1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
|
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related semantic analysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "TypeLocBuilder.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
enum TypeDiagSelector {
TDS_Function,
TDS_Pointer,
TDS_ObjCObjOrBlock
};
/// isOmittedBlockReturnType - Return true if this declarator is missing a
/// return type because this is a omitted return type on a block literal.
static bool isOmittedBlockReturnType(const Declarator &D) {
if (D.getContext() != Declarator::BlockLiteralContext ||
D.getDeclSpec().hasTypeSpecifier())
return false;
if (D.getNumTypeObjects() == 0)
return true; // ^{ ... }
if (D.getNumTypeObjects() == 1 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Function)
return true; // ^(int X, float Y) { ... }
return false;
}
/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
/// doesn't apply to the given type.
static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
QualType type) {
TypeDiagSelector WhichType;
bool useExpansionLoc = true;
switch (attr.getKind()) {
case AttributeList::AT_ObjCGC: WhichType = TDS_Pointer; break;
case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
default:
// Assume everything else was a function attribute.
WhichType = TDS_Function;
useExpansionLoc = false;
break;
}
SourceLocation loc = attr.getLoc();
StringRef name = attr.getName()->getName();
// The GC attributes are usually written with macros; special-case them.
IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
: nullptr;
if (useExpansionLoc && loc.isMacroID() && II) {
if (II->isStr("strong")) {
if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
} else if (II->isStr("weak")) {
if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
}
}
S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
<< type;
}
// objc_gc applies to Objective-C pointers or, otherwise, to the
// smallest available pointer type (i.e. 'void*' in 'void**').
#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
case AttributeList::AT_ObjCGC: \
case AttributeList::AT_ObjCOwnership
// Function type attributes.
#define FUNCTION_TYPE_ATTRS_CASELIST \
case AttributeList::AT_NoReturn: \
case AttributeList::AT_CDecl: \
case AttributeList::AT_FastCall: \
case AttributeList::AT_StdCall: \
case AttributeList::AT_ThisCall: \
case AttributeList::AT_Pascal: \
case AttributeList::AT_MSABI: \
case AttributeList::AT_SysVABI: \
case AttributeList::AT_Regparm: \
case AttributeList::AT_Pcs: \
case AttributeList::AT_PnaclCall: \
case AttributeList::AT_IntelOclBicc
// Microsoft-specific type qualifiers.
#define MS_TYPE_ATTRS_CASELIST \
case AttributeList::AT_Ptr32: \
case AttributeList::AT_Ptr64: \
case AttributeList::AT_SPtr: \
case AttributeList::AT_UPtr
namespace {
/// An object which stores processing state for the entire
/// GetTypeForDeclarator process.
class TypeProcessingState {
Sema &sema;
/// The declarator being processed.
Declarator &declarator;
/// The index of the declarator chunk we're currently processing.
/// May be the total number of valid chunks, indicating the
/// DeclSpec.
unsigned chunkIndex;
/// Whether there are non-trivial modifications to the decl spec.
bool trivial;
/// Whether we saved the attributes in the decl spec.
bool hasSavedAttrs;
/// The original set of attributes on the DeclSpec.
SmallVector<AttributeList*, 2> savedAttrs;
/// A list of attributes to diagnose the uselessness of when the
/// processing is complete.
SmallVector<AttributeList*, 2> ignoredTypeAttrs;
public:
TypeProcessingState(Sema &sema, Declarator &declarator)
: sema(sema), declarator(declarator),
chunkIndex(declarator.getNumTypeObjects()),
trivial(true), hasSavedAttrs(false) {}
Sema &getSema() const {
return sema;
}
Declarator &getDeclarator() const {
return declarator;
}
bool isProcessingDeclSpec() const {
return chunkIndex == declarator.getNumTypeObjects();
}
unsigned getCurrentChunkIndex() const {
return chunkIndex;
}
void setCurrentChunkIndex(unsigned idx) {
assert(idx <= declarator.getNumTypeObjects());
chunkIndex = idx;
}
AttributeList *&getCurrentAttrListRef() const {
if (isProcessingDeclSpec())
return getMutableDeclSpec().getAttributes().getListRef();
return declarator.getTypeObject(chunkIndex).getAttrListRef();
}
/// Save the current set of attributes on the DeclSpec.
void saveDeclSpecAttrs() {
// Don't try to save them multiple times.
if (hasSavedAttrs) return;
DeclSpec &spec = getMutableDeclSpec();
for (AttributeList *attr = spec.getAttributes().getList(); attr;
attr = attr->getNext())
savedAttrs.push_back(attr);
trivial &= savedAttrs.empty();
hasSavedAttrs = true;
}
/// Record that we had nowhere to put the given type attribute.
/// We will diagnose such attributes later.
void addIgnoredTypeAttr(AttributeList &attr) {
ignoredTypeAttrs.push_back(&attr);
}
/// Diagnose all the ignored type attributes, given that the
/// declarator worked out to the given type.
void diagnoseIgnoredTypeAttrs(QualType type) const {
for (SmallVectorImpl<AttributeList*>::const_iterator
i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
i != e; ++i)
diagnoseBadTypeAttribute(getSema(), **i, type);
}
~TypeProcessingState() {
if (trivial) return;
restoreDeclSpecAttrs();
}
private:
DeclSpec &getMutableDeclSpec() const {
return const_cast<DeclSpec&>(declarator.getDeclSpec());
}
void restoreDeclSpecAttrs() {
assert(hasSavedAttrs);
if (savedAttrs.empty()) {
getMutableDeclSpec().getAttributes().set(nullptr);
return;
}
getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
savedAttrs[i]->setNext(savedAttrs[i+1]);
savedAttrs.back()->setNext(nullptr);
}
};
}
static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
attr.setNext(head);
head = &attr;
}
static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
if (head == &attr) {
head = attr.getNext();
return;
}
AttributeList *cur = head;
while (true) {
assert(cur && cur->getNext() && "ran out of attrs?");
if (cur->getNext() == &attr) {
cur->setNext(attr.getNext());
return;
}
cur = cur->getNext();
}
}
static void moveAttrFromListToList(AttributeList &attr,
AttributeList *&fromList,
AttributeList *&toList) {
spliceAttrOutOfList(attr, fromList);
spliceAttrIntoList(attr, toList);
}
/// The location of a type attribute.
enum TypeAttrLocation {
/// The attribute is in the decl-specifier-seq.
TAL_DeclSpec,
/// The attribute is part of a DeclaratorChunk.
TAL_DeclChunk,
/// The attribute is immediately after the declaration's name.
TAL_DeclName
};
static void processTypeAttrs(TypeProcessingState &state,
QualType &type, TypeAttrLocation TAL,
AttributeList *attrs);
static bool handleFunctionTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type);
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type);
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
AttributeList &attr, QualType &type);
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
AttributeList &attr, QualType &type);
static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
AttributeList &attr, QualType &type) {
if (attr.getKind() == AttributeList::AT_ObjCGC)
return handleObjCGCTypeAttr(state, attr, type);
assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
return handleObjCOwnershipTypeAttr(state, attr, type);
}
/// Given the index of a declarator chunk, check whether that chunk
/// directly specifies the return type of a function and, if so, find
/// an appropriate place for it.
///
/// \param i - a notional index which the search will start
/// immediately inside
static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
unsigned i) {
assert(i <= declarator.getNumTypeObjects());
DeclaratorChunk *result = nullptr;
// First, look inwards past parens for a function declarator.
for (; i != 0; --i) {
DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
switch (fnChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
// If we find anything except a function, bail out.
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
return result;
// If we do find a function declarator, scan inwards from that,
// looking for a block-pointer declarator.
case DeclaratorChunk::Function:
for (--i; i != 0; --i) {
DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
switch (blockChunk.Kind) {
case DeclaratorChunk::Paren:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Function:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
continue;
case DeclaratorChunk::BlockPointer:
result = &blockChunk;
goto continue_outer;
}
llvm_unreachable("bad declarator chunk kind");
}
// If we run out of declarators doing that, we're done.
return result;
}
llvm_unreachable("bad declarator chunk kind");
// Okay, reconsider from our new point.
continue_outer: ;
}
// Ran out of chunks, bail out.
return result;
}
/// Given that an objc_gc attribute was written somewhere on a
/// declaration *other* than on the declarator itself (for which, use
/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
/// didn't apply in whatever position it was written in, try to move
/// it to a more appropriate position.
static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType type) {
Declarator &declarator = state.getDeclarator();
// Move it to the outermost normal or block pointer declarator.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer: {
// But don't move an ARC ownership attribute to the return type
// of a block.
DeclaratorChunk *destChunk = nullptr;
if (state.isProcessingDeclSpec() &&
attr.getKind() == AttributeList::AT_ObjCOwnership)
destChunk = maybeMovePastReturnType(declarator, i - 1);
if (!destChunk) destChunk = &chunk;
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
destChunk->getAttrListRef());
return;
}
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
// We may be starting at the return type of a block.
case DeclaratorChunk::Function:
if (state.isProcessingDeclSpec() &&
attr.getKind() == AttributeList::AT_ObjCOwnership) {
if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
dest->getAttrListRef());
return;
}
}
goto error;
// Don't walk through these.
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
goto error;
}
}
error:
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Distribute an objc_gc type attribute that was written on the
/// declarator.
static void
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
AttributeList &attr,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// objc_gc goes on the innermost pointer to something that's not a
// pointer.
unsigned innermost = -1U;
bool considerDeclSpec = true;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
innermost = i;
continue;
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
case DeclaratorChunk::Paren:
case DeclaratorChunk::Array:
continue;
case DeclaratorChunk::Function:
considerDeclSpec = false;
goto done;
}
}
done:
// That might actually be the decl spec if we weren't blocked by
// anything in the declarator.
if (considerDeclSpec) {
if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
// Splice the attribute into the decl spec. Prevents the
// attribute from being applied multiple times and gives
// the source-location-filler something to work with.
state.saveDeclSpecAttrs();
moveAttrFromListToList(attr, declarator.getAttrListRef(),
declarator.getMutableDeclSpec().getAttributes().getListRef());
return;
}
}
// Otherwise, if we found an appropriate chunk, splice the attribute
// into it.
if (innermost != -1U) {
moveAttrFromListToList(attr, declarator.getAttrListRef(),
declarator.getTypeObject(innermost).getAttrListRef());
return;
}
// Otherwise, diagnose when we're done building the type.
spliceAttrOutOfList(attr, declarator.getAttrListRef());
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written somewhere in a declaration
/// *other* than on the declarator itself or in the decl spec. Given
/// that it didn't apply in whatever position it was written in, try
/// to move it to a more appropriate position.
static void distributeFunctionTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType type) {
Declarator &declarator = state.getDeclarator();
// Try to push the attribute from the return type of a function to
// the function itself.
for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
switch (chunk.Kind) {
case DeclaratorChunk::Function:
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
chunk.getAttrListRef());
return;
case DeclaratorChunk::Paren:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
continue;
}
}
diagnoseBadTypeAttribute(state.getSema(), attr, type);
}
/// Try to distribute a function type attribute to the innermost
/// function chunk or type. Returns true if the attribute was
/// distributed, false if no location was found.
static bool
distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
AttributeList &attr,
AttributeList *&attrList,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Put it on the innermost function chunk, if there is one.
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = declarator.getTypeObject(i);
if (chunk.Kind != DeclaratorChunk::Function) continue;
moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
return true;
}
return handleFunctionTypeAttr(state, attr, declSpecType);
}
/// A function type attribute was written in the decl spec. Try to
/// apply it somewhere.
static void
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
AttributeList &attr,
QualType &declSpecType) {
state.saveDeclSpecAttrs();
// C++11 attributes before the decl specifiers actually appertain to
// the declarators. Move them straight there. We don't support the
// 'put them wherever you like' semantics we allow for GNU attributes.
if (attr.isCXX11Attribute()) {
moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
state.getDeclarator().getAttrListRef());
return;
}
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(state, attr,
state.getCurrentAttrListRef(),
declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
state.addIgnoredTypeAttr(attr);
}
/// A function type attribute was written on the declarator. Try to
/// apply it somewhere.
static void
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
AttributeList &attr,
QualType &declSpecType) {
Declarator &declarator = state.getDeclarator();
// Try to distribute to the innermost.
if (distributeFunctionTypeAttrToInnermost(state, attr,
declarator.getAttrListRef(),
declSpecType))
return;
// If that failed, diagnose the bad attribute when the declarator is
// fully built.
spliceAttrOutOfList(attr, declarator.getAttrListRef());
state.addIgnoredTypeAttr(attr);
}
/// \brief Given that there are attributes written on the declarator
/// itself, try to distribute any type attributes to the appropriate
/// declarator chunk.
///
/// These are attributes like the following:
/// int f ATTR;
/// int (f ATTR)();
/// but not necessarily this:
/// int f() ATTR;
static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
QualType &declSpecType) {
// Collect all the type attributes from the declarator itself.
assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
AttributeList *attr = state.getDeclarator().getAttributes();
AttributeList *next;
do {
next = attr->getNext();
// Do not distribute C++11 attributes. They have strict rules for what
// they appertain to.
if (attr->isCXX11Attribute())
continue;
switch (attr->getKind()) {
OBJC_POINTER_TYPE_ATTRS_CASELIST:
distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
break;
case AttributeList::AT_NSReturnsRetained:
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
break;
// fallthrough
FUNCTION_TYPE_ATTRS_CASELIST:
distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
break;
MS_TYPE_ATTRS_CASELIST:
// Microsoft type attributes cannot go after the declarator-id.
continue;
default:
break;
}
} while ((attr = next));
}
/// Add a synthetic '()' to a block-literal declarator if it is
/// required, given the return type.
static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
QualType declSpecType) {
Declarator &declarator = state.getDeclarator();
// First, check whether the declarator would produce a function,
// i.e. whether the innermost semantic chunk is a function.
if (declarator.isFunctionDeclarator()) {
// If so, make that declarator a prototyped declarator.
declarator.getFunctionTypeInfo().hasPrototype = true;
return;
}
// If there are any type objects, the type as written won't name a
// function, regardless of the decl spec type. This is because a
// block signature declarator is always an abstract-declarator, and
// abstract-declarators can't just be parentheses chunks. Therefore
// we need to build a function chunk unless there are no type
// objects and the decl spec type is a function.
if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
return;
// Note that there *are* cases with invalid declarators where
// declarators consist solely of parentheses. In general, these
// occur only in failed efforts to make function declarators, so
// faking up the function chunk is still the right thing to do.
// Otherwise, we need to fake up a function declarator.
SourceLocation loc = declarator.getLocStart();
// ...and *prepend* it to the declarator.
SourceLocation NoLoc;
declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
/*HasProto=*/true,
/*IsAmbiguous=*/false,
/*LParenLoc=*/NoLoc,
/*ArgInfo=*/nullptr,
/*NumArgs=*/0,
/*EllipsisLoc=*/NoLoc,
/*RParenLoc=*/NoLoc,
/*TypeQuals=*/0,
/*RefQualifierIsLvalueRef=*/true,
/*RefQualifierLoc=*/NoLoc,
/*ConstQualifierLoc=*/NoLoc,
/*VolatileQualifierLoc=*/NoLoc,
/*MutableLoc=*/NoLoc,
EST_None,
/*ESpecLoc=*/NoLoc,
/*Exceptions=*/nullptr,
/*ExceptionRanges=*/nullptr,
/*NumExceptions=*/0,
/*NoexceptExpr=*/nullptr,
loc, loc, declarator));
// For consistency, make sure the state still has us as processing
// the decl spec.
assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
state.setCurrentChunkIndex(declarator.getNumTypeObjects());
}
/// \brief Convert the specified declspec to the appropriate type
/// object.
/// \param state Specifies the declarator containing the declaration specifier
/// to be converted, along with other associated processing state.
/// \returns The type described by the declaration specifiers. This function
/// never returns null.
static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
// checking.
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
const DeclSpec &DS = declarator.getDeclSpec();
SourceLocation DeclLoc = declarator.getIdentifierLoc();
if (DeclLoc.isInvalid())
DeclLoc = DS.getLocStart();
ASTContext &Context = S.Context;
QualType Result;
switch (DS.getTypeSpecType()) {
case DeclSpec::TST_void:
Result = Context.VoidTy;
break;
case DeclSpec::TST_char:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.CharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
Result = Context.SignedCharTy;
else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
Result = Context.UnsignedCharTy;
}
break;
case DeclSpec::TST_wchar:
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
Result = Context.WCharTy;
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
Result = Context.getSignedWCharType();
} else {
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
"Unknown TSS value");
S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
<< DS.getSpecifierName(DS.getTypeSpecType(),
Context.getPrintingPolicy());
Result = Context.getUnsignedWCharType();
}
break;
case DeclSpec::TST_char16:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char16Ty;
break;
case DeclSpec::TST_char32:
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value");
Result = Context.Char32Ty;
break;
case DeclSpec::TST_unspecified:
// "<proto1,proto2>" is an objc qualified ID with a missing id.
if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
(ObjCProtocolDecl*const*)PQ,
DS.getNumProtocolQualifiers());
Result = Context.getObjCObjectPointerType(Result);
break;
}
// If this is a missing declspec in a block literal return context, then it
// is inferred from the return statements inside the block.
// The declspec is always missing in a lambda expr context; it is either
// specified with a trailing return type or inferred.
if (S.getLangOpts().CPlusPlus1y &&
declarator.getContext() == Declarator::LambdaExprContext) {
// In C++1y, a lambda's implicit return type is 'auto'.
Result = Context.getAutoDeductType();
break;
} else if (declarator.getContext() == Declarator::LambdaExprContext ||
isOmittedBlockReturnType(declarator)) {
Result = Context.DependentTy;
break;
}
// Unspecified typespec defaults to int in C90. However, the C90 grammar
// [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
// type-qualifier, or storage-class-specifier. If not, emit an extwarn.
// Note that the one exception to this is function definitions, which are
// allowed to be completely missing a declspec. This is handled in the
// parser already though by it pretending to have seen an 'int' in this
// case.
if (S.getLangOpts().ImplicitInt) {
// In C89 mode, we only warn if there is a completely missing declspec
// when one is not allowed.
if (DS.isEmpty()) {
S.Diag(DeclLoc, diag::ext_missing_declspec)
<< DS.getSourceRange()
<< FixItHint::CreateInsertion(DS.getLocStart(), "int");
}
} else if (!DS.hasTypeSpecifier()) {
// C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
// "At least one type specifier shall be given in the declaration
// specifiers in each declaration, and in the specifier-qualifier list in
// each struct declaration and type name."
if (S.getLangOpts().CPlusPlus) {
S.Diag(DeclLoc, diag::err_missing_type_specifier)
<< DS.getSourceRange();
// When this occurs in C++ code, often something is very broken with the
// value being declared, poison it as invalid so we don't get chains of
// errors.
declarator.setInvalidType(true);
} else {
S.Diag(DeclLoc, diag::ext_missing_type_specifier)
<< DS.getSourceRange();
}
}
// FALL THROUGH.
case DeclSpec::TST_int: {
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
case DeclSpec::TSW_short: Result = Context.ShortTy; break;
case DeclSpec::TSW_long: Result = Context.LongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.LongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
} else {
switch (DS.getTypeSpecWidth()) {
case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
case DeclSpec::TSW_longlong:
Result = Context.UnsignedLongLongTy;
// 'long long' is a C99 or C++11 feature.
if (!S.getLangOpts().C99) {
if (S.getLangOpts().CPlusPlus)
S.Diag(DS.getTypeSpecWidthLoc(),
S.getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
}
break;
}
}
break;
}
case DeclSpec::TST_int128:
if (!S.Context.getTargetInfo().hasInt128Type())
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
Result = Context.UnsignedInt128Ty;
else
Result = Context.Int128Ty;
break;
case DeclSpec::TST_half: Result = Context.HalfTy; break;
case DeclSpec::TST_float: Result = Context.FloatTy; break;
case DeclSpec::TST_double:
if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
Result = Context.LongDoubleTy;
else
Result = Context.DoubleTy;
if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
case DeclSpec::TST_decimal32: // _Decimal32
case DeclSpec::TST_decimal64: // _Decimal64
case DeclSpec::TST_decimal128: // _Decimal128
S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
case DeclSpec::TST_class:
case DeclSpec::TST_enum:
case DeclSpec::TST_union:
case DeclSpec::TST_struct:
case DeclSpec::TST_interface: {
TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
if (!D) {
// This can happen in C++ with ambiguous lookups.
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
// If the type is deprecated or unavailable, diagnose it.
S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
// TypeQuals handled by caller.
Result = Context.getTypeDeclType(D);
// In both C and C++, make an ElaboratedType.
ElaboratedTypeKeyword Keyword
= ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
break;
}
case DeclSpec::TST_typename: {
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
DS.getTypeSpecSign() == 0 &&
"Can't handle qualifiers on typedef names yet!");
Result = S.GetTypeFromParser(DS.getRepAsType());
if (Result.isNull())
declarator.setInvalidType(true);
else if (DeclSpec::ProtocolQualifierListTy PQ
= DS.getProtocolQualifiers()) {
if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
// Silently drop any existing protocol qualifiers.
// TODO: determine whether that's the right thing to do.
if (ObjT->getNumProtocols())
Result = ObjT->getBaseType();
if (DS.getNumProtocolQualifiers())
Result = Context.getObjCObjectType(Result,
(ObjCProtocolDecl*const*) PQ,
DS.getNumProtocolQualifiers());
} else if (Result->isObjCIdType()) {
// id<protocol-list>
Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
(ObjCProtocolDecl*const*) PQ,
DS.getNumProtocolQualifiers());
Result = Context.getObjCObjectPointerType(Result);
} else if (Result->isObjCClassType()) {
// Class<protocol-list>
Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
(ObjCProtocolDecl*const*) PQ,
DS.getNumProtocolQualifiers());
Result = Context.getObjCObjectPointerType(Result);
} else {
S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
<< DS.getSourceRange();
declarator.setInvalidType(true);
}
}
// TypeQuals handled by caller.
break;
}
case DeclSpec::TST_typeofType:
// FIXME: Preserve type source info.
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for typeof?");
if (!Result->isDependentType())
if (const TagType *TT = Result->getAs<TagType>())
S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
// TypeQuals handled by caller.
Result = Context.getTypeOfType(Result);
break;
case DeclSpec::TST_typeofExpr: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for typeof?");
// TypeQuals handled by caller.
Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_decltype: {
Expr *E = DS.getRepAsExpr();
assert(E && "Didn't get an expression for decltype?");
// TypeQuals handled by caller.
Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
}
case DeclSpec::TST_underlyingType:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
Result = S.BuildUnaryTransformType(Result,
UnaryTransformType::EnumUnderlyingType,
DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_auto:
// TypeQuals handled by caller.
// If auto is mentioned in a lambda parameter context, convert it to a
// template parameter type immediately, with the appropriate depth and
// index, and update sema's state (LambdaScopeInfo) for the current lambda
// being analyzed (which tracks the invented type template parameter).
if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
sema::LambdaScopeInfo *LSI = S.getCurLambda();
assert(LSI && "No LambdaScopeInfo on the stack!");
const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
const bool IsParameterPack = declarator.hasEllipsis();
// Create a name for the invented template parameter type.
std::string InventedTemplateParamName = "$auto-";
llvm::raw_string_ostream ss(InventedTemplateParamName);
ss << TemplateParameterDepth;
ss << "-" << AutoParameterPosition;
ss.flush();
IdentifierInfo& TemplateParamII = Context.Idents.get(
InventedTemplateParamName.c_str());
// Turns out we must create the TemplateTypeParmDecl here to
// retrieve the corresponding template parameter type.
TemplateTypeParmDecl *CorrespondingTemplateParam =
TemplateTypeParmDecl::Create(Context,
// Temporarily add to the TranslationUnit DeclContext. When the
// associated TemplateParameterList is attached to a template
// declaration (such as FunctionTemplateDecl), the DeclContext
// for each template parameter gets updated appropriately via
// a call to AdoptTemplateParameterList.
Context.getTranslationUnitDecl(),
/*KeyLoc*/ SourceLocation(),
/*NameLoc*/ declarator.getLocStart(),
TemplateParameterDepth,
AutoParameterPosition, // our template param index
/* Identifier*/ &TemplateParamII, false, IsParameterPack);
LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
// Replace the 'auto' in the function parameter with this invented
// template type parameter.
Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
} else {
Result = Context.getAutoType(QualType(), /*decltype(auto)*/false, false);
}
break;
case DeclSpec::TST_decltype_auto:
Result = Context.getAutoType(QualType(),
/*decltype(auto)*/true,
/*IsDependent*/ false);
break;
case DeclSpec::TST_unknown_anytype:
Result = Context.UnknownAnyTy;
break;
case DeclSpec::TST_atomic:
Result = S.GetTypeFromParser(DS.getRepAsType());
assert(!Result.isNull() && "Didn't get a type for _Atomic?");
Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
if (Result.isNull()) {
Result = Context.IntTy;
declarator.setInvalidType(true);
}
break;
case DeclSpec::TST_error:
Result = Context.IntTy;
declarator.setInvalidType(true);
break;
}
// Handle complex types.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
if (S.getLangOpts().Freestanding)
S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
Result = Context.getComplexType(Result);
} else if (DS.isTypeAltiVecVector()) {
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
VectorType::VectorKind VecKind = VectorType::AltiVecVector;
if (DS.isTypeAltiVecPixel())
VecKind = VectorType::AltiVecPixel;
else if (DS.isTypeAltiVecBool())
VecKind = VectorType::AltiVecBool;
Result = Context.getVectorType(Result, 128/typeSize, VecKind);
}
// FIXME: Imaginary.
if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
// Before we process any type attributes, synthesize a block literal
// function declarator if necessary.
if (declarator.getContext() == Declarator::BlockLiteralContext)
maybeSynthesizeBlockSignature(state, Result);
// Apply any type attributes from the decl spec. This may cause the
// list of type attributes to be temporarily saved while the type
// attributes are pushed around.
if (AttributeList *attrs = DS.getAttributes().getList())
processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
// Apply const/volatile/restrict qualifiers to T.
if (unsigned TypeQuals = DS.getTypeQualifiers()) {
// Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
// of a function type includes any type qualifiers, the behavior is
// undefined."
if (Result->isFunctionType() && TypeQuals) {
if (TypeQuals & DeclSpec::TQ_const)
S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
<< Result << DS.getSourceRange();
else if (TypeQuals & DeclSpec::TQ_volatile)
S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
<< Result << DS.getSourceRange();
else {
assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
"Has CVRA quals but not C, V, R, or A?");
// No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
// function type later, in BuildQualifiedType.
}
}
// C++11 [dcl.ref]p1:
// Cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef-name
// or decltype-specifier, in which case the cv-qualifiers are ignored.
//
// There don't appear to be any other contexts in which a cv-qualified
// reference type could be formed, so the 'ill-formed' clause here appears
// to never happen.
if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
TypeQuals && Result->isReferenceType()) {
// If this occurs outside a template instantiation, warn the user about
// it; they probably didn't mean to specify a redundant qualifier.
typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
QualLoc Quals[] = {
QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())
};
for (unsigned I = 0, N = llvm::array_lengthof(Quals); I != N; ++I) {
if (S.ActiveTemplateInstantiations.empty()) {
if (TypeQuals & Quals[I].first)
S.Diag(Quals[I].second, diag::warn_typecheck_reference_qualifiers)
<< DeclSpec::getSpecifierName(Quals[I].first) << Result
<< FixItHint::CreateRemoval(Quals[I].second);
}
TypeQuals &= ~Quals[I].first;
}
}
// C90 6.5.3 constraints: "The same type qualifier shall not appear more
// than once in the same specifier-list or qualifier-list, either directly
// or via one or more typedefs."
if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
&& TypeQuals & Result.getCVRQualifiers()) {
if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
<< "const";
}
if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
<< "volatile";
}
// C90 doesn't have restrict nor _Atomic, so it doesn't force us to
// produce a warning in this case.
}
QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
// If adding qualifiers fails, just use the unqualified type.
if (Qualified.isNull())
declarator.setInvalidType(true);
else
Result = Qualified;
}
return Result;
}
static std::string getPrintableNameForEntity(DeclarationName Entity) {
if (Entity)
return Entity.getAsString();
return "type name";
}
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
Qualifiers Qs, const DeclSpec *DS) {
// Enforce C99 6.7.3p2: "Types other than pointer types derived from
// object or incomplete types shall not be restrict-qualified."
if (Qs.hasRestrict()) {
unsigned DiagID = 0;
QualType ProblemTy;
if (T->isAnyPointerType() || T->isReferenceType() ||
T->isMemberPointerType()) {
QualType EltTy;
if (T->isObjCObjectPointerType())
EltTy = T;
else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
EltTy = PTy->getPointeeType();
else
EltTy = T->getPointeeType();
// If we have a pointer or reference, the pointee must have an object
// incomplete type.
if (!EltTy->isIncompleteOrObjectType()) {
DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
ProblemTy = EltTy;
}
} else if (!T->isDependentType()) {
DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
ProblemTy = T;
}
if (DiagID) {
Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
Qs.removeRestrict();
}
}
return Context.getQualifiedType(T, Qs);
}
QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
unsigned CVRA, const DeclSpec *DS) {
// Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
// C11 6.7.3/5:
// If the same qualifier appears more than once in the same
// specifier-qualifier-list, either directly or via one or more typedefs,
// the behavior is the same as if it appeared only once.
//
// It's not specified what happens when the _Atomic qualifier is applied to
// a type specified with the _Atomic specifier, but we assume that this
// should be treated as if the _Atomic qualifier appeared multiple times.
if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
// C11 6.7.3/5:
// If other qualifiers appear along with the _Atomic qualifier in a
// specifier-qualifier-list, the resulting type is the so-qualified
// atomic type.
//
// Don't need to worry about array types here, since _Atomic can't be
// applied to such types.
SplitQualType Split = T.getSplitUnqualifiedType();
T = BuildAtomicType(QualType(Split.Ty, 0),
DS ? DS->getAtomicSpecLoc() : Loc);
if (T.isNull())
return T;
Split.Quals.addCVRQualifiers(CVR);
return BuildQualifiedType(T, Loc, Split.Quals);
}
return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
}
/// \brief Build a paren type including \p T.
QualType Sema::BuildParenType(QualType T) {
return Context.getParenType(T);
}
/// Given that we're building a pointer or reference to the given
static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
SourceLocation loc,
bool isReference) {
// Bail out if retention is unrequired or already specified.
if (!type->isObjCLifetimeType() ||
type.getObjCLifetime() != Qualifiers::OCL_None)
return type;
Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
// If the object type is const-qualified, we can safely use
// __unsafe_unretained. This is safe (because there are no read
// barriers), and it'll be safe to coerce anything but __weak* to
// the resulting type.
if (type.isConstQualified()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// Otherwise, check whether the static type does not require
// retaining. This currently only triggers for Class (possibly
// protocol-qualifed, and arrays thereof).
} else if (type->isObjCARCImplicitlyUnretainedType()) {
implicitLifetime = Qualifiers::OCL_ExplicitNone;
// If we are in an unevaluated context, like sizeof, skip adding a
// qualification.
} else if (S.isUnevaluatedContext()) {
return type;
// If that failed, give an error and recover using __strong. __strong
// is the option most likely to prevent spurious second-order diagnostics,
// like when binding a reference to a field.
} else {
// These types can show up in private ivars in system headers, so
// we need this to not be an error in those cases. Instead we
// want to delay.
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(loc,
diag::err_arc_indirect_no_ownership, type, isReference));
} else {
S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
}
implicitLifetime = Qualifiers::OCL_Strong;
}
assert(implicitLifetime && "didn't infer any lifetime!");
Qualifiers qs;
qs.addObjCLifetime(implicitLifetime);
return S.Context.getQualifiedType(type, qs);
}
static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
std::string Quals =
Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
switch (FnTy->getRefQualifier()) {
case RQ_None:
break;
case RQ_LValue:
if (!Quals.empty())
Quals += ' ';
Quals += '&';
break;
case RQ_RValue:
if (!Quals.empty())
Quals += ' ';
Quals += "&&";
break;
}
return Quals;
}
namespace {
/// Kinds of declarator that cannot contain a qualified function type.
///
/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
/// a function type with a cv-qualifier or a ref-qualifier can only appear
/// at the topmost level of a type.
///
/// Parens and member pointers are permitted. We don't diagnose array and
/// function declarators, because they don't allow function types at all.
///
/// The values of this enum are used in diagnostics.
enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
}
/// Check whether the type T is a qualified function type, and if it is,
/// diagnose that it cannot be contained within the given kind of declarator.
static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
QualifiedFunctionKind QFK) {
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
return false;
S.Diag(Loc, diag::err_compound_qualified_function_type)
<< QFK << isa<FunctionType>(T.IgnoreParens()) << T
<< getFunctionQualifiersAsString(FPT);
return true;
}
/// \brief Build a pointer type.
///
/// \param T The type to which we'll be building a pointer.
///
/// \param Loc The location of the entity whose type involves this
/// pointer type or, if there is no such entity, the location of the
/// type that will have pointer type.
///
/// \param Entity The name of the entity that involves the pointer
/// type, if known.
///
/// \returns A suitable pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildPointerType(QualType T,
SourceLocation Loc, DeclarationName Entity) {
if (T->isReferenceType()) {
// C++ 8.3.2p4: There shall be no ... pointers to references ...
Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
return QualType();
assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
// In ARC, it is forbidden to build pointers to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
// Build the pointer type.
return Context.getPointerType(T);
}
/// \brief Build a reference type.
///
/// \param T The type to which we'll be building a reference.
///
/// \param Loc The location of the entity whose type involves this
/// reference type or, if there is no such entity, the location of the
/// type that will have reference type.
///
/// \param Entity The name of the entity that involves the reference
/// type, if known.
///
/// \returns A suitable reference type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
SourceLocation Loc,
DeclarationName Entity) {
assert(Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type");
// C++0x [dcl.ref]p6:
// If a typedef (7.1.3), a type template-parameter (14.3.1), or a
// decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
// type T, an attempt to create the type "lvalue reference to cv TR" creates
// the type "lvalue reference to T", while an attempt to create the type
// "rvalue reference to cv TR" creates the type TR.
bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
// C++ [dcl.ref]p4: There shall be no references to references.
//
// According to C++ DR 106, references to references are only
// diagnosed when they are written directly (e.g., "int & &"),
// but not when they happen via a typedef:
//
// typedef int& intref;
// typedef intref& intref2;
//
// Parser::ParseDeclaratorInternal diagnoses the case where
// references are written directly; here, we handle the
// collapsing of references-to-references as described in C++0x.
// DR 106 and 540 introduce reference-collapsing into C++98/03.
// C++ [dcl.ref]p1:
// A declarator that specifies the type "reference to cv void"
// is ill-formed.
if (T->isVoidType()) {
Diag(Loc, diag::err_reference_to_void);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
return QualType();
// In ARC, it is forbidden to build references to unqualified pointers.
if (getLangOpts().ObjCAutoRefCount)
T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
// Handle restrict on references.
if (LValueRef)
return Context.getLValueReferenceType(T, SpelledAsLValue);
return Context.getRValueReferenceType(T);
}
/// Check whether the specified array size makes the array type a VLA. If so,
/// return true, if not, return the size of the array in SizeVal.
static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
// If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
// (like gnu99, but not c99) accept any evaluatable value as an extension.
class VLADiagnoser : public Sema::VerifyICEDiagnoser {
public:
VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
}
void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
}
} Diagnoser;
return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
S.LangOpts.GNUMode).isInvalid();
}
/// \brief Build an array type.
///
/// \param T The type of each element in the array.
///
/// \param ASM C99 array size modifier (e.g., '*', 'static').
///
/// \param ArraySize Expression describing the size of the array.
///
/// \param Brackets The range from the opening '[' to the closing ']'.
///
/// \param Entity The name of the entity that involves the array
/// type, if known.
///
/// \returns A suitable array type, if there are no errors. Otherwise,
/// returns a NULL type.
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
Expr *ArraySize, unsigned Quals,
SourceRange Brackets, DeclarationName Entity) {
SourceLocation Loc = Brackets.getBegin();
if (getLangOpts().CPlusPlus) {
// C++ [dcl.array]p1:
// T is called the array element type; this type shall not be a reference
// type, the (possibly cv-qualified) type void, a function type or an
// abstract class type.
//
// C++ [dcl.array]p3:
// When several "array of" specifications are adjacent, [...] only the
// first of the constant expressions that specify the bounds of the arrays
// may be omitted.
//
// Note: function types are handled in the common path with C.
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_array_of_references)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isVoidType() || T->isIncompleteArrayType()) {
Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
return QualType();
}
if (RequireNonAbstractType(Brackets.getBegin(), T,
diag::err_array_of_abstract_type))
return QualType();
// Mentioning a member pointer type for an array type causes us to lock in
// an inheritance model, even if it's inside an unused typedef.
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
if (!MPTy->getClass()->isDependentType())
RequireCompleteType(Loc, T, 0);
} else {
// C99 6.7.5.2p1: If the element type is an incomplete or function type,
// reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
if (RequireCompleteType(Loc, T,
diag::err_illegal_decl_array_incomplete_type))
return QualType();
}
if (T->isFunctionType()) {
Diag(Loc, diag::err_illegal_decl_array_of_functions)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (const RecordType *EltTy = T->getAs<RecordType>()) {
// If the element type is a struct or union that contains a variadic
// array, accept it as a GNU extension: C99 6.7.2.1p2.
if (EltTy->getDecl()->hasFlexibleArrayMember())
Diag(Loc, diag::ext_flexible_array_in_array) << T;
} else if (T->isObjCObjectType()) {
Diag(Loc, diag::err_objc_array_of_interfaces) << T;
return QualType();
}
// Do placeholder conversions on the array size expression.
if (ArraySize && ArraySize->hasPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(ArraySize);
if (Result.isInvalid()) return QualType();
ArraySize = Result.get();
}
// Do lvalue-to-rvalue conversions on the array size expression.
if (ArraySize && !ArraySize->isRValue()) {
ExprResult Result = DefaultLvalueConversion(ArraySize);
if (Result.isInvalid())
return QualType();
ArraySize = Result.get();
}
// C99 6.7.5.2p1: The size expression shall have integer type.
// C++11 allows contextual conversions to such types.
if (!getLangOpts().CPlusPlus11 &&
ArraySize && !ArraySize->isTypeDependent() &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
if (!ArraySize) {
if (ASM == ArrayType::Star)
T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
else
T = Context.getIncompleteArrayType(T, ASM, Quals);
} else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
} else if ((!T->isDependentType() && !T->isIncompleteType() &&
!T->isConstantSizeType()) ||
isArraySizeVLA(*this, ArraySize, ConstVal)) {
// Even in C++11, don't allow contextual conversions in the array bound
// of a VLA.
if (getLangOpts().CPlusPlus11 &&
!ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
<< ArraySize->getType() << ArraySize->getSourceRange();
return QualType();
}
// C99: an array with an element type that has a non-constant-size is a VLA.
// C99: an array with a non-ICE size is a VLA. We accept any expression
// that we can fold to a non-zero positive value as an extension.
T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
} else {
// C99 6.7.5.2p1: If the expression is a constant expression, it shall
// have a value greater than zero.
if (ConstVal.isSigned() && ConstVal.isNegative()) {
if (Entity)
Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
<< getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
else
Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange();
return QualType();
}
if (ConstVal == 0) {
// GCC accepts zero sized static arrays. We allow them when
// we're not in a SFINAE context.
Diag(ArraySize->getLocStart(),
isSFINAEContext()? diag::err_typecheck_zero_array_size
: diag::ext_typecheck_zero_array_size)
<< ArraySize->getSourceRange();
if (ASM == ArrayType::Static) {
Diag(ArraySize->getLocStart(),
diag::warn_typecheck_zero_static_array_size)
<< ArraySize->getSourceRange();
ASM = ArrayType::Normal;
}
} else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
!T->isIncompleteType() && !T->isUndeducedType()) {
// Is the array too large?
unsigned ActiveSizeBits
= ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
Diag(ArraySize->getLocStart(), diag::err_array_too_large)
<< ConstVal.toString(10)
<< ArraySize->getSourceRange();
return QualType();
}
}
T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
}
// OpenCL v1.2 s6.9.d: variable length arrays are not supported.
if (getLangOpts().OpenCL && T->isVariableArrayType()) {
Diag(Loc, diag::err_opencl_vla);
return QualType();
}
// If this is not C99, extwarn about VLA's and C99 array size modifiers.
if (!getLangOpts().C99) {
if (T->isVariableArrayType()) {
// Prohibit the use of non-POD types in VLAs.
QualType BaseT = Context.getBaseElementType(T);
if (!T->isDependentType() &&
!RequireCompleteType(Loc, BaseT, 0) &&
!BaseT.isPODType(Context) &&
!BaseT->isObjCLifetimeType()) {
Diag(Loc, diag::err_vla_non_pod)
<< BaseT;
return QualType();
}
// Prohibit the use of VLAs during template argument deduction.
else if (isSFINAEContext()) {
Diag(Loc, diag::err_vla_in_sfinae);
return QualType();
}
// Just extwarn about VLAs.
else
Diag(Loc, diag::ext_vla);
} else if (ASM != ArrayType::Normal || Quals != 0)
Diag(Loc,
getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
: diag::ext_c99_array_usage) << ASM;
}
if (T->isVariableArrayType()) {
// Warn about VLAs for -Wvla.
Diag(Loc, diag::warn_vla_used);
}
return T;
}
/// \brief Build an ext-vector type.
///
/// Run the required checks for the extended vector type.
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
SourceLocation AttrLoc) {
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
// in conjunction with complex types (pointers, arrays, functions, etc.).
if (!T->isDependentType() &&
!T->isIntegerType() && !T->isRealFloatingType()) {
Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
return QualType();
}
if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
llvm::APSInt vecSize(32);
if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
Diag(AttrLoc, diag::err_attribute_argument_type)
<< "ext_vector_type" << AANT_ArgumentIntegerConstant
<< ArraySize->getSourceRange();
return QualType();
}
// unlike gcc's vector_size attribute, the size is specified as the
// number of elements, not the number of bytes.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
if (vectorSize == 0) {
Diag(AttrLoc, diag::err_attribute_zero_size)
<< ArraySize->getSourceRange();
return QualType();
}
if (VectorType::isVectorSizeTooLarge(vectorSize)) {
Diag(AttrLoc, diag::err_attribute_size_too_large)
<< ArraySize->getSourceRange();
return QualType();
}
return Context.getExtVectorType(T, vectorSize);
}
return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
}
bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
if (T->isArrayType() || T->isFunctionType()) {
Diag(Loc, diag::err_func_returning_array_function)
<< T->isFunctionType() << T;
return true;
}
// Functions cannot return half FP.
if (T->isHalfType()) {
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
FixItHint::CreateInsertion(Loc, "*");
return true;
}
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (T->isObjCObjectType()) {
Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
return 0;
}
return false;
}
QualType Sema::BuildFunctionType(QualType T,
MutableArrayRef<QualType> ParamTypes,
SourceLocation Loc, DeclarationName Entity,
const FunctionProtoType::ExtProtoInfo &EPI) {
bool Invalid = false;
Invalid |= CheckFunctionReturnType(T, Loc);
for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
// FIXME: Loc is too inprecise here, should use proper locations for args.
QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
if (ParamType->isVoidType()) {
Diag(Loc, diag::err_param_with_void_type);
Invalid = true;
} else if (ParamType->isHalfType()) {
// Disallow half FP arguments.
Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
FixItHint::CreateInsertion(Loc, "*");
Invalid = true;
}
ParamTypes[Idx] = ParamType;
}
if (Invalid)
return QualType();
return Context.getFunctionType(T, ParamTypes, EPI);
}
/// \brief Build a member pointer type \c T Class::*.
///
/// \param T the type to which the member pointer refers.
/// \param Class the class type into which the member pointer points.
/// \param Loc the location where this type begins
/// \param Entity the name of the entity that will have this member pointer type
///
/// \returns a member pointer type, if successful, or a NULL type if there was
/// an error.
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
SourceLocation Loc,
DeclarationName Entity) {
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (CheckDistantExceptionSpec(T)) {
Diag(Loc, diag::err_distant_exception_spec);
// FIXME: If we're doing this as part of template instantiation,
// we should return immediately.
// Build the type anyway, but use the canonical type so that the
// exception specifiers are stripped off.
T = Context.getCanonicalType(T);
}
// C++ 8.3.3p3: A pointer to member shall not point to ... a member
// with reference type, or "cv void."
if (T->isReferenceType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
<< getPrintableNameForEntity(Entity) << T;
return QualType();
}
if (T->isVoidType()) {
Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
<< getPrintableNameForEntity(Entity);
return QualType();
}
if (!Class->isDependentType() && !Class->isRecordType()) {
Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
return QualType();
}
// Adjust the default free function calling convention to the default method
// calling convention.
if (T->isFunctionType())
adjustMemberFunctionCC(T, /*IsStatic=*/false);
return Context.getMemberPointerType(T, Class.getTypePtr());
}
/// \brief Build a block pointer type.
///
/// \param T The type to which we'll be building a block pointer.
///
/// \param Loc The source location, used for diagnostics.
///
/// \param Entity The name of the entity that involves the block pointer
/// type, if known.
///
/// \returns A suitable block pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildBlockPointerType(QualType T,
SourceLocation Loc,
DeclarationName Entity) {
if (!T->isFunctionType()) {
Diag(Loc, diag::err_nonfunction_block_type);
return QualType();
}
if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
return QualType();
return Context.getBlockPointerType(T);
}
QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
QualType QT = Ty.get();
if (QT.isNull()) {
if (TInfo) *TInfo = nullptr;
return QualType();
}
TypeSourceInfo *DI = nullptr;
if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
QT = LIT->getType();
DI = LIT->getTypeSourceInfo();
}
if (TInfo) *TInfo = DI;
return QT;
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex);
/// Given that this is the declaration of a parameter under ARC,
/// attempt to infer attributes and such for pointer-to-whatever
/// types.
static void inferARCWriteback(TypeProcessingState &state,
QualType &declSpecType) {
Sema &S = state.getSema();
Declarator &declarator = state.getDeclarator();
// TODO: should we care about decl qualifiers?
// Check whether the declarator has the expected form. We walk
// from the inside out in order to make the block logic work.
unsigned outermostPointerIndex = 0;
bool isBlockPointer = false;
unsigned numPointers = 0;
for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = i;
DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
// Count the number of pointers. Treat references
// interchangeably as pointers; if they're mis-ordered, normal
// type building will discover that.
outermostPointerIndex = chunkIndex;
numPointers++;
break;
case DeclaratorChunk::BlockPointer:
// If we have a pointer to block pointer, that's an acceptable
// indirect reference; anything else is not an application of
// the rules.
if (numPointers != 1) return;
numPointers++;
outermostPointerIndex = chunkIndex;
isBlockPointer = true;
// We don't care about pointer structure in return values here.
goto done;
case DeclaratorChunk::Array: // suppress if written (id[])?
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
return;
}
}
done:
// If we have *one* pointer, then we want to throw the qualifier on
// the declaration-specifiers, which means that it needs to be a
// retainable object type.
if (numPointers == 1) {
// If it's not a retainable object type, the rule doesn't apply.
if (!declSpecType->isObjCRetainableType()) return;
// If it already has lifetime, don't do anything.
if (declSpecType.getObjCLifetime()) return;
// Otherwise, modify the type in-place.
Qualifiers qs;
if (declSpecType->isObjCARCImplicitlyUnretainedType())
qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
else
qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
declSpecType = S.Context.getQualifiedType(declSpecType, qs);
// If we have *two* pointers, then we want to throw the qualifier on
// the outermost pointer.
} else if (numPointers == 2) {
// If we don't have a block pointer, we need to check whether the
// declaration-specifiers gave us something that will turn into a
// retainable object pointer after we slap the first pointer on it.
if (!isBlockPointer && !declSpecType->isObjCObjectType())
return;
// Look for an explicit lifetime attribute there.
DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
if (chunk.Kind != DeclaratorChunk::Pointer &&
chunk.Kind != DeclaratorChunk::BlockPointer)
return;
for (const AttributeList *attr = chunk.getAttrs(); attr;
attr = attr->getNext())
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
return;
transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
outermostPointerIndex);
// Any other number of pointers/references does not trigger the rule.
} else return;
// TODO: mark whether we did this inference?
}
void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
SourceLocation FallbackLoc,
SourceLocation ConstQualLoc,
SourceLocation VolatileQualLoc,
SourceLocation RestrictQualLoc,
SourceLocation AtomicQualLoc) {
if (!Quals)
return;
struct Qual {
unsigned Mask;
const char *Name;
SourceLocation Loc;
} const QualKinds[4] = {
{ DeclSpec::TQ_const, "const", ConstQualLoc },
{ DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
{ DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
{ DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
};
SmallString<32> QualStr;
unsigned NumQuals = 0;
SourceLocation Loc;
FixItHint FixIts[4];
// Build a string naming the redundant qualifiers.
for (unsigned I = 0; I != 4; ++I) {
if (Quals & QualKinds[I].Mask) {
if (!QualStr.empty()) QualStr += ' ';
QualStr += QualKinds[I].Name;
// If we have a location for the qualifier, offer a fixit.
SourceLocation QualLoc = QualKinds[I].Loc;
if (!QualLoc.isInvalid()) {
FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
if (Loc.isInvalid() ||
getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
Loc = QualLoc;
}
++NumQuals;
}
}
Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
<< QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
}
// Diagnose pointless type qualifiers on the return type of a function.
static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
Declarator &D,
unsigned FunctionChunkIndex) {
if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
// FIXME: TypeSourceInfo doesn't preserve location information for
// qualifiers.
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
RetTy.getLocalCVRQualifiers(),
D.getIdentifierLoc());
return;
}
for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
End = D.getNumTypeObjects();
OuterChunkIndex != End; ++OuterChunkIndex) {
DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
switch (OuterChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Pointer: {
DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
S.diagnoseIgnoredQualifiers(
diag::warn_qual_return_type,
PTI.TypeQuals,
SourceLocation(),
SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
return;
}
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Array:
case DeclaratorChunk::MemberPointer:
// FIXME: We can't currently provide an accurate source location and a
// fix-it hint for these.
unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
RetTy.getCVRQualifiers() | AtomicQual,
D.getIdentifierLoc());
return;
}
llvm_unreachable("unknown declarator chunk kind");
}
// If the qualifiers come from a conversion function type, don't diagnose
// them -- they're not necessarily redundant, since such a conversion
// operator can be explicitly called as "x.operator const int()".
if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
return;
// Just parens all the way out to the decl specifiers. Diagnose any qualifiers
// which are present there.
S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
D.getDeclSpec().getTypeQualifiers(),
D.getIdentifierLoc(),
D.getDeclSpec().getConstSpecLoc(),
D.getDeclSpec().getVolatileSpecLoc(),
D.getDeclSpec().getRestrictSpecLoc(),
D.getDeclSpec().getAtomicSpecLoc());
}
static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
TypeSourceInfo *&ReturnTypeInfo) {
Sema &SemaRef = state.getSema();
Declarator &D = state.getDeclarator();
QualType T;
ReturnTypeInfo = nullptr;
// The TagDecl owned by the DeclSpec.
TagDecl *OwnedTagDecl = nullptr;
bool ContainsPlaceholderType = false;
switch (D.getName().getKind()) {
case UnqualifiedId::IK_ImplicitSelfParam:
case UnqualifiedId::IK_OperatorFunctionId:
case UnqualifiedId::IK_Identifier:
case UnqualifiedId::IK_LiteralOperatorId:
case UnqualifiedId::IK_TemplateId:
T = ConvertDeclSpecToType(state);
ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
// Owned declaration is embedded in declarator.
OwnedTagDecl->setEmbeddedInDeclarator(true);
}
break;
case UnqualifiedId::IK_ConstructorName:
case UnqualifiedId::IK_ConstructorTemplateId:
case UnqualifiedId::IK_DestructorName:
// Constructors and destructors don't have return types. Use
// "void" instead.
T = SemaRef.Context.VoidTy;
if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
processTypeAttrs(state, T, TAL_DeclSpec, attrs);
break;
case UnqualifiedId::IK_ConversionFunctionId:
// The result type of a conversion function is the type that it
// converts to.
T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
&ReturnTypeInfo);
ContainsPlaceholderType = T->getContainedAutoType();
break;
}
if (D.getAttributes())
distributeTypeAttrsFromDeclarator(state, T);
// C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
// In C++11, a function declarator using 'auto' must have a trailing return
// type (this is checked later) and we can skip this. In other languages
// using auto, we need to check regardless.
// C++14 In generic lambdas allow 'auto' in their parameters.
if (ContainsPlaceholderType &&
(!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
int Error = -1;
switch (D.getContext()) {
case Declarator::KNRTypeListContext:
llvm_unreachable("K&R type lists aren't allowed in C++");
case Declarator::LambdaExprContext:
llvm_unreachable("Can't specify a type specifier in lambda grammar");
case Declarator::ObjCParameterContext:
case Declarator::ObjCResultContext:
case Declarator::PrototypeContext:
Error = 0;
break;
case Declarator::LambdaExprParameterContext:
if (!(SemaRef.getLangOpts().CPlusPlus1y
&& D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
Error = 14;
break;
case Declarator::MemberContext:
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
break;
switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
case TTK_Enum: llvm_unreachable("unhandled tag kind");
case TTK_Struct: Error = 1; /* Struct member */ break;
case TTK_Union: Error = 2; /* Union member */ break;
case TTK_Class: Error = 3; /* Class member */ break;
case TTK_Interface: Error = 4; /* Interface member */ break;
}
break;
case Declarator::CXXCatchContext:
case Declarator::ObjCCatchContext:
Error = 5; // Exception declaration
break;
case Declarator::TemplateParamContext:
Error = 6; // Template parameter
break;
case Declarator::BlockLiteralContext:
Error = 7; // Block literal
break;
case Declarator::TemplateTypeArgContext:
Error = 8; // Template type argument
break;
case Declarator::AliasDeclContext:
case Declarator::AliasTemplateContext:
Error = 10; // Type alias
break;
case Declarator::TrailingReturnContext:
if (!SemaRef.getLangOpts().CPlusPlus1y)
Error = 11; // Function return type
break;
case Declarator::ConversionIdContext:
if (!SemaRef.getLangOpts().CPlusPlus1y)
Error = 12; // conversion-type-id
break;
case Declarator::TypeNameContext:
Error = 13; // Generic
break;
case Declarator::FileContext:
case Declarator::BlockContext:
case Declarator::ForContext:
case Declarator::ConditionContext:
case Declarator::CXXNewContext:
break;
}
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
Error = 9;
// In Objective-C it is an error to use 'auto' on a function declarator.
if (D.isFunctionDeclarator())
Error = 11;
// C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
// contains a trailing return type. That is only legal at the outermost
// level. Check all declarator chunks (outermost first) anyway, to give
// better diagnostics.
if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = e - i - 1;
state.setCurrentChunkIndex(chunkIndex);
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
if (DeclType.Kind == DeclaratorChunk::Function) {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
if (FTI.hasTrailingReturnType()) {
Error = -1;
break;
}
}
}
}
SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
AutoRange = D.getName().getSourceRange();
if (Error != -1) {
const bool IsDeclTypeAuto =
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_decltype_auto;
SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
<< IsDeclTypeAuto << Error << AutoRange;
T = SemaRef.Context.IntTy;
D.setInvalidType(true);
} else
SemaRef.Diag(AutoRange.getBegin(),
diag::warn_cxx98_compat_auto_type_specifier)
<< AutoRange;
}
if (SemaRef.getLangOpts().CPlusPlus &&
OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
// Check the contexts where C++ forbids the declaration of a new class
// or enumeration in a type-specifier-seq.
switch (D.getContext()) {
case Declarator::TrailingReturnContext:
// Class and enumeration definitions are syntactically not allowed in
// trailing return types.
llvm_unreachable("parser should not have allowed this");
break;
case Declarator::FileContext:
case Declarator::MemberContext:
case Declarator::BlockContext:
case Declarator::ForContext:
case Declarator::BlockLiteralContext:
case Declarator::LambdaExprContext:
// C++11 [dcl.type]p3:
// A type-specifier-seq shall not define a class or enumeration unless
// it appears in the type-id of an alias-declaration (7.1.3) that is not
// the declaration of a template-declaration.
case Declarator::AliasDeclContext:
break;
case Declarator::AliasTemplateContext:
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_alias_template)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
D.setInvalidType(true);
break;
case Declarator::TypeNameContext:
case Declarator::ConversionIdContext:
case Declarator::TemplateParamContext:
case Declarator::CXXNewContext:
case Declarator::CXXCatchContext:
case Declarator::ObjCCatchContext:
case Declarator::TemplateTypeArgContext:
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_type_specifier)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
D.setInvalidType(true);
break;
case Declarator::PrototypeContext:
case Declarator::LambdaExprParameterContext:
case Declarator::ObjCParameterContext:
case Declarator::ObjCResultContext:
case Declarator::KNRTypeListContext:
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_param_type)
<< SemaRef.Context.getTypeDeclType(OwnedTagDecl);
D.setInvalidType(true);
break;
case Declarator::ConditionContext:
// C++ 6.4p2:
// The type-specifier-seq shall not contain typedef and shall not declare
// a new class or enumeration.
SemaRef.Diag(OwnedTagDecl->getLocation(),
diag::err_type_defined_in_condition);
D.setInvalidType(true);
break;
}
}
return T;
}
/// Produce an appropriate diagnostic for an ambiguity between a function
/// declarator and a C++ direct-initializer.
static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
DeclaratorChunk &DeclType, QualType RT) {
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
// If the return type is void there is no ambiguity.
if (RT->isVoidType())
return;
// An initializer for a non-class type can have at most one argument.
if (!RT->isRecordType() && FTI.NumParams > 1)
return;
// An initializer for a reference must have exactly one argument.
if (RT->isReferenceType() && FTI.NumParams != 1)
return;
// Only warn if this declarator is declaring a function at block scope, and
// doesn't have a storage class (such as 'extern') specified.
if (!D.isFunctionDeclarator() ||
D.getFunctionDefinitionKind() != FDK_Declaration ||
!S.CurContext->isFunctionOrMethod() ||
D.getDeclSpec().getStorageClassSpec()
!= DeclSpec::SCS_unspecified)
return;
// Inside a condition, a direct initializer is not permitted. We allow one to
// be parsed in order to give better diagnostics in condition parsing.
if (D.getContext() == Declarator::ConditionContext)
return;
SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
S.Diag(DeclType.Loc,
FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
: diag::warn_empty_parens_are_function_decl)
<< ParenRange;
// If the declaration looks like:
// T var1,
// f();
// and name lookup finds a function named 'f', then the ',' was
// probably intended to be a ';'.
if (!D.isFirstDeclarator() && D.getIdentifier()) {
FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
if (Comma.getFileID() != Name.getFileID() ||
Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
LookupResult Result(S, D.getIdentifier(), SourceLocation(),
Sema::LookupOrdinaryName);
if (S.LookupName(Result, S.getCurScope()))
S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
<< FixItHint::CreateReplacement(D.getCommaLoc(), ";")
<< D.getIdentifier();
}
}
if (FTI.NumParams > 0) {
// For a declaration with parameters, eg. "T var(T());", suggest adding
// parens around the first parameter to turn the declaration into a
// variable declaration.
SourceRange Range = FTI.Params[0].Param->getSourceRange();
SourceLocation B = Range.getBegin();
SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
// FIXME: Maybe we should suggest adding braces instead of parens
// in C++11 for classes that don't have an initializer_list constructor.
S.Diag(B, diag::note_additional_parens_for_variable_declaration)
<< FixItHint::CreateInsertion(B, "(")
<< FixItHint::CreateInsertion(E, ")");
} else {
// For a declaration without parameters, eg. "T var();", suggest replacing
// the parens with an initializer to turn the declaration into a variable
// declaration.
const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
// Empty parens mean value-initialization, and no parens mean
// default initialization. These are equivalent if the default
// constructor is user-provided or if zero-initialization is a
// no-op.
if (RD && RD->hasDefinition() &&
(RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
<< FixItHint::CreateRemoval(ParenRange);
else {
std::string Init =
S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
if (Init.empty() && S.LangOpts.CPlusPlus11)
Init = "{}";
if (!Init.empty())
S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
<< FixItHint::CreateReplacement(ParenRange, Init);
}
}
}
/// Helper for figuring out the default CC for a function declarator type. If
/// this is the outermost chunk, then we can determine the CC from the
/// declarator context. If not, then this could be either a member function
/// type or normal function type.
static CallingConv
getCCForDeclaratorChunk(Sema &S, Declarator &D,
const DeclaratorChunk::FunctionTypeInfo &FTI,
unsigned ChunkIndex) {
assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
bool IsCXXInstanceMethod = false;
if (S.getLangOpts().CPlusPlus) {
// Look inwards through parentheses to see if this chunk will form a
// member pointer type or if we're the declarator. Any type attributes
// between here and there will override the CC we choose here.
unsigned I = ChunkIndex;
bool FoundNonParen = false;
while (I && !FoundNonParen) {
--I;
if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
FoundNonParen = true;
}
if (FoundNonParen) {
// If we're not the declarator, we're a regular function type unless we're
// in a member pointer.
IsCXXInstanceMethod =
D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
} else {
// We're the innermost decl chunk, so must be a function declarator.
assert(D.isFunctionDeclarator());
// If we're inside a record, we're declaring a method, but it could be
// explicitly or implicitly static.
IsCXXInstanceMethod =
D.isFirstDeclarationOfMember() &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
!D.isStaticMember();
}
}
return S.Context.getDefaultCallingConvention(FTI.isVariadic,
IsCXXInstanceMethod);
}
static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
QualType declSpecType,
TypeSourceInfo *TInfo) {
QualType T = declSpecType;
Declarator &D = state.getDeclarator();
Sema &S = state.getSema();
ASTContext &Context = S.Context;
const LangOptions &LangOpts = S.getLangOpts();
// The name we're declaring, if any.
DeclarationName Name;
if (D.getIdentifier())
Name = D.getIdentifier();
// Does this declaration declare a typedef-name?
bool IsTypedefName =
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
D.getContext() == Declarator::AliasDeclContext ||
D.getContext() == Declarator::AliasTemplateContext;
// Does T refer to a function type with a cv-qualifier or a ref-qualifier?
bool IsQualifiedFunction = T->isFunctionProtoType() &&
(T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
// If T is 'decltype(auto)', the only declarators we can have are parens
// and at most one function declarator if this is a function declaration.
if (const AutoType *AT = T->getAs<AutoType>()) {
if (AT->isDecltypeAuto()) {
for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
unsigned Index = E - I - 1;
DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
unsigned DiagId = diag::err_decltype_auto_compound_type;
unsigned DiagKind = 0;
switch (DeclChunk.Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Function: {
unsigned FnIndex;
if (D.isFunctionDeclarationContext() &&
D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
continue;
DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
break;
}
case DeclaratorChunk::Pointer:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
DiagKind = 0;
break;
case DeclaratorChunk::Reference:
DiagKind = 1;
break;
case DeclaratorChunk::Array:
DiagKind = 2;
break;
}
S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
D.setInvalidType(true);
break;
}
}
}
// Walk the DeclTypeInfo, building the recursive type as we go.
// DeclTypeInfos are ordered from the identifier out, which is
// opposite of what we want :).
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
unsigned chunkIndex = e - i - 1;
state.setCurrentChunkIndex(chunkIndex);
DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
switch (DeclType.Kind) {
case DeclaratorChunk::Paren:
T = S.BuildParenType(T);
break;
case DeclaratorChunk::BlockPointer:
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
S.Diag(DeclType.Loc, diag::err_blocks_disable);
T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
if (DeclType.Cls.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
break;
case DeclaratorChunk::Pointer:
// Verify that we're not building a pointer to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
T = Context.getObjCObjectPointerType(T);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
}
T = S.BuildPointerType(T, DeclType.Loc, Name);
if (DeclType.Ptr.TypeQuals)
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
break;
case DeclaratorChunk::Reference: {
// Verify that we're not building a reference to pointer to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
if (DeclType.Ref.HasRestrict)
T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
break;
}
case DeclaratorChunk::Array: {
// Verify that we're not building an array of pointers to function with
// exception specification.
if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
D.setInvalidType(true);
// Build the type anyway.
}
DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
ArrayType::ArraySizeModifier ASM;
if (ATI.isStar)
ASM = ArrayType::Star;
else if (ATI.hasStatic)
ASM = ArrayType::Static;
else
ASM = ArrayType::Normal;
if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
// FIXME: This check isn't quite right: it allows star in prototypes
// for function definitions, and disallows some edge cases detailed
// in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
ASM = ArrayType::Normal;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: The optional type qualifiers and the keyword static
// shall appear only in a declaration of a function parameter with an
// array type, ...
if (ASM == ArrayType::Static || ATI.TypeQuals) {
if (!(D.isPrototypeContext() ||
D.getContext() == Declarator::KNRTypeListContext)) {
S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
// Remove the 'static' and the type qualifiers.
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
}
// C99 6.7.5.2p1: ... and then only in the outermost array type
// derivation.
unsigned x = chunkIndex;
while (x != 0) {
// Walk outwards along the declarator chunks.
x--;
const DeclaratorChunk &DC = D.getTypeObject(x);
switch (DC.Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Array:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
(ASM == ArrayType::Static ? "'static'" : "type qualifier");
if (ASM == ArrayType::Static)
ASM = ArrayType::Normal;
ATI.TypeQuals = 0;
D.setInvalidType(true);
break;
case DeclaratorChunk::Function:
case DeclaratorChunk::BlockPointer:
// These are invalid anyway, so just ignore.
break;
}
}
}
const AutoType *AT = T->getContainedAutoType();
// Allow arrays of auto if we are a generic lambda parameter.
// i.e. [](auto (&array)[5]) { return array[0]; }; OK
if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
// We've already diagnosed this for decltype(auto).
if (!AT->isDecltypeAuto())
S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
<< getPrintableNameForEntity(Name) << T;
T = QualType();
break;
}
T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
break;
}
case DeclaratorChunk::Function: {
// If the function declarator has a prototype (i.e. it is not () and
// does not have a K&R-style identifier list), then the arguments are part
// of the type, otherwise the argument list is ().
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
// Check for auto functions and trailing return type and adjust the
// return type accordingly.
if (!D.isInvalidType()) {
// trailing-return-type is only required if we're declaring a function,
// and not, for instance, a pointer to a function.
if (D.getDeclSpec().containsPlaceholderType() &&
!FTI.hasTrailingReturnType() && chunkIndex == 0 &&
!S.getLangOpts().CPlusPlus1y) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
? diag::err_auto_missing_trailing_return
: diag::err_deduced_return_type);
T = Context.IntTy;
D.setInvalidType(true);
} else if (FTI.hasTrailingReturnType()) {
// T must be exactly 'auto' at this point. See CWG issue 681.
if (isa<ParenType>(T)) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_trailing_return_in_parens)
<< T << D.getDeclSpec().getSourceRange();
D.setInvalidType(true);
} else if (D.getContext() != Declarator::LambdaExprContext &&
(T.hasQualifiers() || !isa<AutoType>(T) ||
cast<AutoType>(T)->isDecltypeAuto())) {
S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
diag::err_trailing_return_without_auto)
<< T << D.getDeclSpec().getSourceRange();
D.setInvalidType(true);
}
T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
if (T.isNull()) {
// An error occurred parsing the trailing return type.
T = Context.IntTy;
D.setInvalidType(true);
}
}
}
// C99 6.7.5.3p1: The return type may not be a function or array type.
// For conversion functions, we'll diagnose this particular error later.
if ((T->isArrayType() || T->isFunctionType()) &&
(D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
unsigned diagID = diag::err_func_returning_array_function;
// Last processing chunk in block context means this function chunk
// represents the block.
if (chunkIndex == 0 &&
D.getContext() == Declarator::BlockLiteralContext)
diagID = diag::err_block_returning_array_function;
S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
T = Context.IntTy;
D.setInvalidType(true);
}
// Do not allow returning half FP value.
// FIXME: This really should be in BuildFunctionType.
if (T->isHalfType()) {
if (S.getLangOpts().OpenCL) {
if (!S.getOpenCLOptions().cl_khr_fp16) {
S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
D.setInvalidType(true);
}
} else {
S.Diag(D.getIdentifierLoc(),
diag::err_parameters_retval_cannot_have_fp16_type) << 1;
D.setInvalidType(true);
}
}
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (T->isObjCObjectType()) {
SourceLocation DiagLoc, FixitLoc;
if (TInfo) {
DiagLoc = TInfo->getTypeLoc().getLocStart();
FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
} else {
DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
}
S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
<< 0 << T
<< FixItHint::CreateInsertion(FixitLoc, "*");
T = Context.getObjCObjectPointerType(T);
if (TInfo) {
TypeLocBuilder TLB;
TLB.pushFullCopy(TInfo->getTypeLoc());
ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
TLoc.setStarLoc(FixitLoc);
TInfo = TLB.getTypeSourceInfo(Context, T);
}
D.setInvalidType(true);
}
// cv-qualifiers on return types are pointless except when the type is a
// class type in C++.
if ((T.getCVRQualifiers() || T->isAtomicType()) &&
!(S.getLangOpts().CPlusPlus &&
(T->isDependentType() || T->isRecordType())))
diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
// Objective-C ARC ownership qualifiers are ignored on the function
// return type (by type canonicalization). Complain if this attribute
// was written here.
if (T.getQualifiers().hasObjCLifetime()) {
SourceLocation AttrLoc;
if (chunkIndex + 1 < D.getNumTypeObjects()) {
DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
Attr; Attr = Attr->getNext()) {
if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
AttrLoc = Attr->getLoc();
break;
}
}
}
if (AttrLoc.isInvalid()) {
for (const AttributeList *Attr
= D.getDeclSpec().getAttributes().getList();
Attr; Attr = Attr->getNext()) {
if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
AttrLoc = Attr->getLoc();
break;
}
}
}
if (AttrLoc.isValid()) {
// The ownership attributes are almost always written via
// the predefined
// __strong/__weak/__autoreleasing/__unsafe_unretained.
if (AttrLoc.isMacroID())
AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
<< T.getQualifiers().getObjCLifetime();
}
}
if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
// C++ [dcl.fct]p6:
// Types shall not be defined in return or parameter types.
TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
<< Context.getTypeDeclType(Tag);
}
// Exception specs are not allowed in typedefs. Complain, but add it
// anyway.
if (IsTypedefName && FTI.getExceptionSpecType())
S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
<< (D.getContext() == Declarator::AliasDeclContext ||
D.getContext() == Declarator::AliasTemplateContext);
// If we see "T var();" or "T var(T());" at block scope, it is probably
// an attempt to initialize a variable, not a function declaration.
if (FTI.isAmbiguous)
warnAboutAmbiguousFunction(S, D, DeclType, T);
FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
// Simple void foo(), where the incoming T is the result type.
T = Context.getFunctionNoProtoType(T, EI);
} else {
// We allow a zero-parameter variadic function in C if the
// function is marked with the "overloadable" attribute. Scan
// for this attribute now.
if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
bool Overloadable = false;
for (const AttributeList *Attrs = D.getAttributes();
Attrs; Attrs = Attrs->getNext()) {
if (Attrs->getKind() == AttributeList::AT_Overloadable) {
Overloadable = true;
break;
}
}
if (!Overloadable)
S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
}
if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
// definition.
S.Diag(FTI.Params[0].IdentLoc,
diag::err_ident_list_in_fn_declaration);
D.setInvalidType(true);
// Recover by creating a K&R-style function type.
T = Context.getFunctionNoProtoType(T, EI);
break;
}
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = EI;
EPI.Variadic = FTI.isVariadic;
EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
EPI.TypeQuals = FTI.TypeQuals;
EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
: FTI.RefQualifierIsLValueRef? RQ_LValue
: RQ_RValue;
// Otherwise, we have a function with a parameter list that is
// potentially variadic.
SmallVector<QualType, 16> ParamTys;
ParamTys.reserve(FTI.NumParams);
SmallVector<bool, 16> ConsumedParameters;
ConsumedParameters.reserve(FTI.NumParams);
bool HasAnyConsumedParameters = false;
for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
QualType ParamTy = Param->getType();
assert(!ParamTy.isNull() && "Couldn't parse type?");
// Look for 'void'. void is allowed only as a single parameter to a
// function with no other parameters (C99 6.7.5.3p10). We record
// int(void) as a FunctionProtoType with an empty parameter list.
if (ParamTy->isVoidType()) {
// If this is something like 'float(int, void)', reject it. 'void'
// is an incomplete type (C99 6.2.5p19) and function decls cannot
// have parameters of incomplete type.
if (FTI.NumParams != 1 || FTI.isVariadic) {
S.Diag(DeclType.Loc, diag::err_void_only_param);
ParamTy = Context.IntTy;
Param->setType(ParamTy);
} else if (FTI.Params[i].Ident) {
// Reject, but continue to parse 'int(void abc)'.
S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
ParamTy = Context.IntTy;
Param->setType(ParamTy);
} else {
// Reject, but continue to parse 'float(const void)'.
if (ParamTy.hasQualifiers())
S.Diag(DeclType.Loc, diag::err_void_param_qualified);
// Do not add 'void' to the list.
break;
}
} else if (ParamTy->isHalfType()) {
// Disallow half FP parameters.
// FIXME: This really should be in BuildFunctionType.
if (S.getLangOpts().OpenCL) {
if (!S.getOpenCLOptions().cl_khr_fp16) {
S.Diag(Param->getLocation(),
diag::err_opencl_half_param) << ParamTy;
D.setInvalidType();
Param->setInvalidDecl();
}
} else {
S.Diag(Param->getLocation(),
diag::err_parameters_retval_cannot_have_fp16_type) << 0;
D.setInvalidType();
}
} else if (!FTI.hasPrototype) {
if (ParamTy->isPromotableIntegerType()) {
ParamTy = Context.getPromotedIntegerType(ParamTy);
Param->setKNRPromoted(true);
} else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
if (BTy->getKind() == BuiltinType::Float) {
ParamTy = Context.DoubleTy;
Param->setKNRPromoted(true);
}
}
}
if (LangOpts.ObjCAutoRefCount) {
bool Consumed = Param->hasAttr<NSConsumedAttr>();
ConsumedParameters.push_back(Consumed);
HasAnyConsumedParameters |= Consumed;
}
ParamTys.push_back(ParamTy);
}
if (HasAnyConsumedParameters)
EPI.ConsumedParameters = ConsumedParameters.data();
SmallVector<QualType, 4> Exceptions;
SmallVector<ParsedType, 2> DynamicExceptions;
SmallVector<SourceRange, 2> DynamicExceptionRanges;
Expr *NoexceptExpr = nullptr;
if (FTI.getExceptionSpecType() == EST_Dynamic) {
// FIXME: It's rather inefficient to have to split into two vectors
// here.
unsigned N = FTI.NumExceptions;
DynamicExceptions.reserve(N);
DynamicExceptionRanges.reserve(N);
for (unsigned I = 0; I != N; ++I) {
DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
}
} else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
NoexceptExpr = FTI.NoexceptExpr;
}
S.checkExceptionSpecification(FTI.getExceptionSpecType(),
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr,
Exceptions,
EPI);
T = Context.getFunctionType(T, ParamTys, EPI);
}
break;
}
case DeclaratorChunk::MemberPointer:
// The scope spec must refer to a class, or be dependent.
CXXScopeSpec &SS = DeclType.Mem.Scope();
QualType ClsType;
if (SS.isInvalid()) {
// Avoid emitting extra errors if we already errored on the scope.
D.setInvalidType(true);
} else if (S.isDependentScopeSpecifier(SS) ||
dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
NestedNameSpecifier *NNS = SS.getScopeRep();
NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
NNS->getAsIdentifier());
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
llvm_unreachable("Nested-name-specifier must name a type");
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
ClsType = QualType(NNS->getAsType(), 0);
// Note: if the NNS has a prefix and ClsType is a nondependent
// TemplateSpecializationType, then the NNS prefix is NOT included
// in ClsType; hence we wrap ClsType into an ElaboratedType.
// NOTE: in particular, no wrap occurs if ClsType already is an
// Elaborated, DependentName, or DependentTemplateSpecialization.
if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
break;
}
} else {
S.Diag(DeclType.Mem.Scope().getBeginLoc(),
diag::err_illegal_decl_mempointer_in_nonclass)
<< (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
<< DeclType.Mem.Scope().getRange();
D.setInvalidType(true);
}
if (!ClsType.isNull())
T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
if (T.isNull()) {
T = Context.IntTy;
D.setInvalidType(true);
} else if (DeclType.Mem.TypeQuals) {
T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
}
break;
}
if (T.isNull()) {
D.setInvalidType(true);
T = Context.IntTy;
}
// See if there are any attributes on this declarator chunk.
if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
processTypeAttrs(state, T, TAL_DeclChunk, attrs);
}
if (LangOpts.CPlusPlus && T->isFunctionType()) {
const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
// C++ 8.3.5p4:
// A cv-qualifier-seq shall only be part of the function type
// for a nonstatic member function, the function type to which a pointer
// to member refers, or the top-level function type of a function typedef
// declaration.
//
// Core issue 547 also allows cv-qualifiers on function types that are
// top-level template type arguments.
bool FreeFunction;
if (!D.getCXXScopeSpec().isSet()) {
FreeFunction = ((D.getContext() != Declarator::MemberContext &&
D.getContext() != Declarator::LambdaExprContext) ||
D.getDeclSpec().isFriendSpecified());
} else {
DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
FreeFunction = (DC && !DC->isRecord());
}
// C++11 [dcl.fct]p6 (w/DR1417):
// An attempt to specify a function type with a cv-qualifier-seq or a
// ref-qualifier (including by typedef-name) is ill-formed unless it is:
// - the function type for a non-static member function,
// - the function type to which a pointer to member refers,
// - the top-level function type of a function typedef declaration or
// alias-declaration,
// - the type-id in the default argument of a type-parameter, or
// - the type-id of a template-argument for a type-parameter
//
// FIXME: Checking this here is insufficient. We accept-invalid on:
//
// template<typename T> struct S { void f(T); };
// S<int() const> s;
//
// ... for instance.
if (IsQualifiedFunction &&
!(!FreeFunction &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
!IsTypedefName &&
D.getContext() != Declarator::TemplateTypeArgContext) {
SourceLocation Loc = D.getLocStart();
SourceRange RemovalRange;
unsigned I;
if (D.isFunctionDeclarator(I)) {
SmallVector<SourceLocation, 4> RemovalLocs;
const DeclaratorChunk &Chunk = D.getTypeObject(I);
assert(Chunk.Kind == DeclaratorChunk::Function);
if (Chunk.Fun.hasRefQualifier())
RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
if (Chunk.Fun.TypeQuals & Qualifiers::Const)
RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
// FIXME: We do not track the location of the __restrict qualifier.
//if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
// RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
if (!RemovalLocs.empty()) {
std::sort(RemovalLocs.begin(), RemovalLocs.end(),
BeforeThanCompare<SourceLocation>(S.getSourceManager()));
RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
Loc = RemovalLocs.front();
}
}
S.Diag(Loc, diag::err_invalid_qualified_function_type)
<< FreeFunction << D.isFunctionDeclarator() << T
<< getFunctionQualifiersAsString(FnTy)
<< FixItHint::CreateRemoval(RemovalRange);
// Strip the cv-qualifiers and ref-qualifiers from the type.
FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
EPI.TypeQuals = 0;
EPI.RefQualifier = RQ_None;
T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
EPI);
// Rebuild any parens around the identifier in the function type.
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
break;
T = S.BuildParenType(T);
}
}
}
// Apply any undistributed attributes from the declarator.
if (!T.isNull())
if (AttributeList *attrs = D.getAttributes())
processTypeAttrs(state, T, TAL_DeclName, attrs);
// Diagnose any ignored type attributes.
if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
// C++0x [dcl.constexpr]p9:
// A constexpr specifier used in an object declaration declares the object
// as const.
if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
T.addConst();
}
// If there was an ellipsis in the declarator, the declaration declares a
// parameter pack whose type may be a pack expansion type.
if (D.hasEllipsis() && !T.isNull()) {
// C++0x [dcl.fct]p13:
// A declarator-id or abstract-declarator containing an ellipsis shall
// only be used in a parameter-declaration. Such a parameter-declaration
// is a parameter pack (14.5.3). [...]
switch (D.getContext()) {
case Declarator::PrototypeContext:
case Declarator::LambdaExprParameterContext:
// C++0x [dcl.fct]p13:
// [...] When it is part of a parameter-declaration-clause, the
// parameter pack is a function parameter pack (14.5.3). The type T
// of the declarator-id of the function parameter pack shall contain
// a template parameter pack; each template parameter pack in T is
// expanded by the function parameter pack.
//
// We represent function parameter packs as function parameters whose
// type is a pack expansion.
if (!T->containsUnexpandedParameterPack()) {
S.Diag(D.getEllipsisLoc(),
diag::err_function_parameter_pack_without_parameter_packs)
<< T << D.getSourceRange();
D.setEllipsisLoc(SourceLocation());
} else {
T = Context.getPackExpansionType(T, None);
}
break;
case Declarator::TemplateParamContext:
// C++0x [temp.param]p15:
// If a template-parameter is a [...] is a parameter-declaration that
// declares a parameter pack (8.3.5), then the template-parameter is a
// template parameter pack (14.5.3).
//
// Note: core issue 778 clarifies that, if there are any unexpanded
// parameter packs in the type of the non-type template parameter, then
// it expands those parameter packs.
if (T->containsUnexpandedParameterPack())
T = Context.getPackExpansionType(T, None);
else
S.Diag(D.getEllipsisLoc(),
LangOpts.CPlusPlus11
? diag::warn_cxx98_compat_variadic_templates
: diag::ext_variadic_templates);
break;
case Declarator::FileContext:
case Declarator::KNRTypeListContext:
case Declarator::ObjCParameterContext: // FIXME: special diagnostic here?
case Declarator::ObjCResultContext: // FIXME: special diagnostic here?
case Declarator::TypeNameContext:
case Declarator::CXXNewContext:
case Declarator::AliasDeclContext:
case Declarator::AliasTemplateContext:
case Declarator::MemberContext:
case Declarator::BlockContext:
case Declarator::ForContext:
case Declarator::ConditionContext:
case Declarator::CXXCatchContext:
case Declarator::ObjCCatchContext:
case Declarator::BlockLiteralContext:
case Declarator::LambdaExprContext:
case Declarator::ConversionIdContext:
case Declarator::TrailingReturnContext:
case Declarator::TemplateTypeArgContext:
// FIXME: We may want to allow parameter packs in block-literal contexts
// in the future.
S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
D.setEllipsisLoc(SourceLocation());
break;
}
}
if (T.isNull())
return Context.getNullTypeSourceInfo();
else if (D.isInvalidType())
return Context.getTrivialTypeSourceInfo(T);
return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
}
/// GetTypeForDeclarator - Convert the type for the specified
/// declarator to Type instances.
///
/// The result of this call will never be null, but the associated
/// type may be a null type if there's an unrecoverable error.
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
// Determine the type of the declarator. Not all forms of declarator
// have a type.
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = nullptr;
QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (T.isNull())
return Context.getNullTypeSourceInfo();
if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
inferARCWriteback(state, T);
return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
}
static void transferARCOwnershipToDeclSpec(Sema &S,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
if (declSpecTy->isObjCRetainableType() &&
declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
Qualifiers qs;
qs.addObjCLifetime(ownership);
declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
}
}
static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
Qualifiers::ObjCLifetime ownership,
unsigned chunkIndex) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
// Look for an explicit lifetime attribute.
DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
for (const AttributeList *attr = chunk.getAttrs(); attr;
attr = attr->getNext())
if (attr->getKind() == AttributeList::AT_ObjCOwnership)
return;
const char *attrStr = nullptr;
switch (ownership) {
case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
case Qualifiers::OCL_Strong: attrStr = "strong"; break;
case Qualifiers::OCL_Weak: attrStr = "weak"; break;
case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
}
IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
Arg->Ident = &S.Context.Idents.get(attrStr);
Arg->Loc = SourceLocation();
ArgsUnion Args(Arg);
// If there wasn't one, add one (with an invalid source location
// so that we don't make an AttributedType for it).
AttributeList *attr = D.getAttributePool()
.create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
/*scope*/ nullptr, SourceLocation(),
/*args*/ &Args, 1, AttributeList::AS_GNU);
spliceAttrIntoList(*attr, chunk.getAttrListRef());
// TODO: mark whether we did this inference?
}
/// \brief Used for transferring ownership in casts resulting in l-values.
static void transferARCOwnership(TypeProcessingState &state,
QualType &declSpecTy,
Qualifiers::ObjCLifetime ownership) {
Sema &S = state.getSema();
Declarator &D = state.getDeclarator();
int inner = -1;
bool hasIndirection = false;
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
switch (chunk.Kind) {
case DeclaratorChunk::Paren:
// Ignore parens.
break;
case DeclaratorChunk::Array:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Pointer:
if (inner != -1)
hasIndirection = true;
inner = i;
break;
case DeclaratorChunk::BlockPointer:
if (inner != -1)
transferARCOwnershipToDeclaratorChunk(state, ownership, i);
return;
case DeclaratorChunk::Function:
case DeclaratorChunk::MemberPointer:
return;
}
}
if (inner == -1)
return;
DeclaratorChunk &chunk = D.getTypeObject(inner);
if (chunk.Kind == DeclaratorChunk::Pointer) {
if (declSpecTy->isObjCRetainableType())
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
if (declSpecTy->isObjCObjectType() && hasIndirection)
return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
} else {
assert(chunk.Kind == DeclaratorChunk::Array ||
chunk.Kind == DeclaratorChunk::Reference);
return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
}
}
TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
TypeProcessingState state(*this, D);
TypeSourceInfo *ReturnTypeInfo = nullptr;
QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
if (declSpecTy.isNull())
return Context.getNullTypeSourceInfo();
if (getLangOpts().ObjCAutoRefCount) {
Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
if (ownership != Qualifiers::OCL_None)
transferARCOwnership(state, declSpecTy, ownership);
}
return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
}
/// Map an AttributedType::Kind to an AttributeList::Kind.
static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
switch (kind) {
case AttributedType::attr_address_space:
return AttributeList::AT_AddressSpace;
case AttributedType::attr_regparm:
return AttributeList::AT_Regparm;
case AttributedType::attr_vector_size:
return AttributeList::AT_VectorSize;
case AttributedType::attr_neon_vector_type:
return AttributeList::AT_NeonVectorType;
case AttributedType::attr_neon_polyvector_type:
return AttributeList::AT_NeonPolyVectorType;
case AttributedType::attr_objc_gc:
return AttributeList::AT_ObjCGC;
case AttributedType::attr_objc_ownership:
return AttributeList::AT_ObjCOwnership;
case AttributedType::attr_noreturn:
return AttributeList::AT_NoReturn;
case AttributedType::attr_cdecl:
return AttributeList::AT_CDecl;
case AttributedType::attr_fastcall:
return AttributeList::AT_FastCall;
case AttributedType::attr_stdcall:
return AttributeList::AT_StdCall;
case AttributedType::attr_thiscall:
return AttributeList::AT_ThisCall;
case AttributedType::attr_pascal:
return AttributeList::AT_Pascal;
case AttributedType::attr_pcs:
case AttributedType::attr_pcs_vfp:
return AttributeList::AT_Pcs;
case AttributedType::attr_pnaclcall:
return AttributeList::AT_PnaclCall;
case AttributedType::attr_inteloclbicc:
return AttributeList::AT_IntelOclBicc;
case AttributedType::attr_ms_abi:
return AttributeList::AT_MSABI;
case AttributedType::attr_sysv_abi:
return AttributeList::AT_SysVABI;
case AttributedType::attr_ptr32:
return AttributeList::AT_Ptr32;
case AttributedType::attr_ptr64:
return AttributeList::AT_Ptr64;
case AttributedType::attr_sptr:
return AttributeList::AT_SPtr;
case AttributedType::attr_uptr:
return AttributeList::AT_UPtr;
}
llvm_unreachable("unexpected attribute kind!");
}
static void fillAttributedTypeLoc(AttributedTypeLoc TL,
const AttributeList *attrs) {
AttributedType::Kind kind = TL.getAttrKind();
assert(attrs && "no type attributes in the expected location!");
AttributeList::Kind parsedKind = getAttrListKind(kind);
while (attrs->getKind() != parsedKind) {
attrs = attrs->getNext();
assert(attrs && "no matching attribute in expected location!");
}
TL.setAttrNameLoc(attrs->getLoc());
if (TL.hasAttrExprOperand()) {
assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
TL.setAttrExprOperand(attrs->getArgAsExpr(0));
} else if (TL.hasAttrEnumOperand()) {
assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
"unexpected attribute operand kind");
if (attrs->isArgIdent(0))
TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
else
TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
}
// FIXME: preserve this information to here.
if (TL.hasAttrOperand())
TL.setAttrOperandParensRange(SourceRange());
}
namespace {
class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
ASTContext &Context;
const DeclSpec &DS;
public:
TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
: Context(Context), DS(DS) {}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
fillAttributedTypeLoc(TL, DS.getAttributes().getList());
Visit(TL.getModifiedLoc());
}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
Visit(TL.getUnqualifiedLoc());
}
void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
}
void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeLoc());
// FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
// addition field. What we have is good enough for dispay of location
// of 'fixit' on interface name.
TL.setNameEndLoc(DS.getLocEnd());
}
void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
// Handle the base type, which might not have been written explicitly.
if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
TL.setHasBaseTypeAsWritten(false);
TL.getBaseLoc().initialize(Context, SourceLocation());
} else {
TL.setHasBaseTypeAsWritten(true);
Visit(TL.getBaseLoc());
}
// Protocol qualifiers.
if (DS.getProtocolQualifiers()) {
assert(TL.getNumProtocols() > 0);
assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
TL.setLAngleLoc(DS.getProtocolLAngleLoc());
TL.setRAngleLoc(DS.getSourceRange().getEnd());
for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
} else {
assert(TL.getNumProtocols() == 0);
TL.setLAngleLoc(SourceLocation());
TL.setRAngleLoc(SourceLocation());
}
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
TL.setStarLoc(SourceLocation());
Visit(TL.getPointeeLoc());
}
void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
// If we got no declarator info from previous Sema routines,
// just fill with the typespec loc.
if (!TInfo) {
TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
return;
}
TypeLoc OldTL = TInfo->getTypeLoc();
if (TInfo->getType()->getAs<ElaboratedType>()) {
ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
.castAs<TemplateSpecializationTypeLoc>();
TL.copy(NamedTL);
} else {
TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
}
}
void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
}
void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
// FIXME: This holds only because we only have one unary transform.
assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
assert(DS.getRepAsType());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
TL.setUnderlyingTInfo(TInfo);
}
void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
// By default, use the source location of the type specifier.
TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
if (TL.needsExtraLocalData()) {
// Set info for the written builtin specifiers.
TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
// Try to have a meaningful source location.
if (TL.getWrittenSignSpec() != TSS_unspecified)
// Sign spec loc overrides the others (e.g., 'unsigned long').
TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
else if (TL.getWrittenWidthSpec() != TSW_unspecified)
// Width spec loc overrides type spec loc (e.g., 'short int').
TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
}
}
void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
ElaboratedTypeKeyword Keyword
= TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
if (DS.getTypeSpecType() == TST_typename) {
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
if (TInfo) {
TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
return;
}
}
TL.setElaboratedKeywordLoc(Keyword != ETK_None
? DS.getTypeSpecTypeLoc()
: SourceLocation());
const CXXScopeSpec& SS = DS.getTypeSpecScope();
TL.setQualifierLoc(SS.getWithLocInContext(Context));
Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
}
void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
}
void VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
assert(DS.getTypeSpecType() == TST_typename);
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.copy(
TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
}
void VisitTagTypeLoc(TagTypeLoc TL) {
TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
}
void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
// An AtomicTypeLoc can come from either an _Atomic(...) type specifier
// or an _Atomic qualifier.
if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
TL.setKWLoc(DS.getTypeSpecTypeLoc());
TL.setParensRange(DS.getTypeofParensRange());
TypeSourceInfo *TInfo = nullptr;
Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
assert(TInfo);
TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
} else {
TL.setKWLoc(DS.getAtomicSpecLoc());
// No parens, to indicate this was spelled as an _Atomic qualifier.
TL.setParensRange(SourceRange());
Visit(TL.getValueLoc());
}
}
void VisitTypeLoc(TypeLoc TL) {
// FIXME: add other typespec types and change this to an assert.
TL.initialize(Context, DS.getTypeSpecTypeLoc());
}
};
class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
ASTContext &Context;
const DeclaratorChunk &Chunk;
public:
DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
: Context(Context), Chunk(Chunk) {}
void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
llvm_unreachable("qualified type locs not expected here!");
}
void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
llvm_unreachable("decayed type locs not expected here!");
}
void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
fillAttributedTypeLoc(TL, Chunk.getAttrs());
}
void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
// nothing
}
void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
TL.setCaretLoc(Chunk.Loc);
}
void VisitPointerTypeLoc(PointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Pointer);
TL.setStarLoc(Chunk.Loc);
}
void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
const CXXScopeSpec& SS = Chunk.Mem.Scope();
NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
const Type* ClsTy = TL.getClass();
QualType ClsQT = QualType(ClsTy, 0);
TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
// Now copy source location info into the type loc component.
TypeLoc ClsTL = ClsTInfo->getTypeLoc();
switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
case NestedNameSpecifier::Identifier:
assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
{
DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
DNTLoc.setElaboratedKeywordLoc(SourceLocation());
DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
}
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
if (isa<ElaboratedType>(ClsTy)) {
ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
ETLoc.setElaboratedKeywordLoc(SourceLocation());
ETLoc.setQualifierLoc(NNSLoc.getPrefix());
TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
} else {
ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
}
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Global:
llvm_unreachable("Nested-name-specifier must name a type");
}
// Finally fill in MemberPointerLocInfo fields.
TL.setStarLoc(Chunk.Loc);
TL.setClassTInfo(ClsTInfo);
}
void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
// 'Amp' is misleading: this might have been originally
/// spelled with AmpAmp.
TL.setAmpLoc(Chunk.Loc);
}
void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Reference);
assert(!Chunk.Ref.LValueRef);
TL.setAmpAmpLoc(Chunk.Loc);
}
void VisitArrayTypeLoc(ArrayTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Array);
TL.setLBracketLoc(Chunk.Loc);
TL.setRBracketLoc(Chunk.EndLoc);
TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
}
void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Function);
TL.setLocalRangeBegin(Chunk.Loc);
TL.setLocalRangeEnd(Chunk.EndLoc);
const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
TL.setLParenLoc(FTI.getLParenLoc());
TL.setRParenLoc(FTI.getRParenLoc());
for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
TL.setParam(tpi++, Param);
}
// FIXME: exception specs
}
void VisitParenTypeLoc(ParenTypeLoc TL) {
assert(Chunk.Kind == DeclaratorChunk::Paren);
TL.setLParenLoc(Chunk.Loc);
TL.setRParenLoc(Chunk.EndLoc);
}
void VisitTypeLoc(TypeLoc TL) {
llvm_unreachable("unsupported TypeLoc kind in declarator!");
}
};
}
static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
SourceLocation Loc;
switch (Chunk.Kind) {
case DeclaratorChunk::Function:
case DeclaratorChunk::Array:
case DeclaratorChunk::Paren:
llvm_unreachable("cannot be _Atomic qualified");
case DeclaratorChunk::Pointer:
Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
break;
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::MemberPointer:
// FIXME: Provide a source location for the _Atomic keyword.
break;
}
ATL.setKWLoc(Loc);
ATL.setParensRange(SourceRange());
}
/// \brief Create and instantiate a TypeSourceInfo with type source information.
///
/// \param T QualType referring to the type as written in source code.
///
/// \param ReturnTypeInfo For declarators whose return type does not show
/// up in the normal place in the declaration specifiers (such as a C++
/// conversion function), this pointer will refer to a type source information
/// for that return type.
TypeSourceInfo *
Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
TypeSourceInfo *ReturnTypeInfo) {
TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
// Handle parameter packs whose type is a pack expansion.
if (isa<PackExpansionType>(T)) {
CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
// An AtomicTypeLoc might be produced by an atomic qualifier in this
// declarator chunk.
if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
fillAtomicQualLoc(ATL, D.getTypeObject(i));
CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
}
while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
}
// FIXME: Ordering here?
while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
}
// If we have different source information for the return type, use
// that. This really only applies to C++ conversion functions.
if (ReturnTypeInfo) {
TypeLoc TL = ReturnTypeInfo->getTypeLoc();
assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
} else {
TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
}
return TInfo;
}
/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
// FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
// and Sema during declaration parsing. Try deallocating/caching them when
// it's appropriate, instead of allocating them and keeping them around.
LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
TypeAlignment);
new (LocT) LocInfoType(T, TInfo);
assert(LocT->getTypeClass() != T->getTypeClass() &&
"LocInfoType's TypeClass conflicts with an existing Type class");
return ParsedType::make(QualType(LocT, 0));
}
void LocInfoType::getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const {
llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser");
}
TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
// C99 6.7.6: Type names have no identifier. This is already validated by
// the parser.
assert(D.getIdentifier() == nullptr &&
"Type name should have no identifier!");
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
QualType T = TInfo->getType();
if (D.isInvalidType())
return true;
// Make sure there are no unused decl attributes on the declarator.
// We don't want to do this for ObjC parameters because we're going
// to apply them to the actual parameter declaration.
// Likewise, we don't want to do this for alias declarations, because
// we are actually going to build a declaration from this eventually.
if (D.getContext() != Declarator::ObjCParameterContext &&
D.getContext() != Declarator::AliasDeclContext &&
D.getContext() != Declarator::AliasTemplateContext)
checkUnusedDeclAttributes(D);
if (getLangOpts().CPlusPlus) {
// Check that there are no default arguments (C++ only).
CheckExtraCXXDefaultArguments(D);
}
return CreateParsedType(T, TInfo);
}
ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
QualType T = Context.getObjCInstanceType();
TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
return CreateParsedType(T, TInfo);
}
//===----------------------------------------------------------------------===//
// Type Attribute Processing
//===----------------------------------------------------------------------===//
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
/// specified type. The attribute contains 1 argument, the id of the address
/// space for the type.
static void HandleAddressSpaceTypeAttribute(QualType &Type,
const AttributeList &Attr, Sema &S){
// If this type is already address space qualified, reject it.
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
// qualifiers for two or more different address spaces."
if (Type.getAddressSpace()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
Attr.setInvalid();
return;
}
// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
// qualified by an address-space qualifier."
if (Type->isFunctionType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
Attr.setInvalid();
return;
}
unsigned ASIdx;
if (Attr.getKind() == AttributeList::AT_AddressSpace) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
Attr.setInvalid();
return;
}
Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt addrSpace(32);
if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< ASArgExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Bounds checking.
if (addrSpace.isSigned()) {
if (addrSpace.isNegative()) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
<< ASArgExpr->getSourceRange();
Attr.setInvalid();
return;
}
addrSpace.setIsSigned(false);
}
llvm::APSInt max(addrSpace.getBitWidth());
max = Qualifiers::MaxAddressSpace;
if (addrSpace > max) {
S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
<< int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
Attr.setInvalid();
return;
}
ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
} else {
// The keyword-based type attributes imply which address space to use.
switch (Attr.getKind()) {
case AttributeList::AT_OpenCLGlobalAddressSpace:
ASIdx = LangAS::opencl_global; break;
case AttributeList::AT_OpenCLLocalAddressSpace:
ASIdx = LangAS::opencl_local; break;
case AttributeList::AT_OpenCLConstantAddressSpace:
ASIdx = LangAS::opencl_constant; break;
default:
assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
ASIdx = 0; break;
}
}
Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
}
/// Does this type have a "direct" ownership qualifier? That is,
/// is it written like "__strong id", as opposed to something like
/// "typeof(foo)", where that happens to be strong?
static bool hasDirectOwnershipQualifier(QualType type) {
// Fast path: no qualifier at all.
assert(type.getQualifiers().hasObjCLifetime());
while (true) {
// __strong id
if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
return true;
type = attr->getModifiedType();
// X *__strong (...)
} else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
type = paren->getInnerType();
// That's it for things we want to complain about. In particular,
// we do not want to look through typedefs, typeof(expr),
// typeof(type), or any other way that the type is somehow
// abstracted.
} else {
return false;
}
}
}
/// handleObjCOwnershipTypeAttr - Process an objc_ownership
/// attribute on the specified type.
///
/// Returns 'true' if the attribute was handled.
static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type) {
bool NonObjCPointer = false;
if (!type->isDependentType() && !type->isUndeducedType()) {
if (const PointerType *ptr = type->getAs<PointerType>()) {
QualType pointee = ptr->getPointeeType();
if (pointee->isObjCRetainableType() || pointee->isPointerType())
return false;
// It is important not to lose the source info that there was an attribute
// applied to non-objc pointer. We will create an attributed type but
// its type will be the same as the original type.
NonObjCPointer = true;
} else if (!type->isObjCRetainableType()) {
return false;
}
// Don't accept an ownership attribute in the declspec if it would
// just be the return type of a block pointer.
if (state.isProcessingDeclSpec()) {
Declarator &D = state.getDeclarator();
if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
return false;
}
}
Sema &S = state.getSema();
SourceLocation AttrLoc = attr.getLoc();
if (AttrLoc.isMacroID())
AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
if (!attr.isArgIdent(0)) {
S.Diag(AttrLoc, diag::err_attribute_argument_type)
<< attr.getName() << AANT_ArgumentString;
attr.setInvalid();
return true;
}
// Consume lifetime attributes without further comment outside of
// ARC mode.
if (!S.getLangOpts().ObjCAutoRefCount)
return true;
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
Qualifiers::ObjCLifetime lifetime;
if (II->isStr("none"))
lifetime = Qualifiers::OCL_ExplicitNone;
else if (II->isStr("strong"))
lifetime = Qualifiers::OCL_Strong;
else if (II->isStr("weak"))
lifetime = Qualifiers::OCL_Weak;
else if (II->isStr("autoreleasing"))
lifetime = Qualifiers::OCL_Autoreleasing;
else {
S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
<< attr.getName() << II;
attr.setInvalid();
return true;
}
SplitQualType underlyingType = type.split();
// Check for redundant/conflicting ownership qualifiers.
if (Qualifiers::ObjCLifetime previousLifetime
= type.getQualifiers().getObjCLifetime()) {
// If it's written directly, that's an error.
if (hasDirectOwnershipQualifier(type)) {
S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
<< type;
return true;
}
// Otherwise, if the qualifiers actually conflict, pull sugar off
// until we reach a type that is directly qualified.
if (previousLifetime != lifetime) {
// This should always terminate: the canonical type is
// qualified, so some bit of sugar must be hiding it.
while (!underlyingType.Quals.hasObjCLifetime()) {
underlyingType = underlyingType.getSingleStepDesugaredType();
}
underlyingType.Quals.removeObjCLifetime();
}
}
underlyingType.Quals.addObjCLifetime(lifetime);
if (NonObjCPointer) {
StringRef name = attr.getName()->getName();
switch (lifetime) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
break;
case Qualifiers::OCL_Strong: name = "__strong"; break;
case Qualifiers::OCL_Weak: name = "__weak"; break;
case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
}
S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
<< TDS_ObjCObjOrBlock << type;
}
QualType origType = type;
if (!NonObjCPointer)
type = S.Context.getQualifiedType(underlyingType);
// If we have a valid source location for the attribute, use an
// AttributedType instead.
if (AttrLoc.isValid())
type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
origType, type);
// Forbid __weak if the runtime doesn't support it.
if (lifetime == Qualifiers::OCL_Weak &&
!S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
// Actually, delay this until we know what we're parsing.
if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
S.DelayedDiagnostics.add(
sema::DelayedDiagnostic::makeForbiddenType(
S.getSourceManager().getExpansionLoc(AttrLoc),
diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
} else {
S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
}
attr.setInvalid();
return true;
}
// Forbid __weak for class objects marked as
// objc_arc_weak_reference_unavailable
if (lifetime == Qualifiers::OCL_Weak) {
if (const ObjCObjectPointerType *ObjT =
type->getAs<ObjCObjectPointerType>()) {
if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
if (Class->isArcWeakrefUnavailable()) {
S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
S.Diag(ObjT->getInterfaceDecl()->getLocation(),
diag::note_class_declared);
}
}
}
}
return true;
}
/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
/// attribute on the specified type. Returns true to indicate that
/// the attribute was handled, false to indicate that the type does
/// not permit the attribute.
static bool handleObjCGCTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type) {
Sema &S = state.getSema();
// Delay if this isn't some kind of pointer.
if (!type->isPointerType() &&
!type->isObjCObjectPointerType() &&
!type->isBlockPointerType())
return false;
if (type.getObjCGCAttr() != Qualifiers::GCNone) {
S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
attr.setInvalid();
return true;
}
// Check the attribute arguments.
if (!attr.isArgIdent(0)) {
S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
<< attr.getName() << AANT_ArgumentString;
attr.setInvalid();
return true;
}
Qualifiers::GC GCAttr;
if (attr.getNumArgs() > 1) {
S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< attr.getName() << 1;
attr.setInvalid();
return true;
}
IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
if (II->isStr("weak"))
GCAttr = Qualifiers::Weak;
else if (II->isStr("strong"))
GCAttr = Qualifiers::Strong;
else {
S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
<< attr.getName() << II;
attr.setInvalid();
return true;
}
QualType origType = type;
type = S.Context.getObjCGCQualType(origType, GCAttr);
// Make an attributed type to preserve the source information.
if (attr.getLoc().isValid())
type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
origType, type);
return true;
}
namespace {
/// A helper class to unwrap a type down to a function for the
/// purposes of applying attributes there.
///
/// Use:
/// FunctionTypeUnwrapper unwrapped(SemaRef, T);
/// if (unwrapped.isFunctionType()) {
/// const FunctionType *fn = unwrapped.get();
/// // change fn somehow
/// T = unwrapped.wrap(fn);
/// }
struct FunctionTypeUnwrapper {
enum WrapKind {
Desugar,
Parens,
Pointer,
BlockPointer,
Reference,
MemberPointer
};
QualType Original;
const FunctionType *Fn;
SmallVector<unsigned char /*WrapKind*/, 8> Stack;
FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
while (true) {
const Type *Ty = T.getTypePtr();
if (isa<FunctionType>(Ty)) {
Fn = cast<FunctionType>(Ty);
return;
} else if (isa<ParenType>(Ty)) {
T = cast<ParenType>(Ty)->getInnerType();
Stack.push_back(Parens);
} else if (isa<PointerType>(Ty)) {
T = cast<PointerType>(Ty)->getPointeeType();
Stack.push_back(Pointer);
} else if (isa<BlockPointerType>(Ty)) {
T = cast<BlockPointerType>(Ty)->getPointeeType();
Stack.push_back(BlockPointer);
} else if (isa<MemberPointerType>(Ty)) {
T = cast<MemberPointerType>(Ty)->getPointeeType();
Stack.push_back(MemberPointer);
} else if (isa<ReferenceType>(Ty)) {
T = cast<ReferenceType>(Ty)->getPointeeType();
Stack.push_back(Reference);
} else {
const Type *DTy = Ty->getUnqualifiedDesugaredType();
if (Ty == DTy) {
Fn = nullptr;
return;
}
T = QualType(DTy, 0);
Stack.push_back(Desugar);
}
}
}
bool isFunctionType() const { return (Fn != nullptr); }
const FunctionType *get() const { return Fn; }
QualType wrap(Sema &S, const FunctionType *New) {
// If T wasn't modified from the unwrapped type, do nothing.
if (New == get()) return Original;
Fn = New;
return wrap(S.Context, Original, 0);
}
private:
QualType wrap(ASTContext &C, QualType Old, unsigned I) {
if (I == Stack.size())
return C.getQualifiedType(Fn, Old.getQualifiers());
// Build up the inner type, applying the qualifiers from the old
// type to the new type.
SplitQualType SplitOld = Old.split();
// As a special case, tail-recurse if there are no qualifiers.
if (SplitOld.Quals.empty())
return wrap(C, SplitOld.Ty, I);
return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
}
QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
if (I == Stack.size()) return QualType(Fn, 0);
switch (static_cast<WrapKind>(Stack[I++])) {
case Desugar:
// This is the point at which we potentially lose source
// information.
return wrap(C, Old->getUnqualifiedDesugaredType(), I);
case Parens: {
QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
return C.getParenType(New);
}
case Pointer: {
QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
return C.getPointerType(New);
}
case BlockPointer: {
QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
return C.getBlockPointerType(New);
}
case MemberPointer: {
const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
QualType New = wrap(C, OldMPT->getPointeeType(), I);
return C.getMemberPointerType(New, OldMPT->getClass());
}
case Reference: {
const ReferenceType *OldRef = cast<ReferenceType>(Old);
QualType New = wrap(C, OldRef->getPointeeType(), I);
if (isa<LValueReferenceType>(OldRef))
return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
else
return C.getRValueReferenceType(New);
}
}
llvm_unreachable("unknown wrapping kind");
}
};
}
static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
AttributeList &Attr,
QualType &Type) {
Sema &S = State.getSema();
AttributeList::Kind Kind = Attr.getKind();
QualType Desugared = Type;
const AttributedType *AT = dyn_cast<AttributedType>(Type);
while (AT) {
AttributedType::Kind CurAttrKind = AT->getAttrKind();
// You cannot specify duplicate type attributes, so if the attribute has
// already been applied, flag it.
if (getAttrListKind(CurAttrKind) == Kind) {
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
<< Attr.getName();
return true;
}
// You cannot have both __sptr and __uptr on the same type, nor can you
// have __ptr32 and __ptr64.
if ((CurAttrKind == AttributedType::attr_ptr32 &&
Kind == AttributeList::AT_Ptr64) ||
(CurAttrKind == AttributedType::attr_ptr64 &&
Kind == AttributeList::AT_Ptr32)) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "'__ptr32'" << "'__ptr64'";
return true;
} else if ((CurAttrKind == AttributedType::attr_sptr &&
Kind == AttributeList::AT_UPtr) ||
(CurAttrKind == AttributedType::attr_uptr &&
Kind == AttributeList::AT_SPtr)) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "'__sptr'" << "'__uptr'";
return true;
}
Desugared = AT->getEquivalentType();
AT = dyn_cast<AttributedType>(Desugared);
}
// Pointer type qualifiers can only operate on pointer types, but not
// pointer-to-member types.
if (!isa<PointerType>(Desugared)) {
S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
diag::err_attribute_no_member_pointers :
diag::err_attribute_pointers_only) << Attr.getName();
return true;
}
AttributedType::Kind TAK;
switch (Kind) {
default: llvm_unreachable("Unknown attribute kind");
case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
}
Type = S.Context.getAttributedType(TAK, Type, Type);
return false;
}
static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
assert(!Attr.isInvalid());
switch (Attr.getKind()) {
default:
llvm_unreachable("not a calling convention attribute");
case AttributeList::AT_CDecl:
return AttributedType::attr_cdecl;
case AttributeList::AT_FastCall:
return AttributedType::attr_fastcall;
case AttributeList::AT_StdCall:
return AttributedType::attr_stdcall;
case AttributeList::AT_ThisCall:
return AttributedType::attr_thiscall;
case AttributeList::AT_Pascal:
return AttributedType::attr_pascal;
case AttributeList::AT_Pcs: {
// The attribute may have had a fixit applied where we treated an
// identifier as a string literal. The contents of the string are valid,
// but the form may not be.
StringRef Str;
if (Attr.isArgExpr(0))
Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
else
Str = Attr.getArgAsIdent(0)->Ident->getName();
return llvm::StringSwitch<AttributedType::Kind>(Str)
.Case("aapcs", AttributedType::attr_pcs)
.Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
}
case AttributeList::AT_PnaclCall:
return AttributedType::attr_pnaclcall;
case AttributeList::AT_IntelOclBicc:
return AttributedType::attr_inteloclbicc;
case AttributeList::AT_MSABI:
return AttributedType::attr_ms_abi;
case AttributeList::AT_SysVABI:
return AttributedType::attr_sysv_abi;
}
llvm_unreachable("unexpected attribute kind!");
}
/// Process an individual function attribute. Returns true to
/// indicate that the attribute was handled, false if it wasn't.
static bool handleFunctionTypeAttr(TypeProcessingState &state,
AttributeList &attr,
QualType &type) {
Sema &S = state.getSema();
FunctionTypeUnwrapper unwrapped(S, type);
if (attr.getKind() == AttributeList::AT_NoReturn) {
if (S.CheckNoReturnAttr(attr))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Otherwise we can process right away.
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
// ns_returns_retained is not always a type attribute, but if we got
// here, we're treating it as one right now.
if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
assert(S.getLangOpts().ObjCAutoRefCount &&
"ns_returns_retained treated as type attribute in non-ARC");
if (attr.getNumArgs()) return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
FunctionType::ExtInfo EI
= unwrapped.get()->getExtInfo().withProducesResult(true);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
if (attr.getKind() == AttributeList::AT_Regparm) {
unsigned value;
if (S.CheckRegparmAttr(attr, value))
return true;
// Delay if this is not a function type.
if (!unwrapped.isFunctionType())
return false;
// Diagnose regparm with fastcall.
const FunctionType *fn = unwrapped.get();
CallingConv CC = fn->getCallConv();
if (CC == CC_X86FastCall) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< "regparm";
attr.setInvalid();
return true;
}
FunctionType::ExtInfo EI =
unwrapped.get()->getExtInfo().withRegParm(value);
type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
return true;
}
// Delay if the type didn't work out to a function.
if (!unwrapped.isFunctionType()) return false;
// Otherwise, a calling convention.
CallingConv CC;
if (S.CheckCallingConvAttr(attr, CC))
return true;
const FunctionType *fn = unwrapped.get();
CallingConv CCOld = fn->getCallConv();
AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
if (CCOld != CC) {
// Error out on when there's already an attribute on the type
// and the CCs don't match.
const AttributedType *AT = S.getCallingConvAttributedType(type);
if (AT && AT->getAttrKind() != CCAttrKind) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< FunctionType::getNameForCallConv(CC)
<< FunctionType::getNameForCallConv(CCOld);
attr.setInvalid();
return true;
}
}
// Diagnose use of callee-cleanup calling convention on variadic functions.
if (isCalleeCleanup(CC)) {
const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
if (FnP && FnP->isVariadic()) {
unsigned DiagID = diag::err_cconv_varargs;
// stdcall and fastcall are ignored with a warning for GCC and MS
// compatibility.
if (CC == CC_X86StdCall || CC == CC_X86FastCall)
DiagID = diag::warn_cconv_varargs;
S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
attr.setInvalid();
return true;
}
}
// Diagnose the use of X86 fastcall on unprototyped functions.
if (CC == CC_X86FastCall) {
if (isa<FunctionNoProtoType>(fn)) {
S.Diag(attr.getLoc(), diag::err_cconv_knr)
<< FunctionType::getNameForCallConv(CC);
attr.setInvalid();
return true;
}
// Also diagnose fastcall with regparm.
if (fn->getHasRegParm()) {
S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "regparm"
<< FunctionType::getNameForCallConv(CC);
attr.setInvalid();
return true;
}
}
// Modify the CC from the wrapped function type, wrap it all back, and then
// wrap the whole thing in an AttributedType as written. The modified type
// might have a different CC if we ignored the attribute.
FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
QualType Equivalent =
unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
return true;
}
bool Sema::hasExplicitCallingConv(QualType &T) {
QualType R = T.IgnoreParens();
while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
if (AT->isCallingConv())
return true;
R = AT->getModifiedType().IgnoreParens();
}
return false;
}
void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic) {
FunctionTypeUnwrapper Unwrapped(*this, T);
const FunctionType *FT = Unwrapped.get();
bool IsVariadic = (isa<FunctionProtoType>(FT) &&
cast<FunctionProtoType>(FT)->isVariadic());
// Only adjust types with the default convention. For example, on Windows we
// should adjust a __cdecl type to __thiscall for instance methods, and a
// __thiscall type to __cdecl for static methods.
CallingConv CurCC = FT->getCallConv();
CallingConv FromCC =
Context.getDefaultCallingConvention(IsVariadic, IsStatic);
CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
if (CurCC != FromCC || FromCC == ToCC)
return;
if (hasExplicitCallingConv(T))
return;
FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
QualType Wrapped = Unwrapped.wrap(*this, FT);
T = Context.getAdjustedType(T, Wrapped);
}
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
/// and float scalars, although arrays, pointers, and function return values are
/// allowed in conjunction with this construct. Aggregates with this attribute
/// are invalid, even if they are of the same size as a corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size for
/// the variable, measured in bytes. If curType and rawAttr are well formed,
/// this routine will return a new vector type.
static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
Sema &S) {
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
Attr.setInvalid();
return;
}
Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt vecSize(32);
if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
// The base type must be integer (not Boolean or enumeration) or float, and
// can't already be a vector.
if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
(!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
Attr.setInvalid();
return;
}
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
// vecSize is specified in bytes - convert to bits.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
// the vector size needs to be an integral multiple of the type size.
if (vectorSize % typeSize) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
if (vectorSize == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
<< sizeExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Success! Instantiate the vector type, the number of elements is > 0, and
// not required to be a power of 2, unlike GCC.
CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
VectorType::GenericVector);
}
/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
/// a type.
static void HandleExtVectorTypeAttr(QualType &CurType,
const AttributeList &Attr,
Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
Expr *sizeExpr;
// Special case where the argument is a template id.
if (Attr.isArgIdent(0)) {
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId id;
id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
id, false, false);
if (Size.isInvalid())
return;
sizeExpr = Size.get();
} else {
sizeExpr = Attr.getArgAsExpr(0);
}
// Create the vector type.
QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
if (!T.isNull())
CurType = T;
}
static bool isPermittedNeonBaseType(QualType &Ty,
VectorType::VectorKind VecKind, Sema &S) {
const BuiltinType *BTy = Ty->getAs<BuiltinType>();
if (!BTy)
return false;
llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
// Signed poly is mathematically wrong, but has been baked into some ABIs by
// now.
bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
Triple.getArch() == llvm::Triple::aarch64_be ||
Triple.getArch() == llvm::Triple::arm64 ||
Triple.getArch() == llvm::Triple::arm64_be;
if (VecKind == VectorType::NeonPolyVector) {
if (IsPolyUnsigned) {
// AArch64 polynomial vectors are unsigned and support poly64.
return BTy->getKind() == BuiltinType::UChar ||
BTy->getKind() == BuiltinType::UShort ||
BTy->getKind() == BuiltinType::ULong ||
BTy->getKind() == BuiltinType::ULongLong;
} else {
// AArch32 polynomial vector are signed.
return BTy->getKind() == BuiltinType::SChar ||
BTy->getKind() == BuiltinType::Short;
}
}
// Non-polynomial vector types: the usual suspects are allowed, as well as
// float64_t on AArch64.
bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
Triple.getArch() == llvm::Triple::aarch64_be ||
Triple.getArch() == llvm::Triple::arm64 ||
Triple.getArch() == llvm::Triple::arm64_be;
if (Is64Bit && BTy->getKind() == BuiltinType::Double)
return true;
return BTy->getKind() == BuiltinType::SChar ||
BTy->getKind() == BuiltinType::UChar ||
BTy->getKind() == BuiltinType::Short ||
BTy->getKind() == BuiltinType::UShort ||
BTy->getKind() == BuiltinType::Int ||
BTy->getKind() == BuiltinType::UInt ||
BTy->getKind() == BuiltinType::Long ||
BTy->getKind() == BuiltinType::ULong ||
BTy->getKind() == BuiltinType::LongLong ||
BTy->getKind() == BuiltinType::ULongLong ||
BTy->getKind() == BuiltinType::Float ||
BTy->getKind() == BuiltinType::Half;
}
/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
/// "neon_polyvector_type" attributes are used to create vector types that
/// are mangled according to ARM's ABI. Otherwise, these types are identical
/// to those created with the "vector_size" attribute. Unlike "vector_size"
/// the argument to these Neon attributes is the number of vector elements,
/// not the vector size in bytes. The vector width and element type must
/// match one of the standard Neon vector types.
static void HandleNeonVectorTypeAttr(QualType& CurType,
const AttributeList &Attr, Sema &S,
VectorType::VectorKind VecKind) {
// Target must have NEON
if (!S.Context.getTargetInfo().hasFeature("neon")) {
S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
Attr.setInvalid();
return;
}
// Check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
Attr.setInvalid();
return;
}
// The number of elements must be an ICE.
Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt numEltsInt(32);
if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
!numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< numEltsExpr->getSourceRange();
Attr.setInvalid();
return;
}
// Only certain element types are supported for Neon vectors.
if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
Attr.setInvalid();
return;
}
// The total size of the vector must be 64 or 128 bits.
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
unsigned vecSize = typeSize * numElts;
if (vecSize != 64 && vecSize != 128) {
S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
Attr.setInvalid();
return;
}
CurType = S.Context.getVectorType(CurType, numElts, VecKind);
}
static void processTypeAttrs(TypeProcessingState &state, QualType &type,
TypeAttrLocation TAL, AttributeList *attrs) {
// Scan through and apply attributes to this type where it makes sense. Some
// attributes (such as __address_space__, __vector_size__, etc) apply to the
// type, but others can be present in the type specifiers even though they
// apply to the decl. Here we apply type attributes and ignore the rest.
AttributeList *next;
do {
AttributeList &attr = *attrs;
next = attr.getNext();
// Skip attributes that were marked to be invalid.
if (attr.isInvalid())
continue;
if (attr.isCXX11Attribute()) {
// [[gnu::...]] attributes are treated as declaration attributes, so may
// not appertain to a DeclaratorChunk, even if we handle them as type
// attributes.
if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
if (TAL == TAL_DeclChunk) {
state.getSema().Diag(attr.getLoc(),
diag::warn_cxx11_gnu_attribute_on_type)
<< attr.getName();
continue;
}
} else if (TAL != TAL_DeclChunk) {
// Otherwise, only consider type processing for a C++11 attribute if
// it's actually been applied to a type.
continue;
}
}
// If this is an attribute we can handle, do so now,
// otherwise, add it to the FnAttrs list for rechaining.
switch (attr.getKind()) {
default:
// A C++11 attribute on a declarator chunk must appertain to a type.
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
<< attr.getName();
attr.setUsedAsTypeAttr();
}
break;
case AttributeList::UnknownAttribute:
if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
state.getSema().Diag(attr.getLoc(),
diag::warn_unknown_attribute_ignored)
<< attr.getName();
break;
case AttributeList::IgnoredAttribute:
break;
case AttributeList::AT_MayAlias:
// FIXME: This attribute needs to actually be handled, but if we ignore
// it it breaks large amounts of Linux software.
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_OpenCLPrivateAddressSpace:
case AttributeList::AT_OpenCLGlobalAddressSpace:
case AttributeList::AT_OpenCLLocalAddressSpace:
case AttributeList::AT_OpenCLConstantAddressSpace:
case AttributeList::AT_AddressSpace:
HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
OBJC_POINTER_TYPE_ATTRS_CASELIST:
if (!handleObjCPointerTypeAttr(state, attr, type))
distributeObjCPointerTypeAttr(state, attr, type);
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_VectorSize:
HandleVectorSizeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_ExtVectorType:
HandleExtVectorTypeAttr(type, attr, state.getSema());
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_NeonVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonVector);
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_NeonPolyVectorType:
HandleNeonVectorTypeAttr(type, attr, state.getSema(),
VectorType::NeonPolyVector);
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_OpenCLImageAccess:
// FIXME: there should be some type checking happening here, I would
// imagine, but the original handler's checking was entirely superfluous.
attr.setUsedAsTypeAttr();
break;
MS_TYPE_ATTRS_CASELIST:
if (!handleMSPointerTypeQualifierAttr(state, attr, type))
attr.setUsedAsTypeAttr();
break;
case AttributeList::AT_NSReturnsRetained:
if (!state.getSema().getLangOpts().ObjCAutoRefCount)
break;
// fallthrough into the function attrs
FUNCTION_TYPE_ATTRS_CASELIST:
attr.setUsedAsTypeAttr();
// Never process function type attributes as part of the
// declaration-specifiers.
if (TAL == TAL_DeclSpec)
distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
// Otherwise, handle the possible delays.
else if (!handleFunctionTypeAttr(state, attr, type))
distributeFunctionTypeAttr(state, attr, type);
break;
}
} while ((attrs = next));
}
/// \brief Ensure that the type of the given expression is complete.
///
/// This routine checks whether the expression \p E has a complete type. If the
/// expression refers to an instantiable construct, that instantiation is
/// performed as needed to complete its type. Furthermore
/// Sema::RequireCompleteType is called for the expression's type (or in the
/// case of a reference type, the referred-to type).
///
/// \param E The expression whose type is required to be complete.
/// \param Diagnoser The object that will emit a diagnostic if the type is
/// incomplete.
///
/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
/// otherwise.
bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
QualType T = E->getType();
// Fast path the case where the type is already complete.
if (!T->isIncompleteType())
// FIXME: The definition might not be visible.
return false;
// Incomplete array types may be completed by the initializer attached to
// their definitions. For static data members of class templates and for
// variable templates, we need to instantiate the definition to get this
// initializer and complete the type.
if (T->isIncompleteArrayType()) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
SourceLocation PointOfInstantiation = E->getExprLoc();
if (MemberSpecializationInfo *MSInfo =
Var->getMemberSpecializationInfo()) {
// If we don't already have a point of instantiation, this is it.
if (MSInfo->getPointOfInstantiation().isInvalid()) {
MSInfo->setPointOfInstantiation(PointOfInstantiation);
// This is a modification of an existing AST node. Notify
// listeners.
if (ASTMutationListener *L = getASTMutationListener())
L->StaticDataMemberInstantiated(Var);
}
} else {
VarTemplateSpecializationDecl *VarSpec =
cast<VarTemplateSpecializationDecl>(Var);
if (VarSpec->getPointOfInstantiation().isInvalid())
VarSpec->setPointOfInstantiation(PointOfInstantiation);
}
InstantiateVariableDefinition(PointOfInstantiation, Var);
// Update the type to the newly instantiated definition's type both
// here and within the expression.
if (VarDecl *Def = Var->getDefinition()) {
DRE->setDecl(Def);
T = Def->getType();
DRE->setType(T);
E->setType(T);
}
// We still go on to try to complete the type independently, as it
// may also require instantiations or diagnostics if it remains
// incomplete.
}
}
}
}
// FIXME: Are there other cases which require instantiating something other
// than the type to complete the type of an expression?
// Look through reference types and complete the referred type.
if (const ReferenceType *Ref = T->getAs<ReferenceType>())
T = Ref->getPointeeType();
return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
}
namespace {
struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
unsigned DiagID;
TypeDiagnoserDiag(unsigned DiagID)
: Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
if (Suppressed) return;
S.Diag(Loc, DiagID) << T;
}
};
}
bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
TypeDiagnoserDiag Diagnoser(DiagID);
return RequireCompleteExprType(E, Diagnoser);
}
/// @brief Ensure that the type T is a complete type.
///
/// This routine checks whether the type @p T is complete in any
/// context where a complete type is required. If @p T is a complete
/// type, returns false. If @p T is a class template specialization,
/// this routine then attempts to perform class template
/// instantiation. If instantiation fails, or if @p T is incomplete
/// and cannot be completed, issues the diagnostic @p diag (giving it
/// the type @p T) and returns true.
///
/// @param Loc The location in the source that the incomplete type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for completeness.
///
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
return true;
if (const TagType *Tag = T->getAs<TagType>()) {
if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
Tag->getDecl()->setCompleteDefinitionRequired();
Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
}
}
return false;
}
/// \brief Determine whether there is any declaration of \p D that was ever a
/// definition (perhaps before module merging) and is currently visible.
/// \param D The definition of the entity.
/// \param Suggested Filled in with the declaration that should be made visible
/// in order to provide a definition of this entity.
static bool hasVisibleDefinition(Sema &S, NamedDecl *D, NamedDecl **Suggested) {
// Easy case: if we don't have modules, all declarations are visible.
if (!S.getLangOpts().Modules)
return true;
// If this definition was instantiated from a template, map back to the
// pattern from which it was instantiated.
//
// FIXME: There must be a better place for this to live.
if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
auto From = TD->getInstantiatedFrom();
if (auto *CTD = From.dyn_cast<ClassTemplateDecl*>()) {
while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
if (NewCTD->isMemberSpecialization())
break;
CTD = NewCTD;
}
RD = CTD->getTemplatedDecl();
} else if (auto *CTPSD = From.dyn_cast<
ClassTemplatePartialSpecializationDecl *>()) {
while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
if (NewCTPSD->isMemberSpecialization())
break;
CTPSD = NewCTPSD;
}
RD = CTPSD;
}
} else if (isTemplateInstantiation(RD->getTemplateSpecializationKind())) {
while (auto *NewRD = RD->getInstantiatedFromMemberClass())
RD = NewRD;
}
D = RD->getDefinition();
} else if (auto *ED = dyn_cast<EnumDecl>(D)) {
while (auto *NewED = ED->getInstantiatedFromMemberEnum())
ED = NewED;
if (ED->isFixed()) {
// If the enum has a fixed underlying type, any declaration of it will do.
*Suggested = nullptr;
for (auto *Redecl : ED->redecls()) {
if (LookupResult::isVisible(S, Redecl))
return true;
if (Redecl->isThisDeclarationADefinition() ||
(Redecl->isCanonicalDecl() && !*Suggested))
*Suggested = Redecl;
}
return false;
}
D = ED->getDefinition();
}
assert(D && "missing definition for pattern of instantiated definition");
// FIXME: If we merged any other decl into D, and that declaration is visible,
// then we should consider a definition to be visible.
*Suggested = D;
return LookupResult::isVisible(S, D);
}
/// Locks in the inheritance model for the given class and all of its bases.
static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
RD = RD->getMostRecentDecl();
if (!RD->hasAttr<MSInheritanceAttr>()) {
MSInheritanceAttr::Spelling IM;
switch (S.MSPointerToMemberRepresentationMethod) {
case LangOptions::PPTMK_BestCase:
IM = RD->calculateInheritanceModel();
break;
case LangOptions::PPTMK_FullGeneralitySingleInheritance:
IM = MSInheritanceAttr::Keyword_single_inheritance;
break;
case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
IM = MSInheritanceAttr::Keyword_multiple_inheritance;
break;
case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
break;
}
RD->addAttr(MSInheritanceAttr::CreateImplicit(
S.getASTContext(), IM,
/*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
LangOptions::PPTMK_BestCase,
S.ImplicitMSInheritanceAttrLoc.isValid()
? S.ImplicitMSInheritanceAttrLoc
: RD->getSourceRange()));
}
if (RD->hasDefinition()) {
// Assign inheritance models to all of the base classes, because now we can
// form pointers to members of base classes without calling
// RequireCompleteType on the pointer to member of the base class type.
for (const CXXBaseSpecifier &BS : RD->bases())
assignInheritanceModel(S, BS.getType()->getAsCXXRecordDecl());
}
}
/// \brief The implementation of RequireCompleteType
bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
// FIXME: Add this assertion to make sure we always get instantiation points.
// assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
// FIXME: Add this assertion to help us flush out problems with
// checking for dependent types and type-dependent expressions.
//
// assert(!T->isDependentType() &&
// "Can't ask whether a dependent type is complete");
// If we have a complete type, we're done.
NamedDecl *Def = nullptr;
if (!T->isIncompleteType(&Def)) {
// If we know about the definition but it is not visible, complain.
NamedDecl *SuggestedDef = nullptr;
if (!Diagnoser.Suppressed && Def &&
!hasVisibleDefinition(*this, Def, &SuggestedDef)) {
// Suppress this error outside of a SFINAE context if we've already
// emitted the error once for this type. There's no usefulness in
// repeating the diagnostic.
// FIXME: Add a Fix-It that imports the corresponding module or includes
// the header.
Module *Owner = SuggestedDef->getOwningModule();
Diag(Loc, diag::err_module_private_definition)
<< T << Owner->getFullModuleName();
Diag(SuggestedDef->getLocation(), diag::note_previous_definition);
// Try to recover by implicitly importing this module.
createImplicitModuleImportForErrorRecovery(Loc, Owner);
}
// We lock in the inheritance model once somebody has asked us to ensure
// that a pointer-to-member type is complete.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
if (!MPTy->getClass()->isDependentType()) {
RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), 0);
assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
}
}
}
return false;
}
const TagType *Tag = T->getAs<TagType>();
const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
// If there's an unimported definition of this type in a module (for
// instance, because we forward declared it, then imported the definition),
// import that definition now.
//
// FIXME: What about other cases where an import extends a redeclaration
// chain for a declaration that can be accessed through a mechanism other
// than name lookup (eg, referenced in a template, or a variable whose type
// could be completed by the module)?
if (Tag || IFace) {
NamedDecl *D =
Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
// Avoid diagnosing invalid decls as incomplete.
if (D->isInvalidDecl())
return true;
// Give the external AST source a chance to complete the type.
if (auto *Source = Context.getExternalSource()) {
if (Tag)
Source->CompleteType(Tag->getDecl());
else
Source->CompleteType(IFace->getDecl());
// If the external source completed the type, go through the motions
// again to ensure we're allowed to use the completed type.
if (!T->isIncompleteType())
return RequireCompleteTypeImpl(Loc, T, Diagnoser);
}
}
// If we have a class template specialization or a class member of a
// class template specialization, or an array with known size of such,
// try to instantiate it.
QualType MaybeTemplate = T;
while (const ConstantArrayType *Array
= Context.getAsConstantArrayType(MaybeTemplate))
MaybeTemplate = Array->getElementType();
if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
if (ClassTemplateSpecializationDecl *ClassTemplateSpec
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
TSK_ImplicitInstantiation,
/*Complain=*/!Diagnoser.Suppressed);
} else if (CXXRecordDecl *Rec
= dyn_cast<CXXRecordDecl>(Record->getDecl())) {
CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
if (!Rec->isBeingDefined() && Pattern) {
MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
assert(MSI && "Missing member specialization information?");
// This record was instantiated from a class within a template.
if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
return InstantiateClass(Loc, Rec, Pattern,
getTemplateInstantiationArgs(Rec),
TSK_ImplicitInstantiation,
/*Complain=*/!Diagnoser.Suppressed);
}
}
}
if (Diagnoser.Suppressed)
return true;
// We have an incomplete type. Produce a diagnostic.
if (Ident___float128 &&
T == Context.getTypeDeclType(Context.getFloat128StubType())) {
Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
return true;
}
Diagnoser.diagnose(*this, Loc, T);
// If the type was a forward declaration of a class/struct/union
// type, produce a note.
if (Tag && !Tag->getDecl()->isInvalidDecl())
Diag(Tag->getDecl()->getLocation(),
Tag->isBeingDefined() ? diag::note_type_being_defined
: diag::note_forward_declaration)
<< QualType(Tag, 0);
// If the Objective-C class was a forward declaration, produce a note.
if (IFace && !IFace->getDecl()->isInvalidDecl())
Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
// If we have external information that we can use to suggest a fix,
// produce a note.
if (ExternalSource)
ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
return true;
}
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
unsigned DiagID) {
TypeDiagnoserDiag Diagnoser(DiagID);
return RequireCompleteType(Loc, T, Diagnoser);
}
/// \brief Get diagnostic %select index for tag kind for
/// literal type diagnostic message.
/// WARNING: Indexes apply to particular diagnostics only!
///
/// \returns diagnostic %select index.
static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
switch (Tag) {
case TTK_Struct: return 0;
case TTK_Interface: return 1;
case TTK_Class: return 2;
default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
}
}
/// @brief Ensure that the type T is a literal type.
///
/// This routine checks whether the type @p T is a literal type. If @p T is an
/// incomplete type, an attempt is made to complete it. If @p T is a literal
/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
/// it the type @p T), along with notes explaining why the type is not a
/// literal type, and returns true.
///
/// @param Loc The location in the source that the non-literal type
/// diagnostic should refer to.
///
/// @param T The type that this routine is examining for literalness.
///
/// @param Diagnoser Emits a diagnostic if T is not a literal type.
///
/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
TypeDiagnoser &Diagnoser) {
assert(!T->isDependentType() && "type should not be dependent");
QualType ElemType = Context.getBaseElementType(T);
RequireCompleteType(Loc, ElemType, 0);
if (T->isLiteralType(Context))
return false;
if (Diagnoser.Suppressed)
return true;
Diagnoser.diagnose(*this, Loc, T);
if (T->isVariableArrayType())
return true;
const RecordType *RT = ElemType->getAs<RecordType>();
if (!RT)
return true;
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
// A partially-defined class type can't be a literal type, because a literal
// class type must have a trivial destructor (which can't be checked until
// the class definition is complete).
if (!RD->isCompleteDefinition()) {
RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
return true;
}
// If the class has virtual base classes, then it's not an aggregate, and
// cannot have any constexpr constructors or a trivial default constructor,
// so is non-literal. This is better to diagnose than the resulting absence
// of constexpr constructors.
if (RD->getNumVBases()) {
Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
<< getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
for (const auto &I : RD->vbases())
Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
<< I.getSourceRange();
} else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
!RD->hasTrivialDefaultConstructor()) {
Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
} else if (RD->hasNonLiteralTypeFieldsOrBases()) {
for (const auto &I : RD->bases()) {
if (!I.getType()->isLiteralType(Context)) {
Diag(I.getLocStart(),
diag::note_non_literal_base_class)
<< RD << I.getType() << I.getSourceRange();
return true;
}
}
for (const auto *I : RD->fields()) {
if (!I->getType()->isLiteralType(Context) ||
I->getType().isVolatileQualified()) {
Diag(I->getLocation(), diag::note_non_literal_field)
<< RD << I << I->getType()
<< I->getType().isVolatileQualified();
return true;
}
}
} else if (!RD->hasTrivialDestructor()) {
// All fields and bases are of literal types, so have trivial destructors.
// If this class's destructor is non-trivial it must be user-declared.
CXXDestructorDecl *Dtor = RD->getDestructor();
assert(Dtor && "class has literal fields and bases but no dtor?");
if (!Dtor)
return true;
Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
diag::note_non_literal_user_provided_dtor :
diag::note_non_literal_nontrivial_dtor) << RD;
if (!Dtor->isUserProvided())
SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
}
return true;
}
bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
TypeDiagnoserDiag Diagnoser(DiagID);
return RequireLiteralType(Loc, T, Diagnoser);
}
/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
/// and qualified by the nested-name-specifier contained in SS.
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
const CXXScopeSpec &SS, QualType T) {
if (T.isNull())
return T;
NestedNameSpecifier *NNS;
if (SS.isValid())
NNS = SS.getScopeRep();
else {
if (Keyword == ETK_None)
return T;
NNS = nullptr;
}
return Context.getElaboratedType(Keyword, NNS, T);
}
QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
ExprResult ER = CheckPlaceholderExpr(E);
if (ER.isInvalid()) return QualType();
E = ER.get();
if (!E->isTypeDependent()) {
QualType T = E->getType();
if (const TagType *TT = T->getAs<TagType>())
DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
}
return Context.getTypeOfExprType(E);
}
/// getDecltypeForExpr - Given an expr, will return the decltype for
/// that expression, according to the rules in C++11
/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
static QualType getDecltypeForExpr(Sema &S, Expr *E) {
if (E->isTypeDependent())
return S.Context.DependentTy;
// C++11 [dcl.type.simple]p4:
// The type denoted by decltype(e) is defined as follows:
//
// - if e is an unparenthesized id-expression or an unparenthesized class
// member access (5.2.5), decltype(e) is the type of the entity named
// by e. If there is no such entity, or if e names a set of overloaded
// functions, the program is ill-formed;
//
// We apply the same rules for Objective-C ivar and property references.
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
return VD->getType();
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
return FD->getType();
} else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
return IR->getDecl()->getType();
} else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
if (PR->isExplicitProperty())
return PR->getExplicitProperty()->getType();
}
// C++11 [expr.lambda.prim]p18:
// Every occurrence of decltype((x)) where x is a possibly
// parenthesized id-expression that names an entity of automatic
// storage duration is treated as if x were transformed into an
// access to a corresponding data member of the closure type that
// would have been declared if x were an odr-use of the denoted
// entity.
using namespace sema;
if (S.getCurLambda()) {
if (isa<ParenExpr>(E)) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
if (!T.isNull())
return S.Context.getLValueReferenceType(T);
}
}
}
}
// C++11 [dcl.type.simple]p4:
// [...]
QualType T = E->getType();
switch (E->getValueKind()) {
// - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
// type of e;
case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
// - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
// type of e;
case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
// - otherwise, decltype(e) is the type of e.
case VK_RValue: break;
}
return T;
}
QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
ExprResult ER = CheckPlaceholderExpr(E);
if (ER.isInvalid()) return QualType();
E = ER.get();
return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
}
QualType Sema::BuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc) {
switch (UKind) {
case UnaryTransformType::EnumUnderlyingType:
if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
Diag(Loc, diag::err_only_enums_have_underlying_types);
return QualType();
} else {
QualType Underlying = BaseType;
if (!BaseType->isDependentType()) {
// The enum could be incomplete if we're parsing its definition or
// recovering from an error.
NamedDecl *FwdDecl = nullptr;
if (BaseType->isIncompleteType(&FwdDecl)) {
Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
return QualType();
}
EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
assert(ED && "EnumType has no EnumDecl");
DiagnoseUseOfDecl(ED, Loc);
Underlying = ED->getIntegerType();
assert(!Underlying.isNull());
}
return Context.getUnaryTransformType(BaseType, Underlying,
UnaryTransformType::EnumUnderlyingType);
}
}
llvm_unreachable("unknown unary transform type");
}
QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
if (!T->isDependentType()) {
// FIXME: It isn't entirely clear whether incomplete atomic types
// are allowed or not; for simplicity, ban them for the moment.
if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
return QualType();
int DisallowedKind = -1;
if (T->isArrayType())
DisallowedKind = 1;
else if (T->isFunctionType())
DisallowedKind = 2;
else if (T->isReferenceType())
DisallowedKind = 3;
else if (T->isAtomicType())
DisallowedKind = 4;
else if (T.hasQualifiers())
DisallowedKind = 5;
else if (!T.isTriviallyCopyableType(Context))
// Some other non-trivially-copyable type (probably a C++ class)
DisallowedKind = 6;
if (DisallowedKind != -1) {
Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
return QualType();
}
// FIXME: Do we need any handling for ARC here?
}
// Build the pointer type.
return Context.getAtomicType(T);
}
|