1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
|
//===--- Type.cpp - Type representation and manipulation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace clang;
bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
return (*this != Other) &&
// CVR qualifiers superset
(((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
// ObjC GC qualifiers superset
((getObjCGCAttr() == Other.getObjCGCAttr()) ||
(hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
// Address space superset.
((getAddressSpace() == Other.getAddressSpace()) ||
(hasAddressSpace()&& !Other.hasAddressSpace())) &&
// Lifetime qualifier superset.
((getObjCLifetime() == Other.getObjCLifetime()) ||
(hasObjCLifetime() && !Other.hasObjCLifetime()));
}
const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
const Type* ty = getTypePtr();
NamedDecl *ND = nullptr;
if (ty->isPointerType() || ty->isReferenceType())
return ty->getPointeeType().getBaseTypeIdentifier();
else if (ty->isRecordType())
ND = ty->getAs<RecordType>()->getDecl();
else if (ty->isEnumeralType())
ND = ty->getAs<EnumType>()->getDecl();
else if (ty->getTypeClass() == Type::Typedef)
ND = ty->getAs<TypedefType>()->getDecl();
else if (ty->isArrayType())
return ty->castAsArrayTypeUnsafe()->
getElementType().getBaseTypeIdentifier();
if (ND)
return ND->getIdentifier();
return nullptr;
}
bool QualType::isConstant(QualType T, ASTContext &Ctx) {
if (T.isConstQualified())
return true;
if (const ArrayType *AT = Ctx.getAsArrayType(T))
return AT->getElementType().isConstant(Ctx);
return false;
}
unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
QualType ElementType,
const llvm::APInt &NumElements) {
uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
// Fast path the common cases so we can avoid the conservative computation
// below, which in common cases allocates "large" APSInt values, which are
// slow.
// If the element size is a power of 2, we can directly compute the additional
// number of addressing bits beyond those required for the element count.
if (llvm::isPowerOf2_64(ElementSize)) {
return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
}
// If both the element count and element size fit in 32-bits, we can do the
// computation directly in 64-bits.
if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
(NumElements.getZExtValue() >> 32) == 0) {
uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
return 64 - llvm::countLeadingZeros(TotalSize);
}
// Otherwise, use APSInt to handle arbitrary sized values.
llvm::APSInt SizeExtended(NumElements, true);
unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
SizeExtended.getBitWidth()) * 2);
llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
TotalSize *= SizeExtended;
return TotalSize.getActiveBits();
}
unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
unsigned Bits = Context.getTypeSize(Context.getSizeType());
// Limit the number of bits in size_t so that maximal bit size fits 64 bit
// integer (see PR8256). We can do this as currently there is no hardware
// that supports full 64-bit virtual space.
if (Bits > 61)
Bits = 61;
return Bits;
}
DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
QualType et, QualType can,
Expr *e, ArraySizeModifier sm,
unsigned tq,
SourceRange brackets)
: ArrayType(DependentSizedArray, et, can, sm, tq,
(et->containsUnexpandedParameterPack() ||
(e && e->containsUnexpandedParameterPack()))),
Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
{
}
void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context,
QualType ET,
ArraySizeModifier SizeMod,
unsigned TypeQuals,
Expr *E) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
E->Profile(ID, Context, true);
}
DependentSizedExtVectorType::DependentSizedExtVectorType(const
ASTContext &Context,
QualType ElementType,
QualType can,
Expr *SizeExpr,
SourceLocation loc)
: Type(DependentSizedExtVector, can, /*Dependent=*/true,
/*InstantiationDependent=*/true,
ElementType->isVariablyModifiedType(),
(ElementType->containsUnexpandedParameterPack() ||
(SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
loc(loc)
{
}
void
DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context,
QualType ElementType, Expr *SizeExpr) {
ID.AddPointer(ElementType.getAsOpaquePtr());
SizeExpr->Profile(ID, Context, true);
}
VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
VectorKind vecKind)
: Type(Vector, canonType, vecType->isDependentType(),
vecType->isInstantiationDependentType(),
vecType->isVariablyModifiedType(),
vecType->containsUnexpandedParameterPack()),
ElementType(vecType)
{
VectorTypeBits.VecKind = vecKind;
VectorTypeBits.NumElements = nElements;
}
VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
QualType canonType, VectorKind vecKind)
: Type(tc, canonType, vecType->isDependentType(),
vecType->isInstantiationDependentType(),
vecType->isVariablyModifiedType(),
vecType->containsUnexpandedParameterPack()),
ElementType(vecType)
{
VectorTypeBits.VecKind = vecKind;
VectorTypeBits.NumElements = nElements;
}
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
/// element type of the array, potentially with type qualifiers missing.
/// This method should never be used when type qualifiers are meaningful.
const Type *Type::getArrayElementTypeNoTypeQual() const {
// If this is directly an array type, return it.
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType().getTypePtr();
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ArrayType>(CanonicalType))
return nullptr;
// If this is a typedef for an array type, strip the typedef off without
// losing all typedef information.
return cast<ArrayType>(getUnqualifiedDesugaredType())
->getElementType().getTypePtr();
}
/// getDesugaredType - Return the specified type with any "sugar" removed from
/// the type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
SplitQualType split = getSplitDesugaredType(T);
return Context.getQualifiedType(split.Ty, split.Quals);
}
QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
const ASTContext &Context) {
SplitQualType split = type.split();
QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
return Context.getQualifiedType(desugar, split.Quals);
}
QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
switch (getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Type::Class: { \
const Class##Type *ty = cast<Class##Type>(this); \
if (!ty->isSugared()) return QualType(ty, 0); \
return ty->desugar(); \
}
#include "clang/AST/TypeNodes.def"
}
llvm_unreachable("bad type kind!");
}
SplitQualType QualType::getSplitDesugaredType(QualType T) {
QualifierCollector Qs;
QualType Cur = T;
while (true) {
const Type *CurTy = Qs.strip(Cur);
switch (CurTy->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Type::Class: { \
const Class##Type *Ty = cast<Class##Type>(CurTy); \
if (!Ty->isSugared()) \
return SplitQualType(Ty, Qs); \
Cur = Ty->desugar(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
}
}
SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
SplitQualType split = type.split();
// All the qualifiers we've seen so far.
Qualifiers quals = split.Quals;
// The last type node we saw with any nodes inside it.
const Type *lastTypeWithQuals = split.Ty;
while (true) {
QualType next;
// Do a single-step desugar, aborting the loop if the type isn't
// sugared.
switch (split.Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Type::Class: { \
const Class##Type *ty = cast<Class##Type>(split.Ty); \
if (!ty->isSugared()) goto done; \
next = ty->desugar(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
// Otherwise, split the underlying type. If that yields qualifiers,
// update the information.
split = next.split();
if (!split.Quals.empty()) {
lastTypeWithQuals = split.Ty;
quals.addConsistentQualifiers(split.Quals);
}
}
done:
return SplitQualType(lastTypeWithQuals, quals);
}
QualType QualType::IgnoreParens(QualType T) {
// FIXME: this seems inherently un-qualifiers-safe.
while (const ParenType *PT = T->getAs<ParenType>())
T = PT->getInnerType();
return T;
}
/// \brief This will check for a T (which should be a Type which can act as
/// sugar, such as a TypedefType) by removing any existing sugar until it
/// reaches a T or a non-sugared type.
template<typename T> static const T *getAsSugar(const Type *Cur) {
while (true) {
if (const T *Sugar = dyn_cast<T>(Cur))
return Sugar;
switch (Cur->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Type::Class: { \
const Class##Type *Ty = cast<Class##Type>(Cur); \
if (!Ty->isSugared()) return 0; \
Cur = Ty->desugar().getTypePtr(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
}
}
template <> const TypedefType *Type::getAs() const {
return getAsSugar<TypedefType>(this);
}
template <> const TemplateSpecializationType *Type::getAs() const {
return getAsSugar<TemplateSpecializationType>(this);
}
template <> const AttributedType *Type::getAs() const {
return getAsSugar<AttributedType>(this);
}
/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
/// sugar off the given type. This should produce an object of the
/// same dynamic type as the canonical type.
const Type *Type::getUnqualifiedDesugaredType() const {
const Type *Cur = this;
while (true) {
switch (Cur->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Class: { \
const Class##Type *Ty = cast<Class##Type>(Cur); \
if (!Ty->isSugared()) return Cur; \
Cur = Ty->desugar().getTypePtr(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
}
}
bool Type::isClassType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isClass();
return false;
}
bool Type::isStructureType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isStruct();
return false;
}
bool Type::isInterfaceType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isInterface();
return false;
}
bool Type::isStructureOrClassType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isStruct() || RT->getDecl()->isClass() ||
RT->getDecl()->isInterface();
return false;
}
bool Type::isVoidPointerType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType()->isVoidType();
return false;
}
bool Type::isUnionType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isUnion();
return false;
}
bool Type::isComplexType() const {
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
return false;
}
bool Type::isComplexIntegerType() const {
// Check for GCC complex integer extension.
return getAsComplexIntegerType();
}
const ComplexType *Type::getAsComplexIntegerType() const {
if (const ComplexType *Complex = getAs<ComplexType>())
if (Complex->getElementType()->isIntegerType())
return Complex;
return nullptr;
}
QualType Type::getPointeeType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType();
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->getPointeeType();
if (const BlockPointerType *BPT = getAs<BlockPointerType>())
return BPT->getPointeeType();
if (const ReferenceType *RT = getAs<ReferenceType>())
return RT->getPointeeType();
if (const MemberPointerType *MPT = getAs<MemberPointerType>())
return MPT->getPointeeType();
if (const DecayedType *DT = getAs<DecayedType>())
return DT->getPointeeType();
return QualType();
}
const RecordType *Type::getAsStructureType() const {
// If this is directly a structure type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isStruct())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isStruct())
return nullptr;
// If this is a typedef for a structure type, strip the typedef off without
// losing all typedef information.
return cast<RecordType>(getUnqualifiedDesugaredType());
}
return nullptr;
}
const RecordType *Type::getAsUnionType() const {
// If this is directly a union type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isUnion())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isUnion())
return nullptr;
// If this is a typedef for a union type, strip the typedef off without
// losing all typedef information.
return cast<RecordType>(getUnqualifiedDesugaredType());
}
return nullptr;
}
ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols)
: Type(ObjCObject, Canonical, false, false, false, false),
BaseType(Base)
{
ObjCObjectTypeBits.NumProtocols = NumProtocols;
assert(getNumProtocols() == NumProtocols &&
"bitfield overflow in protocol count");
if (NumProtocols)
memcpy(getProtocolStorage(), Protocols,
NumProtocols * sizeof(ObjCProtocolDecl*));
}
const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
// There is no sugar for ObjCObjectType's, just return the canonical
// type pointer if it is the right class. There is no typedef information to
// return and these cannot be Address-space qualified.
if (const ObjCObjectType *T = getAs<ObjCObjectType>())
if (T->getNumProtocols() && T->getInterface())
return T;
return nullptr;
}
bool Type::isObjCQualifiedInterfaceType() const {
return getAsObjCQualifiedInterfaceType() != nullptr;
}
const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
// type pointer if it is the right class.
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->isObjCQualifiedIdType())
return OPT;
}
return nullptr;
}
const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
// There is no sugar for ObjCQualifiedClassType's, just return the canonical
// type pointer if it is the right class.
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->isObjCQualifiedClassType())
return OPT;
}
return nullptr;
}
const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->getInterfaceType())
return OPT;
}
return nullptr;
}
const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
QualType PointeeType;
if (const PointerType *PT = getAs<PointerType>())
PointeeType = PT->getPointeeType();
else if (const ReferenceType *RT = getAs<ReferenceType>())
PointeeType = RT->getPointeeType();
else
return nullptr;
if (const RecordType *RT = PointeeType->getAs<RecordType>())
return dyn_cast<CXXRecordDecl>(RT->getDecl());
return nullptr;
}
CXXRecordDecl *Type::getAsCXXRecordDecl() const {
if (const RecordType *RT = getAs<RecordType>())
return dyn_cast<CXXRecordDecl>(RT->getDecl());
else if (const InjectedClassNameType *Injected
= getAs<InjectedClassNameType>())
return Injected->getDecl();
return nullptr;
}
namespace {
class GetContainedAutoVisitor :
public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
public:
using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
AutoType *Visit(QualType T) {
if (T.isNull())
return nullptr;
return Visit(T.getTypePtr());
}
// The 'auto' type itself.
AutoType *VisitAutoType(const AutoType *AT) {
return const_cast<AutoType*>(AT);
}
// Only these types can contain the desired 'auto' type.
AutoType *VisitPointerType(const PointerType *T) {
return Visit(T->getPointeeType());
}
AutoType *VisitBlockPointerType(const BlockPointerType *T) {
return Visit(T->getPointeeType());
}
AutoType *VisitReferenceType(const ReferenceType *T) {
return Visit(T->getPointeeTypeAsWritten());
}
AutoType *VisitMemberPointerType(const MemberPointerType *T) {
return Visit(T->getPointeeType());
}
AutoType *VisitArrayType(const ArrayType *T) {
return Visit(T->getElementType());
}
AutoType *VisitDependentSizedExtVectorType(
const DependentSizedExtVectorType *T) {
return Visit(T->getElementType());
}
AutoType *VisitVectorType(const VectorType *T) {
return Visit(T->getElementType());
}
AutoType *VisitFunctionType(const FunctionType *T) {
return Visit(T->getReturnType());
}
AutoType *VisitParenType(const ParenType *T) {
return Visit(T->getInnerType());
}
AutoType *VisitAttributedType(const AttributedType *T) {
return Visit(T->getModifiedType());
}
AutoType *VisitAdjustedType(const AdjustedType *T) {
return Visit(T->getOriginalType());
}
};
}
AutoType *Type::getContainedAutoType() const {
return GetContainedAutoVisitor().Visit(this);
}
bool Type::hasIntegerRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isIntegerType();
else
return isIntegerType();
}
/// \brief Determine whether this type is an integral type.
///
/// This routine determines whether the given type is an integral type per
/// C++ [basic.fundamental]p7. Although the C standard does not define the
/// term "integral type", it has a similar term "integer type", and in C++
/// the two terms are equivalent. However, C's "integer type" includes
/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
/// parameter is used to determine whether we should be following the C or
/// C++ rules when determining whether this type is an integral/integer type.
///
/// For cases where C permits "an integer type" and C++ permits "an integral
/// type", use this routine.
///
/// For cases where C permits "an integer type" and C++ permits "an integral
/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
///
/// \param Ctx The context in which this type occurs.
///
/// \returns true if the type is considered an integral type, false otherwise.
bool Type::isIntegralType(ASTContext &Ctx) const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
if (!Ctx.getLangOpts().CPlusPlus)
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
return false;
}
bool Type::isIntegralOrUnscopedEnumerationType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
// Check for a complete enum type; incomplete enum types are not properly an
// enumeration type in the sense required here.
// C++0x: However, if the underlying type of the enum is fixed, it is
// considered complete.
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
return false;
}
bool Type::isCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char_U ||
BT->getKind() == BuiltinType::UChar ||
BT->getKind() == BuiltinType::Char_S ||
BT->getKind() == BuiltinType::SChar;
return false;
}
bool Type::isWideCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::WChar_S ||
BT->getKind() == BuiltinType::WChar_U;
return false;
}
bool Type::isChar16Type() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char16;
return false;
}
bool Type::isChar32Type() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char32;
return false;
}
/// \brief Determine whether this type is any of the built-in character
/// types.
bool Type::isAnyCharacterType() const {
const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
if (!BT) return false;
switch (BT->getKind()) {
default: return false;
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::WChar_U:
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::Char_S:
case BuiltinType::SChar:
case BuiltinType::WChar_S:
return true;
}
}
/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// an enum decl which has a signed representation
bool Type::isSignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::Int128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
}
return false;
}
bool Type::isSignedIntegerOrEnumerationType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::Int128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
if (ET->getDecl()->isComplete())
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
}
return false;
}
bool Type::hasSignedIntegerRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isSignedIntegerOrEnumerationType();
else
return isSignedIntegerOrEnumerationType();
}
/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
/// decl which has an unsigned representation
bool Type::isUnsignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::UInt128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
}
return false;
}
bool Type::isUnsignedIntegerOrEnumerationType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::UInt128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
if (ET->getDecl()->isComplete())
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
}
return false;
}
bool Type::hasUnsignedIntegerRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
else
return isUnsignedIntegerOrEnumerationType();
}
bool Type::isFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Half &&
BT->getKind() <= BuiltinType::LongDouble;
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
return false;
}
bool Type::hasFloatingRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isFloatingType();
else
return isFloatingType();
}
bool Type::isRealFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->isFloatingPoint();
return false;
}
bool Type::isRealType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
return false;
}
bool Type::isArithmeticType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
// GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
// If a body isn't seen by the time we get here, return false.
//
// C++0x: Enumerations are not arithmetic types. For now, just return
// false for scoped enumerations since that will disable any
// unwanted implicit conversions.
return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
return isa<ComplexType>(CanonicalType);
}
Type::ScalarTypeKind Type::getScalarTypeKind() const {
assert(isScalarType());
const Type *T = CanonicalType.getTypePtr();
if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
if (BT->isInteger()) return STK_Integral;
if (BT->isFloatingPoint()) return STK_Floating;
llvm_unreachable("unknown scalar builtin type");
} else if (isa<PointerType>(T)) {
return STK_CPointer;
} else if (isa<BlockPointerType>(T)) {
return STK_BlockPointer;
} else if (isa<ObjCObjectPointerType>(T)) {
return STK_ObjCObjectPointer;
} else if (isa<MemberPointerType>(T)) {
return STK_MemberPointer;
} else if (isa<EnumType>(T)) {
assert(cast<EnumType>(T)->getDecl()->isComplete());
return STK_Integral;
} else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
if (CT->getElementType()->isRealFloatingType())
return STK_FloatingComplex;
return STK_IntegralComplex;
}
llvm_unreachable("unknown scalar type");
}
/// \brief Determines whether the type is a C++ aggregate type or C
/// aggregate or union type.
///
/// An aggregate type is an array or a class type (struct, union, or
/// class) that has no user-declared constructors, no private or
/// protected non-static data members, no base classes, and no virtual
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
/// includes union types.
bool Type::isAggregateType() const {
if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
return ClassDecl->isAggregate();
return true;
}
return isa<ArrayType>(CanonicalType);
}
/// isConstantSizeType - Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types or dependent types.
bool Type::isConstantSizeType() const {
assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
assert(!isDependentType() && "This doesn't make sense for dependent types");
// The VAT must have a size, as it is known to be complete.
return !isa<VariableArrayType>(CanonicalType);
}
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType(NamedDecl **Def) const {
if (Def)
*Def = nullptr;
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
// be completed.
return isVoidType();
case Enum: {
EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
if (Def)
*Def = EnumD;
// An enumeration with fixed underlying type is complete (C++0x 7.2p3).
if (EnumD->isFixed())
return false;
return !EnumD->isCompleteDefinition();
}
case Record: {
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
// forward declaration, but not a full definition (C99 6.2.5p22).
RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
if (Def)
*Def = Rec;
return !Rec->isCompleteDefinition();
}
case ConstantArray:
// An array is incomplete if its element type is incomplete
// (C++ [dcl.array]p1).
// We don't handle variable arrays (they're not allowed in C++) or
// dependent-sized arrays (dependent types are never treated as incomplete).
return cast<ArrayType>(CanonicalType)->getElementType()
->isIncompleteType(Def);
case IncompleteArray:
// An array of unknown size is an incomplete type (C99 6.2.5p22).
return true;
case ObjCObject:
return cast<ObjCObjectType>(CanonicalType)->getBaseType()
->isIncompleteType(Def);
case ObjCInterface: {
// ObjC interfaces are incomplete if they are @class, not @interface.
ObjCInterfaceDecl *Interface
= cast<ObjCInterfaceType>(CanonicalType)->getDecl();
if (Def)
*Def = Interface;
return !Interface->hasDefinition();
}
}
}
bool QualType::isPODType(ASTContext &Context) const {
// C++11 has a more relaxed definition of POD.
if (Context.getLangOpts().CPlusPlus11)
return isCXX11PODType(Context);
return isCXX98PODType(Context);
}
bool QualType::isCXX98PODType(ASTContext &Context) const {
// The compiler shouldn't query this for incomplete types, but the user might.
// We return false for that case. Except for incomplete arrays of PODs, which
// are PODs according to the standard.
if (isNull())
return 0;
if ((*this)->isIncompleteArrayType())
return Context.getBaseElementType(*this).isCXX98PODType(Context);
if ((*this)->isIncompleteType())
return false;
if (Context.getLangOpts().ObjCAutoRefCount) {
switch (getObjCLifetime()) {
case Qualifiers::OCL_ExplicitNone:
return true;
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Autoreleasing:
return false;
case Qualifiers::OCL_None:
break;
}
}
QualType CanonicalType = getTypePtr()->CanonicalType;
switch (CanonicalType->getTypeClass()) {
// Everything not explicitly mentioned is not POD.
default: return false;
case Type::VariableArray:
case Type::ConstantArray:
// IncompleteArray is handled above.
return Context.getBaseElementType(*this).isCXX98PODType(Context);
case Type::ObjCObjectPointer:
case Type::BlockPointer:
case Type::Builtin:
case Type::Complex:
case Type::Pointer:
case Type::MemberPointer:
case Type::Vector:
case Type::ExtVector:
return true;
case Type::Enum:
return true;
case Type::Record:
if (CXXRecordDecl *ClassDecl
= dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
return ClassDecl->isPOD();
// C struct/union is POD.
return true;
}
}
bool QualType::isTrivialType(ASTContext &Context) const {
// The compiler shouldn't query this for incomplete types, but the user might.
// We return false for that case. Except for incomplete arrays of PODs, which
// are PODs according to the standard.
if (isNull())
return 0;
if ((*this)->isArrayType())
return Context.getBaseElementType(*this).isTrivialType(Context);
// Return false for incomplete types after skipping any incomplete array
// types which are expressly allowed by the standard and thus our API.
if ((*this)->isIncompleteType())
return false;
if (Context.getLangOpts().ObjCAutoRefCount) {
switch (getObjCLifetime()) {
case Qualifiers::OCL_ExplicitNone:
return true;
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Autoreleasing:
return false;
case Qualifiers::OCL_None:
if ((*this)->isObjCLifetimeType())
return false;
break;
}
}
QualType CanonicalType = getTypePtr()->CanonicalType;
if (CanonicalType->isDependentType())
return false;
// C++0x [basic.types]p9:
// Scalar types, trivial class types, arrays of such types, and
// cv-qualified versions of these types are collectively called trivial
// types.
// As an extension, Clang treats vector types as Scalar types.
if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
return true;
if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl())) {
// C++11 [class]p6:
// A trivial class is a class that has a default constructor,
// has no non-trivial default constructors, and is trivially
// copyable.
return ClassDecl->hasDefaultConstructor() &&
!ClassDecl->hasNonTrivialDefaultConstructor() &&
ClassDecl->isTriviallyCopyable();
}
return true;
}
// No other types can match.
return false;
}
bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
if ((*this)->isArrayType())
return Context.getBaseElementType(*this).isTrivialType(Context);
if (Context.getLangOpts().ObjCAutoRefCount) {
switch (getObjCLifetime()) {
case Qualifiers::OCL_ExplicitNone:
return true;
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Autoreleasing:
return false;
case Qualifiers::OCL_None:
if ((*this)->isObjCLifetimeType())
return false;
break;
}
}
// C++11 [basic.types]p9
// Scalar types, trivially copyable class types, arrays of such types, and
// non-volatile const-qualified versions of these types are collectively
// called trivially copyable types.
QualType CanonicalType = getCanonicalType();
if (CanonicalType->isDependentType())
return false;
if (CanonicalType.isVolatileQualified())
return false;
// Return false for incomplete types after skipping any incomplete array types
// which are expressly allowed by the standard and thus our API.
if (CanonicalType->isIncompleteType())
return false;
// As an extension, Clang treats vector types as Scalar types.
if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
return true;
if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl())) {
if (!ClassDecl->isTriviallyCopyable()) return false;
}
return true;
}
// No other types can match.
return false;
}
bool Type::isLiteralType(const ASTContext &Ctx) const {
if (isDependentType())
return false;
// C++1y [basic.types]p10:
// A type is a literal type if it is:
// -- cv void; or
if (Ctx.getLangOpts().CPlusPlus1y && isVoidType())
return true;
// C++11 [basic.types]p10:
// A type is a literal type if it is:
// [...]
// -- an array of literal type other than an array of runtime bound; or
if (isVariableArrayType())
return false;
const Type *BaseTy = getBaseElementTypeUnsafe();
assert(BaseTy && "NULL element type");
// Return false for incomplete types after skipping any incomplete array
// types; those are expressly allowed by the standard and thus our API.
if (BaseTy->isIncompleteType())
return false;
// C++11 [basic.types]p10:
// A type is a literal type if it is:
// -- a scalar type; or
// As an extension, Clang treats vector types and complex types as
// literal types.
if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
BaseTy->isAnyComplexType())
return true;
// -- a reference type; or
if (BaseTy->isReferenceType())
return true;
// -- a class type that has all of the following properties:
if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
// -- a trivial destructor,
// -- every constructor call and full-expression in the
// brace-or-equal-initializers for non-static data members (if any)
// is a constant expression,
// -- it is an aggregate type or has at least one constexpr
// constructor or constructor template that is not a copy or move
// constructor, and
// -- all non-static data members and base classes of literal types
//
// We resolve DR1361 by ignoring the second bullet.
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl()))
return ClassDecl->isLiteral();
return true;
}
// We treat _Atomic T as a literal type if T is a literal type.
if (const AtomicType *AT = BaseTy->getAs<AtomicType>())
return AT->getValueType()->isLiteralType(Ctx);
// If this type hasn't been deduced yet, then conservatively assume that
// it'll work out to be a literal type.
if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
return true;
return false;
}
bool Type::isStandardLayoutType() const {
if (isDependentType())
return false;
// C++0x [basic.types]p9:
// Scalar types, standard-layout class types, arrays of such types, and
// cv-qualified versions of these types are collectively called
// standard-layout types.
const Type *BaseTy = getBaseElementTypeUnsafe();
assert(BaseTy && "NULL element type");
// Return false for incomplete types after skipping any incomplete array
// types which are expressly allowed by the standard and thus our API.
if (BaseTy->isIncompleteType())
return false;
// As an extension, Clang treats vector types as Scalar types.
if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl()))
if (!ClassDecl->isStandardLayout())
return false;
// Default to 'true' for non-C++ class types.
// FIXME: This is a bit dubious, but plain C structs should trivially meet
// all the requirements of standard layout classes.
return true;
}
// No other types can match.
return false;
}
// This is effectively the intersection of isTrivialType and
// isStandardLayoutType. We implement it directly to avoid redundant
// conversions from a type to a CXXRecordDecl.
bool QualType::isCXX11PODType(ASTContext &Context) const {
const Type *ty = getTypePtr();
if (ty->isDependentType())
return false;
if (Context.getLangOpts().ObjCAutoRefCount) {
switch (getObjCLifetime()) {
case Qualifiers::OCL_ExplicitNone:
return true;
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Autoreleasing:
return false;
case Qualifiers::OCL_None:
break;
}
}
// C++11 [basic.types]p9:
// Scalar types, POD classes, arrays of such types, and cv-qualified
// versions of these types are collectively called trivial types.
const Type *BaseTy = ty->getBaseElementTypeUnsafe();
assert(BaseTy && "NULL element type");
// Return false for incomplete types after skipping any incomplete array
// types which are expressly allowed by the standard and thus our API.
if (BaseTy->isIncompleteType())
return false;
// As an extension, Clang treats vector types as Scalar types.
if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl())) {
// C++11 [class]p10:
// A POD struct is a non-union class that is both a trivial class [...]
if (!ClassDecl->isTrivial()) return false;
// C++11 [class]p10:
// A POD struct is a non-union class that is both a trivial class and
// a standard-layout class [...]
if (!ClassDecl->isStandardLayout()) return false;
// C++11 [class]p10:
// A POD struct is a non-union class that is both a trivial class and
// a standard-layout class, and has no non-static data members of type
// non-POD struct, non-POD union (or array of such types). [...]
//
// We don't directly query the recursive aspect as the requiremets for
// both standard-layout classes and trivial classes apply recursively
// already.
}
return true;
}
// No other types can match.
return false;
}
bool Type::isPromotableIntegerType() const {
if (const BuiltinType *BT = getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Bool:
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
case BuiltinType::Char16:
case BuiltinType::Char32:
return true;
default:
return false;
}
// Enumerated types are promotable to their compatible integer types
// (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
if (const EnumType *ET = getAs<EnumType>()){
if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
|| ET->getDecl()->isScoped())
return false;
return true;
}
return false;
}
bool Type::isSpecifierType() const {
// Note that this intentionally does not use the canonical type.
switch (getTypeClass()) {
case Builtin:
case Record:
case Enum:
case Typedef:
case Complex:
case TypeOfExpr:
case TypeOf:
case TemplateTypeParm:
case SubstTemplateTypeParm:
case TemplateSpecialization:
case Elaborated:
case DependentName:
case DependentTemplateSpecialization:
case ObjCInterface:
case ObjCObject:
case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
return true;
default:
return false;
}
}
ElaboratedTypeKeyword
TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
switch (TypeSpec) {
default: return ETK_None;
case TST_typename: return ETK_Typename;
case TST_class: return ETK_Class;
case TST_struct: return ETK_Struct;
case TST_interface: return ETK_Interface;
case TST_union: return ETK_Union;
case TST_enum: return ETK_Enum;
}
}
TagTypeKind
TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
switch(TypeSpec) {
case TST_class: return TTK_Class;
case TST_struct: return TTK_Struct;
case TST_interface: return TTK_Interface;
case TST_union: return TTK_Union;
case TST_enum: return TTK_Enum;
}
llvm_unreachable("Type specifier is not a tag type kind.");
}
ElaboratedTypeKeyword
TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
switch (Kind) {
case TTK_Class: return ETK_Class;
case TTK_Struct: return ETK_Struct;
case TTK_Interface: return ETK_Interface;
case TTK_Union: return ETK_Union;
case TTK_Enum: return ETK_Enum;
}
llvm_unreachable("Unknown tag type kind.");
}
TagTypeKind
TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
switch (Keyword) {
case ETK_Class: return TTK_Class;
case ETK_Struct: return TTK_Struct;
case ETK_Interface: return TTK_Interface;
case ETK_Union: return TTK_Union;
case ETK_Enum: return TTK_Enum;
case ETK_None: // Fall through.
case ETK_Typename:
llvm_unreachable("Elaborated type keyword is not a tag type kind.");
}
llvm_unreachable("Unknown elaborated type keyword.");
}
bool
TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
switch (Keyword) {
case ETK_None:
case ETK_Typename:
return false;
case ETK_Class:
case ETK_Struct:
case ETK_Interface:
case ETK_Union:
case ETK_Enum:
return true;
}
llvm_unreachable("Unknown elaborated type keyword.");
}
StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
switch (Keyword) {
case ETK_None: return "";
case ETK_Typename: return "typename";
case ETK_Class: return "class";
case ETK_Struct: return "struct";
case ETK_Interface: return "__interface";
case ETK_Union: return "union";
case ETK_Enum: return "enum";
}
llvm_unreachable("Unknown elaborated type keyword.");
}
DependentTemplateSpecializationType::DependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, const IdentifierInfo *Name,
unsigned NumArgs, const TemplateArgument *Args,
QualType Canon)
: TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
/*VariablyModified=*/false,
NNS && NNS->containsUnexpandedParameterPack()),
NNS(NNS), Name(Name), NumArgs(NumArgs) {
assert((!NNS || NNS->isDependent()) &&
"DependentTemplateSpecializatonType requires dependent qualifier");
for (unsigned I = 0; I != NumArgs; ++I) {
if (Args[I].containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack();
new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
}
}
void
DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context,
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *Qualifier,
const IdentifierInfo *Name,
unsigned NumArgs,
const TemplateArgument *Args) {
ID.AddInteger(Keyword);
ID.AddPointer(Qualifier);
ID.AddPointer(Name);
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
Args[Idx].Profile(ID, Context);
}
bool Type::isElaboratedTypeSpecifier() const {
ElaboratedTypeKeyword Keyword;
if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
Keyword = Elab->getKeyword();
else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
Keyword = DepName->getKeyword();
else if (const DependentTemplateSpecializationType *DepTST =
dyn_cast<DependentTemplateSpecializationType>(this))
Keyword = DepTST->getKeyword();
else
return false;
return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
}
const char *Type::getTypeClassName() const {
switch (TypeBits.TC) {
#define ABSTRACT_TYPE(Derived, Base)
#define TYPE(Derived, Base) case Derived: return #Derived;
#include "clang/AST/TypeNodes.def"
}
llvm_unreachable("Invalid type class.");
}
StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
switch (getKind()) {
case Void: return "void";
case Bool: return Policy.Bool ? "bool" : "_Bool";
case Char_S: return "char";
case Char_U: return "char";
case SChar: return "signed char";
case Short: return "short";
case Int: return "int";
case Long: return "long";
case LongLong: return "long long";
case Int128: return "__int128";
case UChar: return "unsigned char";
case UShort: return "unsigned short";
case UInt: return "unsigned int";
case ULong: return "unsigned long";
case ULongLong: return "unsigned long long";
case UInt128: return "unsigned __int128";
case Half: return Policy.Half ? "half" : "__fp16";
case Float: return "float";
case Double: return "double";
case LongDouble: return "long double";
case WChar_S:
case WChar_U: return Policy.MSWChar ? "__wchar_t" : "wchar_t";
case Char16: return "char16_t";
case Char32: return "char32_t";
case NullPtr: return "nullptr_t";
case Overload: return "<overloaded function type>";
case BoundMember: return "<bound member function type>";
case PseudoObject: return "<pseudo-object type>";
case Dependent: return "<dependent type>";
case UnknownAny: return "<unknown type>";
case ARCUnbridgedCast: return "<ARC unbridged cast type>";
case BuiltinFn: return "<builtin fn type>";
case ObjCId: return "id";
case ObjCClass: return "Class";
case ObjCSel: return "SEL";
case OCLImage1d: return "image1d_t";
case OCLImage1dArray: return "image1d_array_t";
case OCLImage1dBuffer: return "image1d_buffer_t";
case OCLImage2d: return "image2d_t";
case OCLImage2dArray: return "image2d_array_t";
case OCLImage3d: return "image3d_t";
case OCLSampler: return "sampler_t";
case OCLEvent: return "event_t";
}
llvm_unreachable("Invalid builtin type.");
}
QualType QualType::getNonLValueExprType(const ASTContext &Context) const {
if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
return RefType->getPointeeType();
// C++0x [basic.lval]:
// Class prvalues can have cv-qualified types; non-class prvalues always
// have cv-unqualified types.
//
// See also C99 6.3.2.1p2.
if (!Context.getLangOpts().CPlusPlus ||
(!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
return getUnqualifiedType();
return *this;
}
StringRef FunctionType::getNameForCallConv(CallingConv CC) {
switch (CC) {
case CC_C: return "cdecl";
case CC_X86StdCall: return "stdcall";
case CC_X86FastCall: return "fastcall";
case CC_X86ThisCall: return "thiscall";
case CC_X86Pascal: return "pascal";
case CC_X86_64Win64: return "ms_abi";
case CC_X86_64SysV: return "sysv_abi";
case CC_AAPCS: return "aapcs";
case CC_AAPCS_VFP: return "aapcs-vfp";
case CC_PnaclCall: return "pnaclcall";
case CC_IntelOclBicc: return "intel_ocl_bicc";
}
llvm_unreachable("Invalid calling convention.");
}
FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
QualType canonical,
const ExtProtoInfo &epi)
: FunctionType(FunctionProto, result, epi.TypeQuals, canonical,
result->isDependentType(),
result->isInstantiationDependentType(),
result->isVariablyModifiedType(),
result->containsUnexpandedParameterPack(), epi.ExtInfo),
NumParams(params.size()), NumExceptions(epi.NumExceptions),
ExceptionSpecType(epi.ExceptionSpecType),
HasAnyConsumedParams(epi.ConsumedParameters != nullptr),
Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn),
RefQualifier(epi.RefQualifier) {
assert(NumParams == params.size() && "function has too many parameters");
// Fill in the trailing argument array.
QualType *argSlot = reinterpret_cast<QualType*>(this+1);
for (unsigned i = 0; i != NumParams; ++i) {
if (params[i]->isDependentType())
setDependent();
else if (params[i]->isInstantiationDependentType())
setInstantiationDependent();
if (params[i]->containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack();
argSlot[i] = params[i];
}
if (getExceptionSpecType() == EST_Dynamic) {
// Fill in the exception array.
QualType *exnSlot = argSlot + NumParams;
for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
if (epi.Exceptions[i]->isDependentType())
setDependent();
else if (epi.Exceptions[i]->isInstantiationDependentType())
setInstantiationDependent();
if (epi.Exceptions[i]->containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack();
exnSlot[i] = epi.Exceptions[i];
}
} else if (getExceptionSpecType() == EST_ComputedNoexcept) {
// Store the noexcept expression and context.
Expr **noexSlot = reinterpret_cast<Expr **>(argSlot + NumParams);
*noexSlot = epi.NoexceptExpr;
if (epi.NoexceptExpr) {
if (epi.NoexceptExpr->isValueDependent()
|| epi.NoexceptExpr->isTypeDependent())
setDependent();
else if (epi.NoexceptExpr->isInstantiationDependent())
setInstantiationDependent();
}
} else if (getExceptionSpecType() == EST_Uninstantiated) {
// Store the function decl from which we will resolve our
// exception specification.
FunctionDecl **slot =
reinterpret_cast<FunctionDecl **>(argSlot + NumParams);
slot[0] = epi.ExceptionSpecDecl;
slot[1] = epi.ExceptionSpecTemplate;
// This exception specification doesn't make the type dependent, because
// it's not instantiated as part of instantiating the type.
} else if (getExceptionSpecType() == EST_Unevaluated) {
// Store the function decl from which we will resolve our
// exception specification.
FunctionDecl **slot =
reinterpret_cast<FunctionDecl **>(argSlot + NumParams);
slot[0] = epi.ExceptionSpecDecl;
}
if (epi.ConsumedParameters) {
bool *consumedParams = const_cast<bool *>(getConsumedParamsBuffer());
for (unsigned i = 0; i != NumParams; ++i)
consumedParams[i] = epi.ConsumedParameters[i];
}
}
FunctionProtoType::NoexceptResult
FunctionProtoType::getNoexceptSpec(const ASTContext &ctx) const {
ExceptionSpecificationType est = getExceptionSpecType();
if (est == EST_BasicNoexcept)
return NR_Nothrow;
if (est != EST_ComputedNoexcept)
return NR_NoNoexcept;
Expr *noexceptExpr = getNoexceptExpr();
if (!noexceptExpr)
return NR_BadNoexcept;
if (noexceptExpr->isValueDependent())
return NR_Dependent;
llvm::APSInt value;
bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, nullptr,
/*evaluated*/false);
(void)isICE;
assert(isICE && "AST should not contain bad noexcept expressions.");
return value.getBoolValue() ? NR_Nothrow : NR_Throw;
}
bool FunctionProtoType::isNothrow(const ASTContext &Ctx,
bool ResultIfDependent) const {
ExceptionSpecificationType EST = getExceptionSpecType();
assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
return true;
if (EST == EST_Dynamic && ResultIfDependent == true) {
// A dynamic exception specification is throwing unless every exception
// type is an (unexpanded) pack expansion type.
for (unsigned I = 0, N = NumExceptions; I != N; ++I)
if (!getExceptionType(I)->getAs<PackExpansionType>())
return false;
return ResultIfDependent;
}
if (EST != EST_ComputedNoexcept)
return false;
NoexceptResult NR = getNoexceptSpec(Ctx);
if (NR == NR_Dependent)
return ResultIfDependent;
return NR == NR_Nothrow;
}
bool FunctionProtoType::isTemplateVariadic() const {
for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
return true;
return false;
}
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
const QualType *ArgTys, unsigned NumParams,
const ExtProtoInfo &epi,
const ASTContext &Context) {
// We have to be careful not to get ambiguous profile encodings.
// Note that valid type pointers are never ambiguous with anything else.
//
// The encoding grammar begins:
// type type* bool int bool
// If that final bool is true, then there is a section for the EH spec:
// bool type*
// This is followed by an optional "consumed argument" section of the
// same length as the first type sequence:
// bool*
// Finally, we have the ext info and trailing return type flag:
// int bool
//
// There is no ambiguity between the consumed arguments and an empty EH
// spec because of the leading 'bool' which unambiguously indicates
// whether the following bool is the EH spec or part of the arguments.
ID.AddPointer(Result.getAsOpaquePtr());
for (unsigned i = 0; i != NumParams; ++i)
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
// This method is relatively performance sensitive, so as a performance
// shortcut, use one AddInteger call instead of four for the next four
// fields.
assert(!(unsigned(epi.Variadic) & ~1) &&
!(unsigned(epi.TypeQuals) & ~255) &&
!(unsigned(epi.RefQualifier) & ~3) &&
!(unsigned(epi.ExceptionSpecType) & ~7) &&
"Values larger than expected.");
ID.AddInteger(unsigned(epi.Variadic) +
(epi.TypeQuals << 1) +
(epi.RefQualifier << 9) +
(epi.ExceptionSpecType << 11));
if (epi.ExceptionSpecType == EST_Dynamic) {
for (unsigned i = 0; i != epi.NumExceptions; ++i)
ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
} else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
epi.NoexceptExpr->Profile(ID, Context, false);
} else if (epi.ExceptionSpecType == EST_Uninstantiated ||
epi.ExceptionSpecType == EST_Unevaluated) {
ID.AddPointer(epi.ExceptionSpecDecl->getCanonicalDecl());
}
if (epi.ConsumedParameters) {
for (unsigned i = 0; i != NumParams; ++i)
ID.AddBoolean(epi.ConsumedParameters[i]);
}
epi.ExtInfo.Profile(ID);
ID.AddBoolean(epi.HasTrailingReturn);
}
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Ctx) {
Profile(ID, getReturnType(), param_type_begin(), NumParams, getExtProtoInfo(),
Ctx);
}
QualType TypedefType::desugar() const {
return getDecl()->getUnderlyingType();
}
TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
: Type(TypeOfExpr, can, E->isTypeDependent(),
E->isInstantiationDependent(),
E->getType()->isVariablyModifiedType(),
E->containsUnexpandedParameterPack()),
TOExpr(E) {
}
bool TypeOfExprType::isSugared() const {
return !TOExpr->isTypeDependent();
}
QualType TypeOfExprType::desugar() const {
if (isSugared())
return getUnderlyingExpr()->getType();
return QualType(this, 0);
}
void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context, Expr *E) {
E->Profile(ID, Context, true);
}
DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
// C++11 [temp.type]p2: "If an expression e involves a template parameter,
// decltype(e) denotes a unique dependent type." Hence a decltype type is
// type-dependent even if its expression is only instantiation-dependent.
: Type(Decltype, can, E->isInstantiationDependent(),
E->isInstantiationDependent(),
E->getType()->isVariablyModifiedType(),
E->containsUnexpandedParameterPack()),
E(E),
UnderlyingType(underlyingType) {
}
bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
QualType DecltypeType::desugar() const {
if (isSugared())
return getUnderlyingType();
return QualType(this, 0);
}
DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
: DecltypeType(E, Context.DependentTy), Context(Context) { }
void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context, Expr *E) {
E->Profile(ID, Context, true);
}
TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
: Type(TC, can, D->isDependentType(),
/*InstantiationDependent=*/D->isDependentType(),
/*VariablyModified=*/false,
/*ContainsUnexpandedParameterPack=*/false),
decl(const_cast<TagDecl*>(D)) {}
static TagDecl *getInterestingTagDecl(TagDecl *decl) {
for (auto I : decl->redecls()) {
if (I->isCompleteDefinition() || I->isBeingDefined())
return I;
}
// If there's no definition (not even in progress), return what we have.
return decl;
}
UnaryTransformType::UnaryTransformType(QualType BaseType,
QualType UnderlyingType,
UTTKind UKind,
QualType CanonicalType)
: Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
UnderlyingType->isInstantiationDependentType(),
UnderlyingType->isVariablyModifiedType(),
BaseType->containsUnexpandedParameterPack())
, BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
{}
TagDecl *TagType::getDecl() const {
return getInterestingTagDecl(decl);
}
bool TagType::isBeingDefined() const {
return getDecl()->isBeingDefined();
}
bool AttributedType::isMSTypeSpec() const {
switch (getAttrKind()) {
default: return false;
case attr_ptr32:
case attr_ptr64:
case attr_sptr:
case attr_uptr:
return true;
}
llvm_unreachable("invalid attr kind");
}
bool AttributedType::isCallingConv() const {
switch (getAttrKind()) {
case attr_ptr32:
case attr_ptr64:
case attr_sptr:
case attr_uptr:
case attr_address_space:
case attr_regparm:
case attr_vector_size:
case attr_neon_vector_type:
case attr_neon_polyvector_type:
case attr_objc_gc:
case attr_objc_ownership:
case attr_noreturn:
return false;
case attr_pcs:
case attr_pcs_vfp:
case attr_cdecl:
case attr_fastcall:
case attr_stdcall:
case attr_thiscall:
case attr_pascal:
case attr_ms_abi:
case attr_sysv_abi:
case attr_pnaclcall:
case attr_inteloclbicc:
return true;
}
llvm_unreachable("invalid attr kind");
}
CXXRecordDecl *InjectedClassNameType::getDecl() const {
return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
}
IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
}
SubstTemplateTypeParmPackType::
SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
QualType Canon,
const TemplateArgument &ArgPack)
: Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
Replaced(Param),
Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
{
}
TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
return TemplateArgument(Arguments, NumArguments);
}
void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getReplacedParameter(), getArgumentPack());
}
void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
const TemplateTypeParmType *Replaced,
const TemplateArgument &ArgPack) {
ID.AddPointer(Replaced);
ID.AddInteger(ArgPack.pack_size());
for (const auto &P : ArgPack.pack_elements())
ID.AddPointer(P.getAsType().getAsOpaquePtr());
}
bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
bool &InstantiationDependent) {
return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
InstantiationDependent);
}
bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
bool &InstantiationDependent) {
for (unsigned i = 0; i != N; ++i) {
if (Args[i].getArgument().isDependent()) {
InstantiationDependent = true;
return true;
}
if (Args[i].getArgument().isInstantiationDependent())
InstantiationDependent = true;
}
return false;
}
#ifndef NDEBUG
static bool
anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
bool &InstantiationDependent) {
for (unsigned i = 0; i != N; ++i) {
if (Args[i].isDependent()) {
InstantiationDependent = true;
return true;
}
if (Args[i].isInstantiationDependent())
InstantiationDependent = true;
}
return false;
}
#endif
TemplateSpecializationType::
TemplateSpecializationType(TemplateName T,
const TemplateArgument *Args, unsigned NumArgs,
QualType Canon, QualType AliasedType)
: Type(TemplateSpecialization,
Canon.isNull()? QualType(this, 0) : Canon,
Canon.isNull()? T.isDependent() : Canon->isDependentType(),
Canon.isNull()? T.isDependent()
: Canon->isInstantiationDependentType(),
false,
T.containsUnexpandedParameterPack()),
Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
assert(!T.getAsDependentTemplateName() &&
"Use DependentTemplateSpecializationType for dependent template-name");
assert((T.getKind() == TemplateName::Template ||
T.getKind() == TemplateName::SubstTemplateTemplateParm ||
T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
"Unexpected template name for TemplateSpecializationType");
bool InstantiationDependent;
(void)InstantiationDependent;
assert((!Canon.isNull() ||
T.isDependent() ||
::anyDependentTemplateArguments(Args, NumArgs,
InstantiationDependent)) &&
"No canonical type for non-dependent class template specialization");
TemplateArgument *TemplateArgs
= reinterpret_cast<TemplateArgument *>(this + 1);
for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
// Update dependent and variably-modified bits.
// If the canonical type exists and is non-dependent, the template
// specialization type can be non-dependent even if one of the type
// arguments is. Given:
// template<typename T> using U = int;
// U<T> is always non-dependent, irrespective of the type T.
// However, U<Ts> contains an unexpanded parameter pack, even though
// its expansion (and thus its desugared type) doesn't.
if (Canon.isNull() && Args[Arg].isDependent())
setDependent();
else if (Args[Arg].isInstantiationDependent())
setInstantiationDependent();
if (Args[Arg].getKind() == TemplateArgument::Type &&
Args[Arg].getAsType()->isVariablyModifiedType())
setVariablyModified();
if (Args[Arg].containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack();
new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
}
// Store the aliased type if this is a type alias template specialization.
if (TypeAlias) {
TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
*reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
}
}
void
TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs,
const ASTContext &Context) {
T.Profile(ID);
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
Args[Idx].Profile(ID, Context);
}
QualType
QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
if (!hasNonFastQualifiers())
return QT.withFastQualifiers(getFastQualifiers());
return Context.getQualifiedType(QT, *this);
}
QualType
QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
if (!hasNonFastQualifiers())
return QualType(T, getFastQualifiers());
return Context.getQualifiedType(T, *this);
}
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
QualType BaseType,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols) {
ID.AddPointer(BaseType.getAsOpaquePtr());
for (unsigned i = 0; i != NumProtocols; i++)
ID.AddPointer(Protocols[i]);
}
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
}
namespace {
/// \brief The cached properties of a type.
class CachedProperties {
Linkage L;
bool local;
public:
CachedProperties(Linkage L, bool local) : L(L), local(local) {}
Linkage getLinkage() const { return L; }
bool hasLocalOrUnnamedType() const { return local; }
friend CachedProperties merge(CachedProperties L, CachedProperties R) {
Linkage MergedLinkage = minLinkage(L.L, R.L);
return CachedProperties(MergedLinkage,
L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
}
};
}
static CachedProperties computeCachedProperties(const Type *T);
namespace clang {
/// The type-property cache. This is templated so as to be
/// instantiated at an internal type to prevent unnecessary symbol
/// leakage.
template <class Private> class TypePropertyCache {
public:
static CachedProperties get(QualType T) {
return get(T.getTypePtr());
}
static CachedProperties get(const Type *T) {
ensure(T);
return CachedProperties(T->TypeBits.getLinkage(),
T->TypeBits.hasLocalOrUnnamedType());
}
static void ensure(const Type *T) {
// If the cache is valid, we're okay.
if (T->TypeBits.isCacheValid()) return;
// If this type is non-canonical, ask its canonical type for the
// relevant information.
if (!T->isCanonicalUnqualified()) {
const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
ensure(CT);
T->TypeBits.CacheValid = true;
T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
return;
}
// Compute the cached properties and then set the cache.
CachedProperties Result = computeCachedProperties(T);
T->TypeBits.CacheValid = true;
T->TypeBits.CachedLinkage = Result.getLinkage();
T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
}
};
}
// Instantiate the friend template at a private class. In a
// reasonable implementation, these symbols will be internal.
// It is terrible that this is the best way to accomplish this.
namespace { class Private {}; }
typedef TypePropertyCache<Private> Cache;
static CachedProperties computeCachedProperties(const Type *T) {
switch (T->getTypeClass()) {
#define TYPE(Class,Base)
#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
llvm_unreachable("didn't expect a non-canonical type here");
#define TYPE(Class,Base)
#define DEPENDENT_TYPE(Class,Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
// Treat instantiation-dependent types as external.
assert(T->isInstantiationDependentType());
return CachedProperties(ExternalLinkage, false);
case Type::Auto:
// Give non-deduced 'auto' types external linkage. We should only see them
// here in error recovery.
return CachedProperties(ExternalLinkage, false);
case Type::Builtin:
// C++ [basic.link]p8:
// A type is said to have linkage if and only if:
// - it is a fundamental type (3.9.1); or
return CachedProperties(ExternalLinkage, false);
case Type::Record:
case Type::Enum: {
const TagDecl *Tag = cast<TagType>(T)->getDecl();
// C++ [basic.link]p8:
// - it is a class or enumeration type that is named (or has a name
// for linkage purposes (7.1.3)) and the name has linkage; or
// - it is a specialization of a class template (14); or
Linkage L = Tag->getLinkageInternal();
bool IsLocalOrUnnamed =
Tag->getDeclContext()->isFunctionOrMethod() ||
!Tag->hasNameForLinkage();
return CachedProperties(L, IsLocalOrUnnamed);
}
// C++ [basic.link]p8:
// - it is a compound type (3.9.2) other than a class or enumeration,
// compounded exclusively from types that have linkage; or
case Type::Complex:
return Cache::get(cast<ComplexType>(T)->getElementType());
case Type::Pointer:
return Cache::get(cast<PointerType>(T)->getPointeeType());
case Type::BlockPointer:
return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
case Type::LValueReference:
case Type::RValueReference:
return Cache::get(cast<ReferenceType>(T)->getPointeeType());
case Type::MemberPointer: {
const MemberPointerType *MPT = cast<MemberPointerType>(T);
return merge(Cache::get(MPT->getClass()),
Cache::get(MPT->getPointeeType()));
}
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
return Cache::get(cast<ArrayType>(T)->getElementType());
case Type::Vector:
case Type::ExtVector:
return Cache::get(cast<VectorType>(T)->getElementType());
case Type::FunctionNoProto:
return Cache::get(cast<FunctionType>(T)->getReturnType());
case Type::FunctionProto: {
const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
CachedProperties result = Cache::get(FPT->getReturnType());
for (const auto &ai : FPT->param_types())
result = merge(result, Cache::get(ai));
return result;
}
case Type::ObjCInterface: {
Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
return CachedProperties(L, false);
}
case Type::ObjCObject:
return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
case Type::ObjCObjectPointer:
return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
case Type::Atomic:
return Cache::get(cast<AtomicType>(T)->getValueType());
}
llvm_unreachable("unhandled type class");
}
/// \brief Determine the linkage of this type.
Linkage Type::getLinkage() const {
Cache::ensure(this);
return TypeBits.getLinkage();
}
bool Type::hasUnnamedOrLocalType() const {
Cache::ensure(this);
return TypeBits.hasLocalOrUnnamedType();
}
static LinkageInfo computeLinkageInfo(QualType T);
static LinkageInfo computeLinkageInfo(const Type *T) {
switch (T->getTypeClass()) {
#define TYPE(Class,Base)
#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
llvm_unreachable("didn't expect a non-canonical type here");
#define TYPE(Class,Base)
#define DEPENDENT_TYPE(Class,Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
// Treat instantiation-dependent types as external.
assert(T->isInstantiationDependentType());
return LinkageInfo::external();
case Type::Builtin:
return LinkageInfo::external();
case Type::Auto:
return LinkageInfo::external();
case Type::Record:
case Type::Enum:
return cast<TagType>(T)->getDecl()->getLinkageAndVisibility();
case Type::Complex:
return computeLinkageInfo(cast<ComplexType>(T)->getElementType());
case Type::Pointer:
return computeLinkageInfo(cast<PointerType>(T)->getPointeeType());
case Type::BlockPointer:
return computeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
case Type::LValueReference:
case Type::RValueReference:
return computeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
case Type::MemberPointer: {
const MemberPointerType *MPT = cast<MemberPointerType>(T);
LinkageInfo LV = computeLinkageInfo(MPT->getClass());
LV.merge(computeLinkageInfo(MPT->getPointeeType()));
return LV;
}
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
return computeLinkageInfo(cast<ArrayType>(T)->getElementType());
case Type::Vector:
case Type::ExtVector:
return computeLinkageInfo(cast<VectorType>(T)->getElementType());
case Type::FunctionNoProto:
return computeLinkageInfo(cast<FunctionType>(T)->getReturnType());
case Type::FunctionProto: {
const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
LinkageInfo LV = computeLinkageInfo(FPT->getReturnType());
for (const auto &ai : FPT->param_types())
LV.merge(computeLinkageInfo(ai));
return LV;
}
case Type::ObjCInterface:
return cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
case Type::ObjCObject:
return computeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
case Type::ObjCObjectPointer:
return computeLinkageInfo(cast<ObjCObjectPointerType>(T)->getPointeeType());
case Type::Atomic:
return computeLinkageInfo(cast<AtomicType>(T)->getValueType());
}
llvm_unreachable("unhandled type class");
}
static LinkageInfo computeLinkageInfo(QualType T) {
return computeLinkageInfo(T.getTypePtr());
}
bool Type::isLinkageValid() const {
if (!TypeBits.isCacheValid())
return true;
return computeLinkageInfo(getCanonicalTypeInternal()).getLinkage() ==
TypeBits.getLinkage();
}
LinkageInfo Type::getLinkageAndVisibility() const {
if (!isCanonicalUnqualified())
return computeLinkageInfo(getCanonicalTypeInternal());
LinkageInfo LV = computeLinkageInfo(this);
assert(LV.getLinkage() == getLinkage());
return LV;
}
Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
if (isObjCARCImplicitlyUnretainedType())
return Qualifiers::OCL_ExplicitNone;
return Qualifiers::OCL_Strong;
}
bool Type::isObjCARCImplicitlyUnretainedType() const {
assert(isObjCLifetimeType() &&
"cannot query implicit lifetime for non-inferrable type");
const Type *canon = getCanonicalTypeInternal().getTypePtr();
// Walk down to the base type. We don't care about qualifiers for this.
while (const ArrayType *array = dyn_cast<ArrayType>(canon))
canon = array->getElementType().getTypePtr();
if (const ObjCObjectPointerType *opt
= dyn_cast<ObjCObjectPointerType>(canon)) {
// Class and Class<Protocol> don't require retension.
if (opt->getObjectType()->isObjCClass())
return true;
}
return false;
}
bool Type::isObjCNSObjectType() const {
if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
return false;
}
bool Type::isObjCRetainableType() const {
return isObjCObjectPointerType() ||
isBlockPointerType() ||
isObjCNSObjectType();
}
bool Type::isObjCIndirectLifetimeType() const {
if (isObjCLifetimeType())
return true;
if (const PointerType *OPT = getAs<PointerType>())
return OPT->getPointeeType()->isObjCIndirectLifetimeType();
if (const ReferenceType *Ref = getAs<ReferenceType>())
return Ref->getPointeeType()->isObjCIndirectLifetimeType();
if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
return false;
}
/// Returns true if objects of this type have lifetime semantics under
/// ARC.
bool Type::isObjCLifetimeType() const {
const Type *type = this;
while (const ArrayType *array = type->getAsArrayTypeUnsafe())
type = array->getElementType().getTypePtr();
return type->isObjCRetainableType();
}
/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
/// which is either an Objective-C object pointer type or an
bool Type::isObjCARCBridgableType() const {
return isObjCObjectPointerType() || isBlockPointerType();
}
/// \brief Determine whether the given type T is a "bridgeable" C type.
bool Type::isCARCBridgableType() const {
const PointerType *Pointer = getAs<PointerType>();
if (!Pointer)
return false;
QualType Pointee = Pointer->getPointeeType();
return Pointee->isVoidType() || Pointee->isRecordType();
}
bool Type::hasSizedVLAType() const {
if (!isVariablyModifiedType()) return false;
if (const PointerType *ptr = getAs<PointerType>())
return ptr->getPointeeType()->hasSizedVLAType();
if (const ReferenceType *ref = getAs<ReferenceType>())
return ref->getPointeeType()->hasSizedVLAType();
if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
if (isa<VariableArrayType>(arr) &&
cast<VariableArrayType>(arr)->getSizeExpr())
return true;
return arr->getElementType()->hasSizedVLAType();
}
return false;
}
QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
switch (type.getObjCLifetime()) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
break;
case Qualifiers::OCL_Strong:
return DK_objc_strong_lifetime;
case Qualifiers::OCL_Weak:
return DK_objc_weak_lifetime;
}
/// Currently, the only destruction kind we recognize is C++ objects
/// with non-trivial destructors.
const CXXRecordDecl *record =
type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
if (record && record->hasDefinition() && !record->hasTrivialDestructor())
return DK_cxx_destructor;
return DK_none;
}
CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const {
return getClass()->getAsCXXRecordDecl()->getMostRecentDecl();
}
|