Hidden);
// This is an experimental feature that will allow to choose between
// instrumented and non-instrumented code at link-time.
// If this option is on, just before instrumenting a function we create its
// clone; if the function is not changed by asan the clone is deleted.
// If we end up with a clone, we put the instrumented function into a section
// called "ASAN" and the uninstrumented function into a section called "NOASAN".
//
// This is still a prototype, we need to figure out a way to keep two copies of
// a function so that the linker can easily choose one of them.
static cl::opt<bool> ClKeepUninstrumented("asan-keep-uninstrumented-functions",
cl::desc("Keep uninstrumented copies of functions"),
cl::Hidden, cl::init(false));
// These flags allow to change the shadow mapping.
// The shadow mapping looks like
// Shadow = (Mem >> scale) + (1 << offset_log)
static cl::opt<int> ClMappingScale("asan-mapping-scale",
cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset",
cl::desc("Use short immediate constant as the mapping offset for 64bit"),
cl::Hidden, cl::init(true));
// Optimization flags. Not user visible, used mostly for testing
// and benchmarking the tool.
static cl::opt<bool> ClOpt("asan-opt",
cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
cl::desc("Instrument the same temp just once"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
cl::Hidden, cl::init(false));
// Debug flags.
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
cl::init(0));
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
cl::Hidden, cl::init(0));
static cl::opt<std::string> ClDebugFunc("asan-debug-func",
cl::Hidden, cl::desc("Debug func"));
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
cl::Hidden, cl::init(-1));
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
cl::Hidden, cl::init(-1));
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
STATISTIC(NumOptimizedAccessesToGlobalArray,
"Number of optimized accesses to global arrays");
STATISTIC(NumOptimizedAccessesToGlobalVar,
"Number of optimized accesses to global vars");
namespace {
/// A set of dynamically initialized globals extracted from metadata.
class SetOfDynamicallyInitializedGlobals {
public:
void Init(Module& M) {
// Clang generates metadata identifying all dynamically initialized globals.
NamedMDNode *DynamicGlobals =
M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
if (!DynamicGlobals)
return;
for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
MDNode *MDN = DynamicGlobals->getOperand(i);
assert(MDN->getNumOperands() == 1);
Value *VG = MDN->getOperand(0);
// The optimizer may optimize away a global entirely, in which case we
// cannot instrument access to it.
if (!VG)
continue;
DynInitGlobals.insert(cast<GlobalVariable>(VG));
}
}
bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; }
private:
SmallSet<GlobalValue*, 32> DynInitGlobals;
};
/// This struct defines the shadow mapping using the rule:
/// shadow = (mem >> Scale) ADD-or-OR Offset.
struct ShadowMapping {
int Scale;
uint64_t Offset;
bool OrShadowOffset;
};
static ShadowMapping getShadowMapping(const Module &M, int LongSize,
bool ZeroBaseShadow) {
llvm::Triple TargetTriple(M.getTargetTriple());
bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX;
bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
TargetTriple.getArch() == llvm::Triple::ppc64le;
bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
TargetTriple.getArch() == llvm::Triple::mipsel;
ShadowMapping Mapping;
// OR-ing shadow offset if more efficient (at least on x86),
// but on ppc64 we have to use add since the shadow offset is not neccesary
// 1/8-th of the address space.
Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset;
Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 :
(LongSize == 32 ?
(IsMIPS32 ? kMIPS32_ShadowOffset32 : kDefaultShadowOffset32) :
IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64);
if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) {
assert(LongSize == 64);
Mapping.Offset = kDefaultShort64bitShadowOffset;
}
if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) {
// Zero offset log is the special case.
Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog;
}
Mapping.Scale = kDefaultShadowScale;
if (ClMappingScale) {
Mapping.Scale = ClMappingScale;
}
return Mapping;
}
static size_t RedzoneSizeForScale(int MappingScale) {
// Redzone used for stack and globals is at least 32 bytes.
// For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
return std::max(32U, 1U << MappingScale);
}
/// AddressSanitizer: instrument the code in module to find memory bugs.
struct AddressSanitizer : public FunctionPass {
AddressSanitizer(bool CheckInitOrder = true,
bool CheckUseAfterReturn = false,
bool CheckLifetime = false,
StringRef BlacklistFile = StringRef(),
bool ZeroBaseShadow = false)
: FunctionPass(ID),
CheckInitOrder(CheckInitOrder || ClInitializers),
CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn),
CheckLifetime(CheckLifetime || ClCheckLifetime),
BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
: BlacklistFile),
ZeroBaseShadow(ZeroBaseShadow) {}
virtual const char *getPassName() const {
return "AddressSanitizerFunctionPass";
}
void instrumentMop(Instruction *I);
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
Value *Addr, uint32_t TypeSize, bool IsWrite,
Value *SizeArgument);
Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
Value *ShadowValue, uint32_t TypeSize);
Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
bool IsWrite, size_t AccessSizeIndex,
Value *SizeArgument);
bool instrumentMemIntrinsic(MemIntrinsic *MI);
void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
Value *Size,
Instruction *InsertBefore, bool IsWrite);
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
bool runOnFunction(Function &F);
bool maybeInsertAsanInitAtFunctionEntry(Function &F);
void emitShadowMapping(Module &M, IRBuilder<> &IRB) const;
virtual bool doInitialization(Module &M);
static char ID; // Pass identification, replacement for typeid
private:
void initializeCallbacks(Module &M);
bool ShouldInstrumentGlobal(GlobalVariable *G);
bool LooksLikeCodeInBug11395(Instruction *I);
void FindDynamicInitializers(Module &M);
bool GlobalIsLinkerInitialized(GlobalVariable *G);
bool InjectCoverage(Function &F);
bool CheckInitOrder;
bool CheckUseAfterReturn;
bool CheckLifetime;
SmallString<64> BlacklistFile;
bool ZeroBaseShadow;
LLVMContext *C;
DataLayout *TD;
int LongSize;
Type *IntptrTy;
ShadowMapping Mapping;
Function *AsanCtorFunction;
Function *AsanInitFunction;
Function *AsanHandleNoReturnFunc;
Function *AsanCovFunction;
OwningPtr<SpecialCaseList> BL;
// This array is indexed by AccessIsWrite and log2(AccessSize).
Function *AsanErrorCallback[2][kNumberOfAccessSizes];
// This array is indexed by AccessIsWrite.
Function *AsanErrorCallbackSized[2];
InlineAsm *EmptyAsm;
SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
friend struct FunctionStackPoisoner;
};
class AddressSanitizerModule : public ModulePass {
public:
AddressSanitizerModule(bool CheckInitOrder = true,
StringRef BlacklistFile = StringRef(),
bool ZeroBaseShadow = false)
: ModulePass(ID),
CheckInitOrder(CheckInitOrder || ClInitializers),
BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
: BlacklistFile),
ZeroBaseShadow(ZeroBaseShadow) {}
bool runOnModule(Module &M);
static char ID; // Pass identification, replacement for typeid
virtual const char *getPassName() const {
return "AddressSanitizerModule";
}
private:
void initializeCallbacks(Module &M);
bool ShouldInstrumentGlobal(GlobalVariable *G);
void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
size_t RedzoneSize() const {
return RedzoneSizeForScale(Mapping.Scale);
}
bool CheckInitOrder;
SmallString<64> BlacklistFile;
bool ZeroBaseShadow;
OwningPtr<SpecialCaseList> BL;
SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
Type *IntptrTy;
LLVMContext *C;
DataLayout *TD;
ShadowMapping Mapping;
Function *AsanPoisonGlobals;
Function *AsanUnpoisonGlobals;
Function *AsanRegisterGlobals;
Function *AsanUnregisterGlobals;
};
// Stack poisoning does not play well with exception handling.
// When an exception is thrown, we essentially bypass the code
// that unpoisones the stack. This is why the run-time library has
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
// stack in the interceptor. This however does not work inside the
// actual function which catches the exception. Most likely because the
// compiler hoists the load of the shadow value somewhere too high.
// This causes asan to report a non-existing bug on 453.povray.
// It sounds like an LLVM bug.
struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
Function &F;
AddressSanitizer &ASan;
DIBuilder DIB;
LLVMContext *C;
Type *IntptrTy;
Type *IntptrPtrTy;
ShadowMapping Mapping;
SmallVector<AllocaInst*, 16> AllocaVec;
SmallVector<Instruction*, 8> RetVec;
uint64_t TotalStackSize;
unsigned StackAlignment;
Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
*AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
// Stores a place and arguments of poisoning/unpoisoning call for alloca.
struct AllocaPoisonCall {
IntrinsicInst *InsBefore;
AllocaInst *AI;
uint64_t Size;
bool DoPoison;
};
SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
// Maps Value to an AllocaInst from which the Value is originated.
typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
AllocaForValueMapTy AllocaForValue;
FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
: F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
Mapping(ASan.Mapping),
TotalStackSize(0), StackAlignment(1 << Mapping.Scale) {}
bool runOnFunction() {
if (!ClStack) return false;
// Collect alloca, ret, lifetime instructions etc.
for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
BasicBlock *BB = *DI;
visit(*BB);
}
if (AllocaVec.empty()) return false;
initializeCallbacks(*F.getParent());
poisonStack();
if (ClDebugStack) {
DEBUG(dbgs() << F);
}
return true;
}
// Finds all static Alloca instructions and puts
// poisoned red zones around all of them.
// Then unpoison everything back before the function returns.
void poisonStack();
// ----------------------- Visitors.
/// \brief Collect all Ret instructions.
void visitReturnInst(ReturnInst &RI) {
RetVec.push_back(&RI);
}
/// \brief Collect Alloca instructions we want (and can) handle.
void visitAllocaInst(AllocaInst &AI) {
if (!isInterestingAlloca(AI)) return;
StackAlignment = std::max(StackAlignment, AI.getAlignment());
AllocaVec.push_back(&AI);
uint64_t AlignedSize = getAlignedAllocaSize(&AI);
TotalStackSize += AlignedSize;
}
/// \brief Collect lifetime intrinsic calls to check for use-after-scope
/// errors.
void visitIntrinsicInst(IntrinsicInst &II) {
if (!ASan.CheckLifetime) return;
Intrinsic::ID ID = II.getIntrinsicID();
if (ID != Intrinsic::lifetime_start &&
ID != Intrinsic::lifetime_end)
return;
// Found lifetime intrinsic, add ASan instrumentation if necessary.
ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
// If size argument is undefined, don't do anything.
if (Size->isMinusOne()) return;
// Check that size doesn't saturate uint64_t and can
// be stored in IntptrTy.
const uint64_t SizeValue = Size->getValue().getLimitedValue();
if (SizeValue == ~0ULL ||
!ConstantInt::isValueValidForType(IntptrTy, SizeValue))
return;
// Find alloca instruction that corresponds to llvm.lifetime argument.
AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
if (!AI) return;
bool DoPoison = (ID == Intrinsic::lifetime_end);
AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
AllocaPoisonCallVec.push_back(APC);
}
// ---------------------- Helpers.
void initializeCallbacks(Module &M);
// Check if we want (and can) handle this alloca.
bool isInterestingAlloca(AllocaInst &AI) const {
return (!AI.isArrayAllocation() &&
AI.isStaticAlloca() &&
AI.getAlignment() <= RedzoneSize() &&
AI.getAllocatedType()->isSized());
}
size_t RedzoneSize() const {
return RedzoneSizeForScale(Mapping.Scale);
}
uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
Type *Ty = AI->getAllocatedType();
uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty);
return SizeInBytes;
}
uint64_t getAlignedSize(uint64_t SizeInBytes) const {
size_t RZ = RedzoneSize();
return ((SizeInBytes + RZ - 1) / RZ) * RZ;
}
uint64_t getAlignedAllocaSize(AllocaInst *AI) const {
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
return getAlignedSize(SizeInBytes);
}
/// Finds alloca where the value comes from.
AllocaInst *findAllocaForValue(Value *V);
void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> &IRB,
Value *ShadowBase, bool DoPoison);
void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
int Size);
};
} // namespace
char AddressSanitizer::ID = 0;
INITIALIZE_PASS(AddressSanitizer, "asan",
"AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
false, false)
FunctionPass *llvm::createAddressSanitizerFunctionPass(
bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime,
StringRef BlacklistFile, bool ZeroBaseShadow) {
return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn,
CheckLifetime, BlacklistFile, ZeroBaseShadow);
}
char AddressSanitizerModule::ID = 0;
INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
"AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", false, false)
ModulePass *llvm::createAddressSanitizerModulePass(
bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) {
return new AddressSanitizerModule(CheckInitOrder, BlacklistFile,
ZeroBaseShadow);
}
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
size_t Res = countTrailingZeros(TypeSize / 8);
assert(Res < kNumberOfAccessSizes);
return Res;
}
// \brief Create a constant for Str so that we can pass it to the run-time lib.
static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
GlobalVariable *GV = new GlobalVariable(M, StrConst->getType(), true,
GlobalValue::InternalLinkage, StrConst,
kAsanGenPrefix);
GV->setUnnamedAddr(true); // Ok to merge these.
GV->setAlignment(1); // Strings may not be merged w/o setting align 1.
return GV;
}
static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
return G->getName().find(kAsanGenPrefix) == 0;
}
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
// Shadow >> scale
Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
if (Mapping.Offset == 0)
return Shadow;
// (Shadow >> scale) | offset
if (Mapping.OrShadowOffset)
return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
else
return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
}
void AddressSanitizer::instrumentMemIntrinsicParam(
Instruction *OrigIns,
Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
IRBuilder<> IRB(InsertBefore);
if (Size->getType() != IntptrTy)
Size = IRB.CreateIntCast(Size, IntptrTy, false);
// Check the first byte.
instrumentAddress(OrigIns, InsertBefore, Addr, 8, IsWrite, Size);
// Check the last byte.
IRB.SetInsertPoint(InsertBefore);
Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
Value *AddrLast = IRB.CreateAdd(AddrLong, SizeMinusOne);
instrumentAddress(OrigIns, InsertBefore, AddrLast, 8, IsWrite, Size);
}
// Instrument memset/memmove/memcpy
bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
Value *Dst = MI->getDest();
MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
Value *Src = MemTran ? MemTran->getSource() : 0;
Value *Length = MI->getLength();
Constant *ConstLength = dyn_cast<Constant>(Length);
Instruction *InsertBefore = MI;
if (ConstLength) {
if (ConstLength->isNullValue()) return false;
} else {
// The size is not a constant so it could be zero -- check at run-time.
IRBuilder<> IRB(InsertBefore);
Value *Cmp = IRB.CreateICmpNE(Length,
Constant::getNullValue(Length->getType()));
InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
}
instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
if (Src)
instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
return true;
}
// If I is an interesting memory access, return the PointerOperand
// and set IsWrite. Otherwise return NULL.
static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) {
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!ClInstrumentReads) return NULL;
*IsWrite = false;
return LI->getPointerOperand();
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (!ClInstrumentWrites) return NULL;
*IsWrite = true;
return SI->getPointerOperand();
}
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
if (!ClInstrumentAtomics) return NULL;
*IsWrite = true;
return RMW->getPointerOperand();
}
if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
if (!ClInstrumentAtomics) return NULL;
*IsWrite = true;
return XCHG->getPointerOperand();
}
return NULL;
}
bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
// If a global variable does not have dynamic initialization we don't
// have to instrument it. However, if a global does not have initializer
// at all, we assume it has dynamic initializer (in other TU).
return G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G);
}
void AddressSanitizer::instrumentMop(Instruction *I) {
bool IsWrite = false;
Value *Addr = isInterestingMemoryAccess(I, &IsWrite);
assert(Addr);
if (ClOpt && ClOptGlobals) {
if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
// If initialization order checking is disabled, a simple access to a
// dynamically initialized global is always valid.
if (!CheckInitOrder || GlobalIsLinkerInitialized(G)) {
NumOptimizedAccessesToGlobalVar++;
return;
}
}
ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr);
if (CE && CE->isGEPWithNoNotionalOverIndexing()) {
if (GlobalVariable *G = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
if (CE->getOperand(1)->isNullValue() && GlobalIsLinkerInitialized(G)) {
NumOptimizedAccessesToGlobalArray++;
return;
}
}
}
}
Type *OrigPtrTy = Addr->getType();
Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
assert(OrigTy->isSized());
uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
assert((TypeSize % 8) == 0);
if (IsWrite)
NumInstrumentedWrites++;
else
NumInstrumentedReads++;
// Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check.
if (TypeSize == 8 || TypeSize == 16 ||
TypeSize == 32 || TypeSize == 64 || TypeSize == 128)
return instrumentAddress(I, I, Addr, TypeSize, IsWrite, 0);
// Instrument unusual size (but still multiple of 8).
// We can not do it with a single check, so we do 1-byte check for the first
// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
// to report the actual access size.
IRBuilder<> IRB(I);
Value *LastByte = IRB.CreateIntToPtr(
IRB.CreateAdd(IRB.CreatePointerCast(Addr, IntptrTy),
ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
OrigPtrTy);
Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
instrumentAddress(I, I, Addr, 8, IsWrite, Size);
instrumentAddress(I, I, LastByte, 8, IsWrite, Size);
}
// Validate the result of Module::getOrInsertFunction called for an interface
// function of AddressSanitizer. If the instrumented module defines a function
// with the same name, their prototypes must match, otherwise
// getOrInsertFunction returns a bitcast.
static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
FuncOrBitcast->dump();
report_fatal_error("trying to redefine an AddressSanitizer "
"interface function");
}
Instruction *AddressSanitizer::generateCrashCode(
Instruction *InsertBefore, Value *Addr,
bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
IRBuilder<> IRB(InsertBefore);
CallInst *Call = SizeArgument
? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
: IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
// We don't do Call->setDoesNotReturn() because the BB already has
// UnreachableInst at the end.
// This EmptyAsm is required to avoid callback merge.
IRB.CreateCall(EmptyAsm);
return Call;
}
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
Value *ShadowValue,
uint32_t TypeSize) {
size_t Granularity = 1 << Mapping.Scale;
// Addr & (Granularity - 1)
Value *LastAccessedByte = IRB.CreateAnd(
AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
// (Addr & (Granularity - 1)) + size - 1
if (TypeSize / 8 > 1)
LastAccessedByte = IRB.CreateAdd(
LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
// (uint8_t) ((Addr & (Granularity-1)) + size - 1)
LastAccessedByte = IRB.CreateIntCast(
LastAccessedByte, ShadowValue->getType(), false);
// ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
}
void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
Instruction *InsertBefore,
Value *Addr, uint32_t TypeSize,
bool IsWrite, Value *SizeArgument) {
IRBuilder<> IRB(InsertBefore);
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
Type *ShadowTy = IntegerType::get(
*C, std::max(8U, TypeSize >> Mapping.Scale));
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
Value *ShadowPtr = memToShadow(AddrLong, IRB);
Value *CmpVal = Constant::getNullValue(ShadowTy);
Value *ShadowValue = IRB.CreateLoad(
IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
size_t Granularity = 1 << Mapping.Scale;
TerminatorInst *CrashTerm = 0;
if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
TerminatorInst *CheckTerm =
SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
BasicBlock *NextBB = CheckTerm->getSuccessor(0);
IRB.SetInsertPoint(CheckTerm);
Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
BasicBlock *CrashBlock =
BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
CrashTerm = new UnreachableInst(*C, CrashBlock);
BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
ReplaceInstWithInst(CheckTerm, NewTerm);
} else {
CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true);
}
Instruction *Crash = generateCrashCode(
CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
Crash->setDebugLoc(OrigIns->getDebugLoc());
}
void AddressSanitizerModule::createInitializerPoisonCalls(
Module &M, GlobalValue *ModuleName) {
// We do all of our poisoning and unpoisoning within _GLOBAL__I_a.
Function *GlobalInit = M.getFunction("_GLOBAL__I_a");
// If that function is not present, this TU contains no globals, or they have
// all been optimized away
if (!GlobalInit)
return;
// Set up the arguments to our poison/unpoison functions.
IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt());
// Add a call to poison all external globals before the given function starts.
Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
// Add calls to unpoison all globals before each return instruction.
for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end();
I != E; ++I) {
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) {
CallInst::Create(AsanUnpoisonGlobals, "", RI);
}
}
}
bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
Type *Ty = cast<PointerType>(G->getType())->getElementType();
DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
if (BL->isIn(*G)) return false;
if (!Ty->isSized()) return false;
if (!G->hasInitializer()) return false;
if (GlobalWasGeneratedByAsan(G)) return false; // Our own global.
// Touch only those globals that will not be defined in other modules.
// Don't handle ODR type linkages since other modules may be built w/o asan.
if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
G->getLinkage() != GlobalVariable::PrivateLinkage &&
G->getLinkage() != GlobalVariable::InternalLinkage)
return false;
// Two problems with thread-locals:
// - The address of the main thread's copy can't be computed at link-time.
// - Need to poison all copies, not just the main thread's one.
if (G->isThreadLocal())
return false;
// For now, just ignore this Alloca if the alignment is large.
if (G->getAlignment() > RedzoneSize()) return false;
// Ignore all the globals with the names starting with "\01L_OBJC_".
// Many of those are put into the .cstring section. The linker compresses
// that section by removing the spare \0s after the string terminator, so
// our redzones get broken.
if ((G->getName().find("\01L_OBJC_") == 0) ||
(G->getName().find("\01l_OBJC_") == 0)) {
DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
return false;
}
if (G->hasSection()) {
StringRef Section(G->getSection());
// Ignore the globals from the __OBJC section. The ObjC runtime assumes
// those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
// them.
if ((Section.find("__OBJC,") == 0) ||
(Section.find("__DATA, __objc_") == 0)) {
DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
return false;
}
// See http://code.google.com/p/address-sanitizer/issues/detail?id=32
// Constant CFString instances are compiled in the following way:
// -- the string buffer is emitted into
// __TEXT,__cstring,cstring_literals
// -- the constant NSConstantString structure referencing that buffer
// is placed into __DATA,__cfstring
// Therefore there's no point in placing redzones into __DATA,__cfstring.
// Moreover, it causes the linker to crash on OS X 10.7
if (Section.find("__DATA,__cfstring") == 0) {
DEBUG(dbgs() << "Ignoring CFString: " << *G);
return false;
}
}
return true;
}
void AddressSanitizerModule::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
// Declare our poisoning and unpoisoning functions.
AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL));
AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
// Declare functions that register/unregister globals.
AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
kAsanRegisterGlobalsName, IRB.getVoidTy(),
IntptrTy, IntptrTy, NULL));
AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
kAsanUnregisterGlobalsName,
IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
}
// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
bool AddressSanitizerModule::runOnModule(Module &M) {
if (!ClGlobals) return false;
TD = getAnalysisIfAvailable<DataLayout>();
if (!TD)
return false;
BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
if (BL->isIn(M)) return false;
C = &(M.getContext());
int LongSize = TD->getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
initializeCallbacks(M);
DynamicallyInitializedGlobals.Init(M);
SmallVector<GlobalVariable *, 16> GlobalsToChange;
for (Module::GlobalListType::iterator G = M.global_begin(),
E = M.global_end(); G != E; ++G) {
if (ShouldInstrumentGlobal(G))
GlobalsToChange.push_back(G);
}
size_t n = GlobalsToChange.size();
if (n == 0) return false;
// A global is described by a structure
// size_t beg;
// size_t size;
// size_t size_with_redzone;
// const char *name;
// const char *module_name;
// size_t has_dynamic_init;
// We initialize an array of such structures and pass it to a run-time call.
StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
IntptrTy, IntptrTy,
IntptrTy, IntptrTy, NULL);
SmallVector<Constant *, 16> Initializers(n);
Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
assert(CtorFunc);
IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
bool HasDynamicallyInitializedGlobals = false;
GlobalVariable *ModuleName = createPrivateGlobalForString(
M, M.getModuleIdentifier());
// We shouldn't merge same module names, as this string serves as unique
// module ID in runtime.
ModuleName->setUnnamedAddr(false);
for (size_t i = 0; i < n; i++) {
static const uint64_t kMaxGlobalRedzone = 1 << 18;
GlobalVariable *G = GlobalsToChange[i];
PointerType *PtrTy = cast<PointerType>(G->getType());
Type *Ty = PtrTy->getElementType();
uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
uint64_t MinRZ = RedzoneSize();
// MinRZ <= RZ <= kMaxGlobalRedzone
// and trying to make RZ to be ~ 1/4 of SizeInBytes.
uint64_t RZ = std::max(MinRZ,
std::min(kMaxGlobalRedzone,
(SizeInBytes / MinRZ / 4) * MinRZ));
uint64_t RightRedzoneSize = RZ;
// Round up to MinRZ
if (SizeInBytes % MinRZ)
RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
// Determine whether this global should be poisoned in initialization.
bool GlobalHasDynamicInitializer =
DynamicallyInitializedGlobals.Contains(G);
// Don't check initialization order if this global is blacklisted.
GlobalHasDynamicInitializer &= !BL->isIn(*G, "init");
StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
Constant *NewInitializer = ConstantStruct::get(
NewTy, G->getInitializer(),
Constant::getNullValue(RightRedZoneTy), NULL);
GlobalVariable *Name = createPrivateGlobalForString(M, G->getName());
// Create a new global variable with enough space for a redzone.
GlobalValue::LinkageTypes Linkage = G->getLinkage();
if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
Linkage = GlobalValue::InternalLinkage;
GlobalVariable *NewGlobal = new GlobalVariable(
M, NewTy, G->isConstant(), Linkage,
NewInitializer, "", G, G->getThreadLocalMode());
NewGlobal->copyAttributesFrom(G);
NewGlobal->setAlignment(MinRZ);
Value *Indices2[2];
Indices2[0] = IRB.getInt32(0);
Indices2[1] = IRB.getInt32(0);
G->replaceAllUsesWith(
ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
NewGlobal->takeName(G);
G->eraseFromParent();
Initializers[i] = ConstantStruct::get(
GlobalStructTy,
ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
ConstantInt::get(IntptrTy, SizeInBytes),
ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
ConstantExpr::getPointerCast(Name, IntptrTy),
ConstantExpr::getPointerCast(ModuleName, IntptrTy),
ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer),
NULL);
// Populate the first and last globals declared in this TU.
if (CheckInitOrder && GlobalHasDynamicInitializer)
HasDynamicallyInitializedGlobals = true;
DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
}
ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
GlobalVariable *AllGlobals = new GlobalVariable(
M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
// Create calls for poisoning before initializers run and unpoisoning after.
if (CheckInitOrder && HasDynamicallyInitializedGlobals)
createInitializerPoisonCalls(M, ModuleName);
IRB.CreateCall2(AsanRegisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
// We also need to unregister globals at the end, e.g. when a shared library
// gets closed.
Function *AsanDtorFunction = Function::Create(
FunctionType::get(Type::getVoidTy(*C), false),
GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);
DEBUG(dbgs() << M);
return true;
}
void AddressSanitizer::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
// Create __asan_report* callbacks.
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
AccessSizeIndex++) {
// IsWrite and TypeSize are encoded in the function name.
std::string FunctionName = std::string(kAsanReportErrorTemplate) +
(AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
// If we are merging crash callbacks, they have two parameters.
AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
checkInterfaceFunction(M.getOrInsertFunction(
FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
}
}
AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction(
kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
AsanCovFunction = checkInterfaceFunction(M.getOrInsertFunction(
kAsanCovName, IRB.getVoidTy(), IntptrTy, NULL));
// We insert an empty inline asm after __asan_report* to avoid callback merge.
EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
StringRef(""), StringRef(""),
/*hasSideEffects=*/true);
}
void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const {
// Tell the values of mapping offset and scale to the run-time.
GlobalValue *asan_mapping_offset =
new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
ConstantInt::get(IntptrTy, Mapping.Offset),
kAsanMappingOffsetName);
// Read the global, otherwise it may be optimized away.
IRB.CreateLoad(asan_mapping_offset, true);
GlobalValue *asan_mapping_scale =
new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
ConstantInt::get(IntptrTy, Mapping.Scale),
kAsanMappingScaleName);
// Read the global, otherwise it may be optimized away.
IRB.CreateLoad(asan_mapping_scale, true);
}
// virtual
bool AddressSanitizer::doInitialization(Module &M) {
// Initialize the private fields. No one has accessed them before.
TD = getAnalysisIfAvailable<DataLayout>();
if (!TD)
return false;
BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
DynamicallyInitializedGlobals.Init(M);
C = &(M.getContext());
LongSize = TD->getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
AsanCtorFunction = Function::Create(
FunctionType::get(Type::getVoidTy(*C), false),
GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
// call __asan_init in the module ctor.
IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
AsanInitFunction = checkInterfaceFunction(
M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
AsanInitFunction->setLinkage(Function::ExternalLinkage);
IRB.CreateCall(AsanInitFunction);
Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
emitShadowMapping(M, IRB);
appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
return true;
}
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
// For each NSObject descendant having a +load method, this method is invoked
// by the ObjC runtime before any of the static constructors is called.
// Therefore we need to instrument such methods with a call to __asan_init
// at the beginning in order to initialize our runtime before any access to
// the shadow memory.
// We cannot just ignore these methods, because they may call other
// instrumented functions.
if (F.getName().find(" load]") != std::string::npos) {
IRBuilder<> IRB(F.begin()->begin());
IRB.CreateCall(AsanInitFunction);
return true;
}
return false;
}
// Poor man's coverage that works with ASan.
// We create a Guard boolean variable with the same linkage
// as the function and inject this code into the entry block:
// if (*Guard) {
// __sanitizer_cov(&F);
// *Guard = 1;
// }
// The accesses to Guard are atomic. The rest of the logic is
// in __sanitizer_cov (it's fine to call it more than once).
//
// This coverage implementation provides very limited data:
// it only tells if a given function was ever executed.
// No counters, no per-basic-block or per-edge data.
// But for many use cases this is what we need and the added slowdown
// is negligible. This simple implementation will probably be obsoleted
// by the upcoming Clang-based coverage implementation.
// By having it here and now we hope to
// a) get the functionality to users earlier and
// b) collect usage statistics to help improve Clang coverage design.
bool AddressSanitizer::InjectCoverage(Function &F) {
if (!ClCoverage) return false;
IRBuilder<> IRB(F.getEntryBlock().getFirstInsertionPt());
Type *Int8Ty = IRB.getInt8Ty();
GlobalVariable *Guard = new GlobalVariable(
*F.getParent(), Int8Ty, false, GlobalValue::PrivateLinkage,
Constant::getNullValue(Int8Ty), "__asan_gen_cov_" + F.getName());
LoadInst *Load = IRB.CreateLoad(Guard);
Load->setAtomic(Monotonic);
Load->setAlignment(1);
Value *Cmp = IRB.CreateICmpEQ(Constant::getNullValue(Int8Ty), Load);
Instruction *Ins = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
IRB.SetInsertPoint(Ins);
// We pass &F to __sanitizer_cov. We could avoid this and rely on
// GET_CALLER_PC, but having the PC of the first instruction is just nice.
IRB.CreateCall(AsanCovFunction, IRB.CreatePointerCast(&F, IntptrTy));
StoreInst *Store = IRB.CreateStore(ConstantInt::get(Int8Ty, 1), Guard);
Store->setAtomic(Monotonic);
Store->setAlignment(1);
return true;
}
bool AddressSanitizer::runOnFunction(Function &F) {
if (BL->isIn(F)) return false;
if (&F == AsanCtorFunction) return false;
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
initializeCallbacks(*F.getParent());
// If needed, insert __asan_init before checking for SanitizeAddress attr.
maybeInsertAsanInitAtFunctionEntry(F);
if (!F.hasFnAttribute(Attribute::SanitizeAddress))
return false;
if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
return false;
// We want to instrument every address only once per basic block (unless there
// are calls between uses).
SmallSet<Value*, 16> TempsToInstrument;
SmallVector<Instruction*, 16> ToInstrument;
SmallVector<Instruction*, 8> NoReturnCalls;
int NumAllocas = 0;
bool IsWrite;
// Fill the set of memory operations to instrument.
for (Function::iterator FI = F.begin(), FE = F.end();
FI != FE; ++FI) {
TempsToInstrument.clear();
int NumInsnsPerBB = 0;
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
BI != BE; ++BI) {
if (LooksLikeCodeInBug11395(BI)) return false;
if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) {
if (ClOpt && ClOptSameTemp) {
if (!TempsToInstrument.insert(Addr))
continue; // We've seen this temp in the current BB.
}
} else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
// ok, take it.
} else {
if (isa<AllocaInst>(BI))
NumAllocas++;
CallSite CS(BI);
if (CS) {
// A call inside BB.
TempsToInstrument.clear();
if (CS.doesNotReturn())
NoReturnCalls.push_back(CS.getInstruction());
}
continue;
}
ToInstrument.push_back(BI);
NumInsnsPerBB++;
if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
break;
}
}
Function *UninstrumentedDuplicate = 0;
bool LikelyToInstrument =
!NoReturnCalls.empty() || !ToInstrument.empty() || (NumAllocas > 0);
if (ClKeepUninstrumented && LikelyToInstrument) {
ValueToValueMapTy VMap;
UninstrumentedDuplicate = CloneFunction(&F, VMap, false);
UninstrumentedDuplicate->removeFnAttr(Attribute::SanitizeAddress);
UninstrumentedDuplicate->setName("NOASAN_" + F.getName());
F.getParent()->getFunctionList().push_back(UninstrumentedDuplicate);
}
// Instrument.
int NumInstrumented = 0;
for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
Instruction *Inst = ToInstrument[i];
if (ClDebugMin < 0 || ClDebugMax < 0 ||
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
if (isInterestingMemoryAccess(Inst, &IsWrite))
instrumentMop(Inst);
else
instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
}
NumInstrumented++;
}
FunctionStackPoisoner FSP(F, *this);
bool ChangedStack = FSP.runOnFunction();
// We must unpoison the stack before every NoReturn call (throw, _exit, etc).
// See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) {
Instruction *CI = NoReturnCalls[i];
IRBuilder<> IRB(CI);
IRB.CreateCall(AsanHandleNoReturnFunc);
}
bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
if (InjectCoverage(F))
res = true;
DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
if (ClKeepUninstrumented) {
if (!res) {
// No instrumentation is done, no need for the duplicate.
if (UninstrumentedDuplicate)
UninstrumentedDuplicate->eraseFromParent();
} else {
// The function was instrumented. We must have the duplicate.
assert(UninstrumentedDuplicate);
UninstrumentedDuplicate->setSection("NOASAN");
assert(!F.hasSection());
F.setSection("ASAN");
}
}
return res;
}
static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
if (ShadowRedzoneSize == 1) return PoisonByte;
if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
if (ShadowRedzoneSize == 4)
return (PoisonByte << 24) + (PoisonByte << 16) +
(PoisonByte << 8) + (PoisonByte);
llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4");
}
static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
size_t Size,
size_t RZSize,
size_t ShadowGranularity,
uint8_t Magic) {
for (size_t i = 0; i < RZSize;
i+= ShadowGranularity, Shadow++) {
if (i + ShadowGranularity <= Size) {
*Shadow = 0; // fully addressable
} else if (i >= Size) {
*Shadow = Magic; // unaddressable
} else {
*Shadow = Size - i; // first Size-i bytes are addressable
}
}
}
// Workaround for bug 11395: we don't want to instrument stack in functions
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
// FIXME: remove once the bug 11395 is fixed.
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
if (LongSize != 32) return false;
CallInst *CI = dyn_cast<CallInst>(I);
if (!CI || !CI->isInlineAsm()) return false;
if (CI->getNumArgOperands() <= 5) return false;
// We have inline assembly with quite a few arguments.
return true;
}
void FunctionStackPoisoner::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
std::string Suffix = itostr(i);
AsanStackMallocFunc[i] = checkInterfaceFunction(
M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
IntptrTy, IntptrTy, NULL));
AsanStackFreeFunc[i] = checkInterfaceFunction(M.getOrInsertFunction(
kAsanStackFreeNameTemplate + Suffix, IRB.getVoidTy(), IntptrTy,
IntptrTy, IntptrTy, NULL));
}
AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
}
void FunctionStackPoisoner::poisonRedZones(
const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> &IRB, Value *ShadowBase,
bool DoPoison) {
size_t ShadowRZSize = RedzoneSize() >> Mapping.Scale;
assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
Type *RZPtrTy = PointerType::get(RZTy, 0);
Value *PoisonLeft = ConstantInt::get(RZTy,
ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
Value *PoisonMid = ConstantInt::get(RZTy,
ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
Value *PoisonRight = ConstantInt::get(RZTy,
ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));
// poison the first red zone.
IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
// poison all other red zones.
uint64_t Pos = RedzoneSize();
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
AllocaInst *AI = AllocaVec[i];
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
uint64_t AlignedSize = getAlignedAllocaSize(AI);
assert(AlignedSize - SizeInBytes < RedzoneSize());
Value *Ptr = NULL;
Pos += AlignedSize;
assert(ShadowBase->getType() == IntptrTy);
if (SizeInBytes < AlignedSize) {
// Poison the partial redzone at right
Ptr = IRB.CreateAdd(
ShadowBase, ConstantInt::get(IntptrTy,
(Pos >> Mapping.Scale) - ShadowRZSize));
size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes);
uint32_t Poison = 0;
if (DoPoison) {
PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
RedzoneSize(),
1ULL << Mapping.Scale,
kAsanStackPartialRedzoneMagic);
Poison =
ASan.TD->isLittleEndian()
? support::endian::byte_swap<uint32_t, support::little>(Poison)
: support::endian::byte_swap<uint32_t, support::big>(Poison);
}
Value *PartialPoison = ConstantInt::get(RZTy, Poison);
IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
}
// Poison the full redzone at right.
Ptr = IRB.CreateAdd(ShadowBase,
ConstantInt::get(IntptrTy, Pos >> Mapping.Scale));
bool LastAlloca = (i == AllocaVec.size() - 1);
Value *Poison = LastAlloca ? PoisonRight : PoisonMid;
IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
Pos += RedzoneSize();
}
}
// Fake stack allocator (asan_fake_stack.h) has 11 size classes
// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
static int StackMallocSizeClass(uint64_t LocalStackSize) {
assert(LocalStackSize <= kMaxStackMallocSize);
uint64_t MaxSize = kMinStackMallocSize;
for (int i = 0; ; i++, MaxSize *= 2)
if (LocalStackSize <= MaxSize)
return i;
llvm_unreachable("impossible LocalStackSize");
}
// Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
// We can not use MemSet intrinsic because it may end up calling the actual
// memset. Size is a multiple of 8.
// Currently this generates 8-byte stores on x86_64; it may be better to
// generate wider stores.
void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
IRBuilder<> &IRB, Value *ShadowBase, int Size) {
assert(!(Size % 8));
assert(kAsanStackAfterReturnMagic == 0xf5);
for (int i = 0; i < Size; i += 8) {
Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
IRB.CreateStore(ConstantInt::get(IRB.getInt64Ty(), 0xf5f5f5f5f5f5f5f5ULL),
IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
}
}
void FunctionStackPoisoner::poisonStack() {
uint64_t LocalStackSize = TotalStackSize +
(AllocaVec.size() + 1) * RedzoneSize();
bool DoStackMalloc = ASan.CheckUseAfterReturn
&& LocalStackSize <= kMaxStackMallocSize;
int StackMallocIdx = -1;
assert(AllocaVec.size() > 0);
Instruction *InsBefore = AllocaVec[0];
IRBuilder<> IRB(InsBefore);
Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
AllocaInst *MyAlloca =
new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
if (ClRealignStack && StackAlignment < RedzoneSize())
StackAlignment = RedzoneSize();
MyAlloca->setAlignment(StackAlignment);
assert(MyAlloca->isStaticAlloca());
Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
Value *LocalStackBase = OrigStackBase;
if (DoStackMalloc) {
// LocalStackBase = OrigStackBase
// if (__asan_option_detect_stack_use_after_return)
// LocalStackBase = __asan_stack_malloc_N(LocalStackBase, OrigStackBase);
StackMallocIdx = StackMallocSizeClass(LocalStackSize);
assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
kAsanOptionDetectUAR, IRB.getInt32Ty());
Value *Cmp = IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
Constant::getNullValue(IRB.getInt32Ty()));
Instruction *Term =
SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
BasicBlock *CmpBlock = cast<Instruction>(Cmp)->getParent();
IRBuilder<> IRBIf(Term);
LocalStackBase = IRBIf.CreateCall2(
AsanStackMallocFunc[StackMallocIdx],
ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
BasicBlock *SetBlock = cast<Instruction>(LocalStackBase)->getParent();
IRB.SetInsertPoint(InsBefore);
PHINode *Phi = IRB.CreatePHI(IntptrTy, 2);
Phi->addIncoming(OrigStackBase, CmpBlock);
Phi->addIncoming(LocalStackBase, SetBlock);
LocalStackBase = Phi;
}
// This string will be parsed by the run-time (DescribeAddressIfStack).
SmallString<2048> StackDescriptionStorage;
raw_svector_ostream StackDescription(StackDescriptionStorage);
StackDescription << AllocaVec.size() << " ";
// Insert poison calls for lifetime intrinsics for alloca.
bool HavePoisonedAllocas = false;
for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) {
const AllocaPoisonCall &APC = AllocaPoisonCallVec[i];
assert(APC.InsBefore);
assert(APC.AI);
IRBuilder<> IRB(APC.InsBefore);
poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
HavePoisonedAllocas |= APC.DoPoison;
}
uint64_t Pos = RedzoneSize();
// Replace Alloca instructions with base+offset.
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
AllocaInst *AI = AllocaVec[i];
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
StringRef Name = AI->getName();
StackDescription << Pos << " " << SizeInBytes << " "
<< Name.size() << " " << Name << " ";
uint64_t AlignedSize = getAlignedAllocaSize(AI);
assert((AlignedSize % RedzoneSize()) == 0);
Value *NewAllocaPtr = IRB.CreateIntToPtr(
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
AI->getType());
replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
AI->replaceAllUsesWith(NewAllocaPtr);
Pos += AlignedSize + RedzoneSize();
}
assert(Pos == LocalStackSize);
// The left-most redzone has enough space for at least 4 pointers.
// Write the Magic value to redzone[0].
Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
BasePlus0);
// Write the frame description constant to redzone[1].
Value *BasePlus1 = IRB.CreateIntToPtr(
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)),
IntptrPtrTy);
GlobalVariable *StackDescriptionGlobal =
createPrivateGlobalForString(*F.getParent(), StackDescription.str());
Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
IntptrTy);
IRB.CreateStore(Description, BasePlus1);
// Write the PC to redzone[2].
Value *BasePlus2 = IRB.CreateIntToPtr(
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy,
2 * ASan.LongSize/8)),
IntptrPtrTy);
IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
// Poison the stack redzones at the entry.
Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
poisonRedZones(AllocaVec, IRB, ShadowBase, true);
// Unpoison the stack before all ret instructions.
for (size_t i = 0, n = RetVec.size(); i < n; i++) {
Instruction *Ret = RetVec[i];
IRBuilder<> IRBRet(Ret);
// Mark the current frame as retired.
IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
BasePlus0);
// Unpoison the stack.
poisonRedZones(AllocaVec, IRBRet, ShadowBase, false);
if (DoStackMalloc) {
assert(StackMallocIdx >= 0);
// In use-after-return mode, mark the whole stack frame unaddressable.
if (StackMallocIdx <= 4) {
// For small sizes inline the whole thing:
// if LocalStackBase != OrigStackBase:
// memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
// **SavedFlagPtr(LocalStackBase) = 0
// FIXME: if LocalStackBase != OrigStackBase don't call poisonRedZones.
Value *Cmp = IRBRet.CreateICmpNE(LocalStackBase, OrigStackBase);
TerminatorInst *PoisonTerm =
SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
IRBuilder<> IRBPoison(PoisonTerm);
int ClassSize = kMinStackMallocSize << StackMallocIdx;
SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
ClassSize >> Mapping.Scale);
Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
LocalStackBase,
ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
Value *SavedFlagPtr = IRBPoison.CreateLoad(
IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
IRBPoison.CreateStore(
Constant::getNullValue(IRBPoison.getInt8Ty()),
IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
} else {
// For larger frames call __asan_stack_free_*.
IRBRet.CreateCall3(AsanStackFreeFunc[StackMallocIdx], LocalStackBase,
ConstantInt::get(IntptrTy, LocalStackSize),
OrigStackBase);
}
} else if (HavePoisonedAllocas) {
// If we poisoned some allocas in llvm.lifetime analysis,
// unpoison whole stack frame now.
assert(LocalStackBase == OrigStackBase);
poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
}
}
// We are done. Remove the old unused alloca instructions.
for (size_t i = 0, n = AllocaVec.size(); i < n; i++)
AllocaVec[i]->eraseFromParent();
}
void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
IRBuilder<> &IRB, bool DoPoison) {
// For now just insert the call to ASan runtime.
Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
Value *SizeArg = ConstantInt::get(IntptrTy, Size);
IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
: AsanUnpoisonStackMemoryFunc,
AddrArg, SizeArg);
}
// Handling llvm.lifetime intrinsics for a given %alloca:
// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
// could be poisoned by previous llvm.lifetime.end instruction, as the
// variable may go in and out of scope several times, e.g. in loops).
// (3) if we poisoned at least one %alloca in a function,
// unpoison the whole stack frame at function exit.
AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
// We're intested only in allocas we can handle.
return isInterestingAlloca(*AI) ? AI : 0;
// See if we've already calculated (or started to calculate) alloca for a
// given value.
AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
if (I != AllocaForValue.end())
return I->second;
// Store 0 while we're calculating alloca for value V to avoid
// infinite recursion if the value references itself.
AllocaForValue[V] = 0;
AllocaInst *Res = 0;
if (CastInst *CI = dyn_cast<CastInst>(V))
Res = findAllocaForValue(CI->getOperand(0));
else if (PHINode *PN = dyn_cast<PHINode>(V)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *IncValue = PN->getIncomingValue(i);
// Allow self-referencing phi-nodes.
if (IncValue == PN) continue;
AllocaInst *IncValueAI = findAllocaForValue(IncValue);
// AI for incoming values should exist and should all be equal.
if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res))
return 0;
Res = IncValueAI;
}
}
if (Res != 0)
AllocaForValue[V] = Res;
return Res;
}
|