1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
//===- MCJITTest.cpp - Unit tests for the MCJIT ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This test suite verifies basic MCJIT functionality when invoked form the C
// API.
//
//===----------------------------------------------------------------------===//
#include "llvm-c/Analysis.h"
#include "llvm-c/Core.h"
#include "llvm-c/ExecutionEngine.h"
#include "llvm-c/Target.h"
#include "llvm-c/Transforms/Scalar.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/Support/Host.h"
#include "MCJITTestAPICommon.h"
#include "gtest/gtest.h"
using namespace llvm;
static bool didCallAllocateCodeSection;
static uint8_t *roundTripAllocateCodeSection(void *object, uintptr_t size,
unsigned alignment,
unsigned sectionID,
const char *sectionName) {
didCallAllocateCodeSection = true;
return static_cast<SectionMemoryManager*>(object)->allocateCodeSection(
size, alignment, sectionID, sectionName);
}
static uint8_t *roundTripAllocateDataSection(void *object, uintptr_t size,
unsigned alignment,
unsigned sectionID,
const char *sectionName,
LLVMBool isReadOnly) {
return static_cast<SectionMemoryManager*>(object)->allocateDataSection(
size, alignment, sectionID, sectionName, isReadOnly);
}
static LLVMBool roundTripFinalizeMemory(void *object, char **errMsg) {
std::string errMsgString;
bool result =
static_cast<SectionMemoryManager*>(object)->finalizeMemory(&errMsgString);
if (result) {
*errMsg = LLVMCreateMessage(errMsgString.c_str());
return 1;
}
return 0;
}
static void roundTripDestroy(void *object) {
delete static_cast<SectionMemoryManager*>(object);
}
namespace {
class MCJITCAPITest : public testing::Test, public MCJITTestAPICommon {
protected:
MCJITCAPITest() {
// The architectures below are known to be compatible with MCJIT as they
// are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
// kept in sync.
SupportedArchs.push_back(Triple::aarch64);
SupportedArchs.push_back(Triple::arm);
SupportedArchs.push_back(Triple::mips);
SupportedArchs.push_back(Triple::x86);
SupportedArchs.push_back(Triple::x86_64);
// Some architectures have sub-architectures in which tests will fail, like
// ARM. These two vectors will define if they do have sub-archs (to avoid
// extra work for those who don't), and if so, if they are listed to work
HasSubArchs.push_back(Triple::arm);
SupportedSubArchs.push_back("armv6");
SupportedSubArchs.push_back("armv7");
// The operating systems below are known to be sufficiently incompatible
// that they will fail the MCJIT C API tests.
UnsupportedOSs.push_back(Triple::Cygwin);
}
virtual void SetUp() {
didCallAllocateCodeSection = false;
Module = 0;
Function = 0;
Engine = 0;
Error = 0;
}
virtual void TearDown() {
if (Engine)
LLVMDisposeExecutionEngine(Engine);
else if (Module)
LLVMDisposeModule(Module);
}
void buildSimpleFunction() {
Module = LLVMModuleCreateWithName("simple_module");
LLVMSetTarget(Module, HostTriple.c_str());
Function = LLVMAddFunction(
Module, "simple_function", LLVMFunctionType(LLVMInt32Type(), 0, 0, 0));
LLVMSetFunctionCallConv(Function, LLVMCCallConv);
LLVMBasicBlockRef entry = LLVMAppendBasicBlock(Function, "entry");
LLVMBuilderRef builder = LLVMCreateBuilder();
LLVMPositionBuilderAtEnd(builder, entry);
LLVMBuildRet(builder, LLVMConstInt(LLVMInt32Type(), 42, 0));
LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
LLVMDisposeMessage(Error);
LLVMDisposeBuilder(builder);
}
void buildMCJITOptions() {
LLVMInitializeMCJITCompilerOptions(&Options, sizeof(Options));
Options.OptLevel = 2;
// Just ensure that this field still exists.
Options.NoFramePointerElim = false;
}
void useRoundTripSectionMemoryManager() {
Options.MCJMM = LLVMCreateSimpleMCJITMemoryManager(
new SectionMemoryManager(),
roundTripAllocateCodeSection,
roundTripAllocateDataSection,
roundTripFinalizeMemory,
roundTripDestroy);
}
void buildMCJITEngine() {
ASSERT_EQ(
0, LLVMCreateMCJITCompilerForModule(&Engine, Module, &Options,
sizeof(Options), &Error));
}
void buildAndRunPasses() {
LLVMPassManagerRef pass = LLVMCreatePassManager();
LLVMAddTargetData(LLVMGetExecutionEngineTargetData(Engine), pass);
LLVMAddConstantPropagationPass(pass);
LLVMAddInstructionCombiningPass(pass);
LLVMRunPassManager(pass, Module);
LLVMDisposePassManager(pass);
}
LLVMModuleRef Module;
LLVMValueRef Function;
LLVMMCJITCompilerOptions Options;
LLVMExecutionEngineRef Engine;
char *Error;
};
} // end anonymous namespace
TEST_F(MCJITCAPITest, simple_function) {
SKIP_UNSUPPORTED_PLATFORM;
buildSimpleFunction();
buildMCJITOptions();
buildMCJITEngine();
buildAndRunPasses();
union {
void *raw;
int (*usable)();
} functionPointer;
functionPointer.raw = LLVMGetPointerToGlobal(Engine, Function);
EXPECT_EQ(42, functionPointer.usable());
}
TEST_F(MCJITCAPITest, custom_memory_manager) {
SKIP_UNSUPPORTED_PLATFORM;
buildSimpleFunction();
buildMCJITOptions();
useRoundTripSectionMemoryManager();
buildMCJITEngine();
buildAndRunPasses();
union {
void *raw;
int (*usable)();
} functionPointer;
functionPointer.raw = LLVMGetPointerToGlobal(Engine, Function);
EXPECT_EQ(42, functionPointer.usable());
EXPECT_TRUE(didCallAllocateCodeSection);
}
|