1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
|
//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
#include <list>
#include "lldb/Core/Log.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/Timer.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section_sp, lldb::RegisterKind reg_kind, bool is_eh_frame) :
m_objfile (objfile),
m_section_sp (section_sp),
m_reg_kind (reg_kind), // The flavor of registers that the CFI data uses (enum RegisterKind)
m_flags (),
m_cie_map (),
m_cfi_data (),
m_cfi_data_initialized (false),
m_fde_index (),
m_fde_index_initialized (false),
m_is_eh_frame (is_eh_frame)
{
}
DWARFCallFrameInfo::~DWARFCallFrameInfo()
{
}
bool
DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
{
FDEEntryMap::Entry fde_entry;
// Make sure that the Address we're searching for is the same object file
// as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
ModuleSP module_sp = addr.GetModule();
if (module_sp.get() == NULL || module_sp->GetObjectFile() == NULL || module_sp->GetObjectFile() != &m_objfile)
return false;
if (GetFDEEntryByFileAddress (addr.GetFileAddress(), fde_entry) == false)
return false;
return FDEToUnwindPlan (fde_entry.data, addr, unwind_plan);
}
bool
DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
{
// Make sure that the Address we're searching for is the same object file
// as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
ModuleSP module_sp = addr.GetModule();
if (module_sp.get() == NULL || module_sp->GetObjectFile() == NULL || module_sp->GetObjectFile() != &m_objfile)
return false;
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
return false;
GetFDEIndex();
FDEEntryMap::Entry *fde_entry = m_fde_index.FindEntryThatContains (addr.GetFileAddress());
if (!fde_entry)
return false;
range = AddressRange(fde_entry->base, fde_entry->size, m_objfile.GetSectionList());
return true;
}
bool
DWARFCallFrameInfo::GetFDEEntryByFileAddress (addr_t file_addr, FDEEntryMap::Entry &fde_entry)
{
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
return false;
GetFDEIndex();
if (m_fde_index.IsEmpty())
return false;
FDEEntryMap::Entry *fde = m_fde_index.FindEntryThatContains (file_addr);
if (fde == NULL)
return false;
fde_entry = *fde;
return true;
}
void
DWARFCallFrameInfo::GetFunctionAddressAndSizeVector (FunctionAddressAndSizeVector &function_info)
{
GetFDEIndex();
const size_t count = m_fde_index.GetSize();
function_info.Clear();
if (count > 0)
function_info.Reserve(count);
for (size_t i = 0; i < count; ++i)
{
const FDEEntryMap::Entry *func_offset_data_entry = m_fde_index.GetEntryAtIndex (i);
if (func_offset_data_entry)
{
FunctionAddressAndSizeVector::Entry function_offset_entry (func_offset_data_entry->base, func_offset_data_entry->size);
function_info.Append (function_offset_entry);
}
}
}
const DWARFCallFrameInfo::CIE*
DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
{
cie_map_t::iterator pos = m_cie_map.find(cie_offset);
if (pos != m_cie_map.end())
{
// Parse and cache the CIE
if (pos->second.get() == NULL)
pos->second = ParseCIE (cie_offset);
return pos->second.get();
}
return NULL;
}
DWARFCallFrameInfo::CIESP
DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
{
CIESP cie_sp(new CIE(cie_offset));
lldb::offset_t offset = cie_offset;
if (m_cfi_data_initialized == false)
GetCFIData();
const uint32_t length = m_cfi_data.GetU32(&offset);
const dw_offset_t cie_id = m_cfi_data.GetU32(&offset);
const dw_offset_t end_offset = cie_offset + length + 4;
if (length > 0 && ((!m_is_eh_frame && cie_id == UINT32_MAX) || (m_is_eh_frame && cie_id == 0ul)))
{
size_t i;
// cie.offset = cie_offset;
// cie.length = length;
// cie.cieID = cieID;
cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
cie_sp->version = m_cfi_data.GetU8(&offset);
for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
{
cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
if (cie_sp->augmentation[i] == '\0')
{
// Zero out remaining bytes in augmentation string
for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
cie_sp->augmentation[j] = '\0';
break;
}
}
if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
{
Host::SystemLog (Host::eSystemLogError, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
return cie_sp;
}
cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
if (cie_sp->augmentation[0])
{
// Get the length of the eh_frame augmentation data
// which starts with a ULEB128 length in bytes
const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
const size_t aug_data_end = offset + aug_data_len;
const size_t aug_str_len = strlen(cie_sp->augmentation);
// A 'z' may be present as the first character of the string.
// If present, the Augmentation Data field shall be present.
// The contents of the Augmentation Data shall be intepreted
// according to other characters in the Augmentation String.
if (cie_sp->augmentation[0] == 'z')
{
// Extract the Augmentation Data
size_t aug_str_idx = 0;
for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
{
char aug = cie_sp->augmentation[aug_str_idx];
switch (aug)
{
case 'L':
// Indicates the presence of one argument in the
// Augmentation Data of the CIE, and a corresponding
// argument in the Augmentation Data of the FDE. The
// argument in the Augmentation Data of the CIE is
// 1-byte and represents the pointer encoding used
// for the argument in the Augmentation Data of the
// FDE, which is the address of a language-specific
// data area (LSDA). The size of the LSDA pointer is
// specified by the pointer encoding used.
m_cfi_data.GetU8(&offset);
break;
case 'P':
// Indicates the presence of two arguments in the
// Augmentation Data of the cie_sp-> The first argument
// is 1-byte and represents the pointer encoding
// used for the second argument, which is the
// address of a personality routine handler. The
// size of the personality routine pointer is
// specified by the pointer encoding used.
{
uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
}
break;
case 'R':
// A 'R' may be present at any position after the
// first character of the string. The Augmentation
// Data shall include a 1 byte argument that
// represents the pointer encoding for the address
// pointers used in the FDE.
// Example: 0x1B == DW_EH_PE_pcrel | DW_EH_PE_sdata4
cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
break;
}
}
}
else if (strcmp(cie_sp->augmentation, "eh") == 0)
{
// If the Augmentation string has the value "eh", then
// the EH Data field shall be present
}
// Set the offset to be the end of the augmentation data just in case
// we didn't understand any of the data.
offset = (uint32_t)aug_data_end;
}
if (end_offset > offset)
{
cie_sp->inst_offset = offset;
cie_sp->inst_length = end_offset - offset;
}
while (offset < end_offset)
{
uint8_t inst = m_cfi_data.GetU8(&offset);
uint8_t primary_opcode = inst & 0xC0;
uint8_t extended_opcode = inst & 0x3F;
if (extended_opcode == DW_CFA_def_cfa)
{
// Takes two unsigned LEB128 operands representing a register
// number and a (non-factored) offset. The required action
// is to define the current CFA rule to use the provided
// register and offset.
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
cie_sp->initial_row.SetCFARegister (reg_num);
cie_sp->initial_row.SetCFAOffset (op_offset);
continue;
}
if (primary_opcode == DW_CFA_offset)
{
// 0x80 - high 2 bits are 0x2, lower 6 bits are register.
// Takes two arguments: an unsigned LEB128 constant representing a
// factored offset and a register number. The required action is to
// change the rule for the register indicated by the register number
// to be an offset(N) rule with a value of
// (N = factored offset * data_align).
uint32_t reg_num = extended_opcode;
int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * cie_sp->data_align;
UnwindPlan::Row::RegisterLocation reg_location;
reg_location.SetAtCFAPlusOffset(op_offset);
cie_sp->initial_row.SetRegisterInfo (reg_num, reg_location);
continue;
}
if (extended_opcode == DW_CFA_nop)
{
continue;
}
break; // Stop if we hit an unrecognized opcode
}
}
return cie_sp;
}
void
DWARFCallFrameInfo::GetCFIData()
{
if (m_cfi_data_initialized == false)
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log)
m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
m_objfile.ReadSectionData (m_section_sp.get(), m_cfi_data);
m_cfi_data_initialized = true;
}
}
// Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
// of the functions and a pointer back to the function's FDE for later expansion.
// Internalize CIEs as we come across them.
void
DWARFCallFrameInfo::GetFDEIndex ()
{
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
return;
if (m_fde_index_initialized)
return;
Mutex::Locker locker(m_fde_index_mutex);
if (m_fde_index_initialized) // if two threads hit the locker
return;
Timer scoped_timer (__PRETTY_FUNCTION__, "%s - %s", __PRETTY_FUNCTION__, m_objfile.GetFileSpec().GetFilename().AsCString(""));
lldb::offset_t offset = 0;
if (m_cfi_data_initialized == false)
GetCFIData();
while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
{
const dw_offset_t current_entry = offset;
uint32_t len = m_cfi_data.GetU32 (&offset);
dw_offset_t next_entry = current_entry + len + 4;
dw_offset_t cie_id = m_cfi_data.GetU32 (&offset);
if (cie_id == 0 || cie_id == UINT32_MAX || len == 0)
{
m_cie_map[current_entry] = ParseCIE (current_entry);
offset = next_entry;
continue;
}
const dw_offset_t cie_offset = current_entry + 4 - cie_id;
const CIE *cie = GetCIE (cie_offset);
if (cie)
{
const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
FDEEntryMap::Entry fde (addr, length, current_entry);
m_fde_index.Append(fde);
}
else
{
Host::SystemLog (Host::eSystemLogError,
"error: unable to find CIE at 0x%8.8x for cie_id = 0x%8.8x for entry at 0x%8.8x.\n",
cie_offset,
cie_id,
current_entry);
}
offset = next_entry;
}
m_fde_index.Sort();
m_fde_index_initialized = true;
}
bool
DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t dwarf_offset, Address startaddr, UnwindPlan& unwind_plan)
{
lldb::offset_t offset = dwarf_offset;
lldb::offset_t current_entry = offset;
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
return false;
if (m_cfi_data_initialized == false)
GetCFIData();
uint32_t length = m_cfi_data.GetU32 (&offset);
dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);
assert (cie_offset != 0 && cie_offset != UINT32_MAX);
// Translate the CIE_id from the eh_frame format, which
// is relative to the FDE offset, into a __eh_frame section
// offset
if (m_is_eh_frame)
{
unwind_plan.SetSourceName ("eh_frame CFI");
cie_offset = current_entry + 4 - cie_offset;
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
}
else
{
unwind_plan.SetSourceName ("DWARF CFI");
// In theory the debug_frame info should be valid at all call sites
// ("asynchronous unwind info" as it is sometimes called) but in practice
// gcc et al all emit call frame info for the prologue and call sites, but
// not for the epilogue or all the other locations during the function reliably.
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
}
unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
const CIE *cie = GetCIE (cie_offset);
assert (cie != NULL);
const dw_offset_t end_offset = current_entry + length + 4;
const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
range.SetByteSize (range_len);
if (cie->augmentation[0] == 'z')
{
uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
offset += aug_data_len;
}
uint32_t reg_num = 0;
int32_t op_offset = 0;
uint32_t code_align = cie->code_align;
int32_t data_align = cie->data_align;
unwind_plan.SetPlanValidAddressRange (range);
UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
*cie_initial_row = cie->initial_row;
UnwindPlan::RowSP row(cie_initial_row);
unwind_plan.SetRegisterKind (m_reg_kind);
unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);
std::vector<UnwindPlan::RowSP> stack;
UnwindPlan::Row::RegisterLocation reg_location;
while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
{
uint8_t inst = m_cfi_data.GetU8(&offset);
uint8_t primary_opcode = inst & 0xC0;
uint8_t extended_opcode = inst & 0x3F;
if (primary_opcode)
{
switch (primary_opcode)
{
case DW_CFA_advance_loc : // (Row Creation Instruction)
{ // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
// takes a single argument that represents a constant delta. The
// required action is to create a new table row with a location
// value that is computed by taking the current entry's location
// value and adding (delta * code_align). All other
// values in the new row are initially identical to the current row.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SlideOffset(extended_opcode * code_align);
}
break;
case DW_CFA_offset :
{ // 0x80 - high 2 bits are 0x2, lower 6 bits are register
// takes two arguments: an unsigned LEB128 constant representing a
// factored offset and a register number. The required action is to
// change the rule for the register indicated by the register number
// to be an offset(N) rule with a value of
// (N = factored offset * data_align).
reg_num = extended_opcode;
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
reg_location.SetAtCFAPlusOffset(op_offset);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_restore :
{ // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
// takes a single argument that represents a register number. The
// required action is to change the rule for the indicated register
// to the rule assigned it by the initial_instructions in the CIE.
reg_num = extended_opcode;
// We only keep enough register locations around to
// unwind what is in our thread, and these are organized
// by the register index in that state, so we need to convert our
// GCC register number from the EH frame info, to a register index
if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
row->SetRegisterInfo (reg_num, reg_location);
}
break;
}
}
else
{
switch (extended_opcode)
{
case DW_CFA_nop : // 0x0
break;
case DW_CFA_set_loc : // 0x1 (Row Creation Instruction)
{
// DW_CFA_set_loc takes a single argument that represents an address.
// The required action is to create a new table row using the
// specified address as the location. All other values in the new row
// are initially identical to the current row. The new location value
// should always be greater than the current one.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
}
break;
case DW_CFA_advance_loc1 : // 0x2 (Row Creation Instruction)
{
// takes a single uword argument that represents a constant delta.
// This instruction is identical to DW_CFA_advance_loc except for the
// encoding and size of the delta argument.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
}
break;
case DW_CFA_advance_loc2 : // 0x3 (Row Creation Instruction)
{
// takes a single uword argument that represents a constant delta.
// This instruction is identical to DW_CFA_advance_loc except for the
// encoding and size of the delta argument.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
}
break;
case DW_CFA_advance_loc4 : // 0x4 (Row Creation Instruction)
{
// takes a single uword argument that represents a constant delta.
// This instruction is identical to DW_CFA_advance_loc except for the
// encoding and size of the delta argument.
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
}
break;
case DW_CFA_offset_extended : // 0x5
{
// takes two unsigned LEB128 arguments representing a register number
// and a factored offset. This instruction is identical to DW_CFA_offset
// except for the encoding and size of the register argument.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
reg_location.SetAtCFAPlusOffset(op_offset);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_restore_extended : // 0x6
{
// takes a single unsigned LEB128 argument that represents a register
// number. This instruction is identical to DW_CFA_restore except for
// the encoding and size of the register argument.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_undefined : // 0x7
{
// takes a single unsigned LEB128 argument that represents a register
// number. The required action is to set the rule for the specified
// register to undefined.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
reg_location.SetUndefined();
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_same_value : // 0x8
{
// takes a single unsigned LEB128 argument that represents a register
// number. The required action is to set the rule for the specified
// register to same value.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
reg_location.SetSame();
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_register : // 0x9
{
// takes two unsigned LEB128 arguments representing register numbers.
// The required action is to set the rule for the first register to be
// the second register.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
reg_location.SetInRegister(other_reg_num);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_remember_state : // 0xA
{
// These instructions define a stack of information. Encountering the
// DW_CFA_remember_state instruction means to save the rules for every
// register on the current row on the stack. Encountering the
// DW_CFA_restore_state instruction means to pop the set of rules off
// the stack and place them in the current row. (This operation is
// useful for compilers that move epilogue code into the body of a
// function.)
stack.push_back (row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset (newrow);
}
break;
case DW_CFA_restore_state : // 0xB
// These instructions define a stack of information. Encountering the
// DW_CFA_remember_state instruction means to save the rules for every
// register on the current row on the stack. Encountering the
// DW_CFA_restore_state instruction means to pop the set of rules off
// the stack and place them in the current row. (This operation is
// useful for compilers that move epilogue code into the body of a
// function.)
{
row = stack.back ();
stack.pop_back ();
}
break;
case DW_CFA_def_cfa : // 0xC (CFA Definition Instruction)
{
// Takes two unsigned LEB128 operands representing a register
// number and a (non-factored) offset. The required action
// is to define the current CFA rule to use the provided
// register and offset.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
row->SetCFARegister (reg_num);
row->SetCFAOffset (op_offset);
}
break;
case DW_CFA_def_cfa_register : // 0xD (CFA Definition Instruction)
{
// takes a single unsigned LEB128 argument representing a register
// number. The required action is to define the current CFA rule to
// use the provided register (but to keep the old offset).
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
row->SetCFARegister (reg_num);
}
break;
case DW_CFA_def_cfa_offset : // 0xE (CFA Definition Instruction)
{
// Takes a single unsigned LEB128 operand representing a
// (non-factored) offset. The required action is to define
// the current CFA rule to use the provided offset (but
// to keep the old register).
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
row->SetCFAOffset (op_offset);
}
break;
case DW_CFA_def_cfa_expression : // 0xF (CFA Definition Instruction)
{
size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
offset += (uint32_t)block_len;
}
break;
case DW_CFA_expression : // 0x10
{
// Takes two operands: an unsigned LEB128 value representing
// a register number, and a DW_FORM_block value representing a DWARF
// expression. The required action is to change the rule for the
// register indicated by the register number to be an expression(E)
// rule where E is the DWARF expression. That is, the DWARF
// expression computes the address. The value of the CFA is
// pushed on the DWARF evaluation stack prior to execution of
// the DWARF expression.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);
reg_location.SetAtDWARFExpression(block_data, block_len);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_offset_extended_sf : // 0x11
{
// takes two operands: an unsigned LEB128 value representing a
// register number and a signed LEB128 factored offset. This
// instruction is identical to DW_CFA_offset_extended except
//that the second operand is signed and factored.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
reg_location.SetAtCFAPlusOffset(op_offset);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_def_cfa_sf : // 0x12 (CFA Definition Instruction)
{
// Takes two operands: an unsigned LEB128 value representing
// a register number and a signed LEB128 factored offset.
// This instruction is identical to DW_CFA_def_cfa except
// that the second operand is signed and factored.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
row->SetCFARegister (reg_num);
row->SetCFAOffset (op_offset);
}
break;
case DW_CFA_def_cfa_offset_sf : // 0x13 (CFA Definition Instruction)
{
// takes a signed LEB128 operand representing a factored
// offset. This instruction is identical to DW_CFA_def_cfa_offset
// except that the operand is signed and factored.
op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
row->SetCFAOffset (op_offset);
}
break;
case DW_CFA_val_expression : // 0x16
{
// takes two operands: an unsigned LEB128 value representing a register
// number, and a DW_FORM_block value representing a DWARF expression.
// The required action is to change the rule for the register indicated
// by the register number to be a val_expression(E) rule where E is the
// DWARF expression. That is, the DWARF expression computes the value of
// the given register. The value of the CFA is pushed on the DWARF
// evaluation stack prior to execution of the DWARF expression.
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
//#if defined(__i386__) || defined(__x86_64__)
// // The EH frame info for EIP and RIP contains code that looks for traps to
// // be a specific type and increments the PC.
// // For i386:
// // DW_CFA_val_expression where:
// // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
// // DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
// // DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
// // DW_OP_and, DW_OP_plus
// // This basically does a:
// // eip = ucontenxt.mcontext32->gpr.eip;
// // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
// // eip++;
// //
// // For x86_64:
// // DW_CFA_val_expression where:
// // rip = DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
// // DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
// // DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
// // This basically does a:
// // rip = ucontenxt.mcontext64->gpr.rip;
// // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
// // rip++;
// // The trap comparisons and increments are not needed as it hoses up the unwound PC which
// // is expected to point at least past the instruction that causes the fault/trap. So we
// // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
// if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
// {
// if (thread->Is64Bit())
// {
// if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
// block_len = 8;
// }
// else
// {
// if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
// block_len = 7;
// }
// }
//#endif
reg_location.SetIsDWARFExpression(block_data, block_len);
row->SetRegisterInfo (reg_num, reg_location);
}
break;
case DW_CFA_val_offset : // 0x14
case DW_CFA_val_offset_sf : // 0x15
default:
break;
}
}
}
unwind_plan.AppendRow(row);
return true;
}
|