1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Define several functions to decode x86 specific shuffle semantics into a
// generic vector mask.
//
//===----------------------------------------------------------------------===//
#include "X86ShuffleDecode.h"
#include "llvm/CodeGen/MachineValueType.h"
//===----------------------------------------------------------------------===//
// Vector Mask Decoding
//===----------------------------------------------------------------------===//
namespace llvm {
void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
// Defaults the copying the dest value.
ShuffleMask.push_back(0);
ShuffleMask.push_back(1);
ShuffleMask.push_back(2);
ShuffleMask.push_back(3);
// Decode the immediate.
unsigned ZMask = Imm & 15;
unsigned CountD = (Imm >> 4) & 3;
unsigned CountS = (Imm >> 6) & 3;
// CountS selects which input element to use.
unsigned InVal = 4+CountS;
// CountD specifies which element of destination to update.
ShuffleMask[CountD] = InVal;
// ZMask zaps values, potentially overriding the CountD elt.
if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
}
// <3,1> or <6,7,2,3>
void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
for (unsigned i = NElts/2; i != NElts; ++i)
ShuffleMask.push_back(NElts+i);
for (unsigned i = NElts/2; i != NElts; ++i)
ShuffleMask.push_back(i);
}
// <0,2> or <0,1,4,5>
void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
for (unsigned i = 0; i != NElts/2; ++i)
ShuffleMask.push_back(i);
for (unsigned i = 0; i != NElts/2; ++i)
ShuffleMask.push_back(NElts+i);
}
void DecodePALIGNRMask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8);
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
unsigned Base = i + Offset;
// if i+offset is out of this lane then we actually need the other source
if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
ShuffleMask.push_back(Base + l);
}
}
}
/// DecodePSHUFMask - This decodes the shuffle masks for pshufd, and vpermilp*.
/// VT indicates the type of the vector allowing it to handle different
/// datatypes and vector widths.
void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumLaneElts = NumElts / NumLanes;
unsigned NewImm = Imm;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
ShuffleMask.push_back(NewImm % NumLaneElts + l);
NewImm /= NumLaneElts;
}
if (NumLaneElts == 4) NewImm = Imm; // reload imm
}
}
void DecodePSHUFHWMask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
for (unsigned l = 0; l != NumElts; l += 8) {
unsigned NewImm = Imm;
for (unsigned i = 0, e = 4; i != e; ++i) {
ShuffleMask.push_back(l + i);
}
for (unsigned i = 4, e = 8; i != e; ++i) {
ShuffleMask.push_back(l + 4 + (NewImm & 3));
NewImm >>= 2;
}
}
}
void DecodePSHUFLWMask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
for (unsigned l = 0; l != NumElts; l += 8) {
unsigned NewImm = Imm;
for (unsigned i = 0, e = 4; i != e; ++i) {
ShuffleMask.push_back(l + (NewImm & 3));
NewImm >>= 2;
}
for (unsigned i = 4, e = 8; i != e; ++i) {
ShuffleMask.push_back(l + i);
}
}
}
/// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
/// the type of the vector allowing it to handle different datatypes and vector
/// widths.
void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumLaneElts = NumElts / NumLanes;
unsigned NewImm = Imm;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
// each half of a lane comes from different source
for (unsigned s = 0; s != NumElts*2; s += NumElts) {
for (unsigned i = 0; i != NumLaneElts/2; ++i) {
ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
NewImm /= NumLaneElts;
}
}
if (NumLaneElts == 4) NewImm = Imm; // reload imm
}
}
/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
/// and punpckh*. VT indicates the type of the vector allowing it to handle
/// different datatypes and vector widths.
void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = VT.getSizeInBits() / 128;
if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = l + NumLaneElts/2, e = l + NumLaneElts; i != e; ++i) {
ShuffleMask.push_back(i); // Reads from dest/src1
ShuffleMask.push_back(i+NumElts); // Reads from src/src2
}
}
}
/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
/// and punpckl*. VT indicates the type of the vector allowing it to handle
/// different datatypes and vector widths.
void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = VT.getSizeInBits() / 128;
if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = l, e = l + NumLaneElts/2; i != e; ++i) {
ShuffleMask.push_back(i); // Reads from dest/src1
ShuffleMask.push_back(i+NumElts); // Reads from src/src2
}
}
}
void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
if (Imm & 0x88)
return; // Not a shuffle
unsigned HalfSize = VT.getVectorNumElements()/2;
for (unsigned l = 0; l != 2; ++l) {
unsigned HalfBegin = ((Imm >> (l*4)) & 0x3) * HalfSize;
for (unsigned i = HalfBegin, e = HalfBegin+HalfSize; i != e; ++i)
ShuffleMask.push_back(i);
}
}
/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
/// No VT provided since it only works on 256-bit, 4 element vectors.
void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
for (unsigned i = 0; i != 4; ++i) {
ShuffleMask.push_back((Imm >> (2*i)) & 3);
}
}
} // llvm namespace
|