1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
//===-- tsan_clock_test.cc ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_clock.h"
#include "tsan_rtl.h"
#include "gtest/gtest.h"
#include <time.h>
namespace __tsan {
TEST(Clock, VectorBasic) {
ThreadClock clk(0);
ASSERT_EQ(clk.size(), 1U);
clk.tick();
ASSERT_EQ(clk.size(), 1U);
ASSERT_EQ(clk.get(0), 1U);
clk.set(3, clk.get(3) + 1);
ASSERT_EQ(clk.size(), 4U);
ASSERT_EQ(clk.get(0), 1U);
ASSERT_EQ(clk.get(1), 0U);
ASSERT_EQ(clk.get(2), 0U);
ASSERT_EQ(clk.get(3), 1U);
clk.set(3, clk.get(3) + 1);
ASSERT_EQ(clk.get(3), 2U);
}
TEST(Clock, ChunkedBasic) {
ThreadClock vector(0);
SyncClock chunked;
ASSERT_EQ(vector.size(), 1U);
ASSERT_EQ(chunked.size(), 0U);
vector.acquire(&chunked);
ASSERT_EQ(vector.size(), 1U);
ASSERT_EQ(chunked.size(), 0U);
vector.release(&chunked);
ASSERT_EQ(vector.size(), 1U);
ASSERT_EQ(chunked.size(), 1U);
vector.acq_rel(&chunked);
ASSERT_EQ(vector.size(), 1U);
ASSERT_EQ(chunked.size(), 1U);
}
TEST(Clock, AcquireRelease) {
ThreadClock vector1(100);
vector1.tick();
SyncClock chunked;
vector1.release(&chunked);
ASSERT_EQ(chunked.size(), 101U);
ThreadClock vector2(0);
vector2.acquire(&chunked);
ASSERT_EQ(vector2.size(), 101U);
ASSERT_EQ(vector2.get(0), 0U);
ASSERT_EQ(vector2.get(1), 0U);
ASSERT_EQ(vector2.get(99), 0U);
ASSERT_EQ(vector2.get(100), 1U);
}
TEST(Clock, RepeatedAcquire) {
ThreadClock thr1(1);
thr1.tick();
ThreadClock thr2(2);
thr2.tick();
SyncClock sync;
thr1.ReleaseStore(&sync);
thr2.acquire(&sync);
thr2.acquire(&sync);
}
TEST(Clock, ManyThreads) {
SyncClock chunked;
for (unsigned i = 0; i < 100; i++) {
ThreadClock vector(0);
vector.tick();
vector.set(i, 1);
vector.release(&chunked);
ASSERT_EQ(i + 1, chunked.size());
vector.acquire(&chunked);
ASSERT_EQ(i + 1, vector.size());
}
for (unsigned i = 0; i < 100; i++)
ASSERT_EQ(1U, chunked.get(i));
ThreadClock vector(1);
vector.acquire(&chunked);
ASSERT_EQ(100U, vector.size());
for (unsigned i = 0; i < 100; i++)
ASSERT_EQ(1U, vector.get(i));
}
TEST(Clock, DifferentSizes) {
{
ThreadClock vector1(10);
vector1.tick();
ThreadClock vector2(20);
vector2.tick();
{
SyncClock chunked;
vector1.release(&chunked);
ASSERT_EQ(chunked.size(), 11U);
vector2.release(&chunked);
ASSERT_EQ(chunked.size(), 21U);
}
{
SyncClock chunked;
vector2.release(&chunked);
ASSERT_EQ(chunked.size(), 21U);
vector1.release(&chunked);
ASSERT_EQ(chunked.size(), 21U);
}
{
SyncClock chunked;
vector1.release(&chunked);
vector2.acquire(&chunked);
ASSERT_EQ(vector2.size(), 21U);
}
{
SyncClock chunked;
vector2.release(&chunked);
vector1.acquire(&chunked);
ASSERT_EQ(vector1.size(), 21U);
}
}
}
const int kThreads = 4;
const int kClocks = 4;
// SimpleSyncClock and SimpleThreadClock implement the same thing as
// SyncClock and ThreadClock, but in a very simple way.
struct SimpleSyncClock {
u64 clock[kThreads];
uptr size;
SimpleSyncClock() {
Reset();
}
void Reset() {
size = 0;
for (uptr i = 0; i < kThreads; i++)
clock[i] = 0;
}
bool verify(const SyncClock *other) const {
for (uptr i = 0; i < min(size, other->size()); i++) {
if (clock[i] != other->get(i))
return false;
}
for (uptr i = min(size, other->size()); i < max(size, other->size()); i++) {
if (i < size && clock[i] != 0)
return false;
if (i < other->size() && other->get(i) != 0)
return false;
}
return true;
}
};
struct SimpleThreadClock {
u64 clock[kThreads];
uptr size;
unsigned tid;
explicit SimpleThreadClock(unsigned tid) {
this->tid = tid;
size = tid + 1;
for (uptr i = 0; i < kThreads; i++)
clock[i] = 0;
}
void tick() {
clock[tid]++;
}
void acquire(const SimpleSyncClock *src) {
if (size < src->size)
size = src->size;
for (uptr i = 0; i < kThreads; i++)
clock[i] = max(clock[i], src->clock[i]);
}
void release(SimpleSyncClock *dst) const {
if (dst->size < size)
dst->size = size;
for (uptr i = 0; i < kThreads; i++)
dst->clock[i] = max(dst->clock[i], clock[i]);
}
void acq_rel(SimpleSyncClock *dst) {
acquire(dst);
release(dst);
}
void ReleaseStore(SimpleSyncClock *dst) const {
if (dst->size < size)
dst->size = size;
for (uptr i = 0; i < kThreads; i++)
dst->clock[i] = clock[i];
}
bool verify(const ThreadClock *other) const {
for (uptr i = 0; i < min(size, other->size()); i++) {
if (clock[i] != other->get(i))
return false;
}
for (uptr i = min(size, other->size()); i < max(size, other->size()); i++) {
if (i < size && clock[i] != 0)
return false;
if (i < other->size() && other->get(i) != 0)
return false;
}
return true;
}
};
static bool ClockFuzzer(bool printing) {
// Create kThreads thread clocks.
SimpleThreadClock *thr0[kThreads];
ThreadClock *thr1[kThreads];
unsigned reused[kThreads];
for (unsigned i = 0; i < kThreads; i++) {
reused[i] = 0;
thr0[i] = new SimpleThreadClock(i);
thr1[i] = new ThreadClock(i, reused[i]);
}
// Create kClocks sync clocks.
SimpleSyncClock *sync0[kClocks];
SyncClock *sync1[kClocks];
for (unsigned i = 0; i < kClocks; i++) {
sync0[i] = new SimpleSyncClock();
sync1[i] = new SyncClock();
}
// Do N random operations (acquire, release, etc) and compare results
// for SimpleThread/SyncClock and real Thread/SyncClock.
for (int i = 0; i < 10000; i++) {
unsigned tid = rand() % kThreads;
unsigned cid = rand() % kClocks;
thr0[tid]->tick();
thr1[tid]->tick();
switch (rand() % 6) {
case 0:
if (printing)
printf("acquire thr%d <- clk%d\n", tid, cid);
thr0[tid]->acquire(sync0[cid]);
thr1[tid]->acquire(sync1[cid]);
break;
case 1:
if (printing)
printf("release thr%d -> clk%d\n", tid, cid);
thr0[tid]->release(sync0[cid]);
thr1[tid]->release(sync1[cid]);
break;
case 2:
if (printing)
printf("acq_rel thr%d <> clk%d\n", tid, cid);
thr0[tid]->acq_rel(sync0[cid]);
thr1[tid]->acq_rel(sync1[cid]);
break;
case 3:
if (printing)
printf("rel_str thr%d >> clk%d\n", tid, cid);
thr0[tid]->ReleaseStore(sync0[cid]);
thr1[tid]->ReleaseStore(sync1[cid]);
break;
case 4:
if (printing)
printf("reset clk%d\n", cid);
sync0[cid]->Reset();
sync1[cid]->Reset();
break;
case 5:
if (printing)
printf("reset thr%d\n", tid);
u64 epoch = thr0[tid]->clock[tid] + 1;
reused[tid]++;
delete thr0[tid];
thr0[tid] = new SimpleThreadClock(tid);
thr0[tid]->clock[tid] = epoch;
delete thr1[tid];
thr1[tid] = new ThreadClock(tid, reused[tid]);
thr1[tid]->set(epoch);
break;
}
if (printing) {
for (unsigned i = 0; i < kThreads; i++) {
printf("thr%d: ", i);
thr1[i]->DebugDump(printf);
printf("\n");
}
for (unsigned i = 0; i < kClocks; i++) {
printf("clk%d: ", i);
sync1[i]->DebugDump(printf);
printf("\n");
}
printf("\n");
}
if (!thr0[tid]->verify(thr1[tid]) || !sync0[cid]->verify(sync1[cid])) {
if (!printing)
return false;
printf("differs with model:\n");
for (unsigned i = 0; i < kThreads; i++) {
printf("thr%d: clock=[", i);
for (uptr j = 0; j < thr0[i]->size; j++)
printf("%s%llu", j == 0 ? "" : ",", thr0[i]->clock[j]);
printf("]\n");
}
for (unsigned i = 0; i < kClocks; i++) {
printf("clk%d: clock=[", i);
for (uptr j = 0; j < sync0[i]->size; j++)
printf("%s%llu", j == 0 ? "" : ",", sync0[i]->clock[j]);
printf("]\n");
}
return false;
}
}
return true;
}
TEST(Clock, Fuzzer) {
timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
int seed = ts.tv_sec + ts.tv_nsec;
printf("seed=%d\n", seed);
srand(seed);
if (!ClockFuzzer(false)) {
// Redo the test with the same seed, but logging operations.
srand(seed);
ClockFuzzer(true);
ASSERT_TRUE(false);
}
}
} // namespace __tsan
|