1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the X86-32 and X86-64
// architectures.
//
//===----------------------------------------------------------------------===//
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
: CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
//===----------------------------------------------------------------------===//
// Return Value Calling Conventions
//===----------------------------------------------------------------------===//
// Return-value conventions common to all X86 CC's.
def RetCC_X86Common : CallingConv<[
// Scalar values are returned in AX first, then DX. For i8, the ABI
// requires the values to be in AL and AH, however this code uses AL and DL
// instead. This is because using AH for the second register conflicts with
// the way LLVM does multiple return values -- a return of {i16,i8} would end
// up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
// for functions that return two i8 values are currently expected to pack the
// values into an i16 (which uses AX, and thus AL:AH).
//
// For code that doesn't care about the ABI, we allow returning more than two
// integer values in registers.
CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
// Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3
// can only be used by ABI non-compliant code. If the target doesn't have XMM
// registers, it won't have vector types.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
// 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
// can only be used by ABI non-compliant code. This vector type is only
// supported while using the AVX target feature.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
// 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
// can only be used by ABI non-compliant code. This vector type is only
// supported while using the AVX-512 target feature.
CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
// MMX vector types are always returned in MM0. If the target doesn't have
// MM0, it doesn't support these vector types.
CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
// Long double types are always returned in ST0 (even with SSE).
CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
]>;
// X86-32 C return-value convention.
def RetCC_X86_32_C : CallingConv<[
// The X86-32 calling convention returns FP values in ST0, unless marked
// with "inreg" (used here to distinguish one kind of reg from another,
// weirdly; this is really the sse-regparm calling convention) in which
// case they use XMM0, otherwise it is the same as the common X86 calling
// conv.
CCIfInReg<CCIfSubtarget<"hasSSE2()",
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-32 FastCC return-value convention.
def RetCC_X86_32_Fast : CallingConv<[
// The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
// SSE2.
// This can happen when a float, 2 x float, or 3 x float vector is split by
// target lowering, and is returned in 1-3 sse regs.
CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
// For integers, ECX can be used as an extra return register
CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>,
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
// Otherwise, it is the same as the common X86 calling convention.
CCDelegateTo<RetCC_X86Common>
]>;
// Intel_OCL_BI return-value convention.
def RetCC_Intel_OCL_BI : CallingConv<[
// Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
// 256-bit FP vectors
// No more than 4 registers
CCIfType<[v8f32, v4f64, v8i32, v4i64],
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
// 512-bit FP vectors
CCIfType<[v16f32, v8f64, v16i32, v8i64],
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
// i32, i64 in the standard way
CCDelegateTo<RetCC_X86Common>
]>;
// X86-32 HiPE return-value convention.
def RetCC_X86_32_HiPE : CallingConv<[
// Promote all types to i32
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Return: HP, P, VAL1, VAL2
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
]>;
// X86-64 C return-value convention.
def RetCC_X86_64_C : CallingConv<[
// The X86-64 calling convention always returns FP values in XMM0.
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
// MMX vector types are always returned in XMM0.
CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-Win64 C return-value convention.
def RetCC_X86_Win64_C : CallingConv<[
// The X86-Win64 calling convention always returns __m64 values in RAX.
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
// Otherwise, everything is the same as 'normal' X86-64 C CC.
CCDelegateTo<RetCC_X86_64_C>
]>;
// X86-64 HiPE return-value convention.
def RetCC_X86_64_HiPE : CallingConv<[
// Promote all types to i64
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Return: HP, P, VAL1, VAL2
CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
]>;
// X86-64 WebKit_JS return-value convention.
def RetCC_X86_64_WebKit_JS : CallingConv<[
// Promote all types to i64
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Return: RAX
CCIfType<[i64], CCAssignToReg<[RAX]>>
]>;
// X86-64 AnyReg return-value convention. No explicit register is specified for
// the return-value. The register allocator is allowed and expected to choose
// any free register.
//
// This calling convention is currently only supported by the stackmap and
// patchpoint intrinsics. All other uses will result in an assert on Debug
// builds. On Release builds we fallback to the X86 C calling convention.
def RetCC_X86_64_AnyReg : CallingConv<[
CCCustom<"CC_X86_AnyReg_Error">
]>;
// This is the root return-value convention for the X86-32 backend.
def RetCC_X86_32 : CallingConv<[
// If FastCC, use RetCC_X86_32_Fast.
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
// If HiPE, use RetCC_X86_32_HiPE.
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
// Otherwise, use RetCC_X86_32_C.
CCDelegateTo<RetCC_X86_32_C>
]>;
// This is the root return-value convention for the X86-64 backend.
def RetCC_X86_64 : CallingConv<[
// HiPE uses RetCC_X86_64_HiPE
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
// Handle JavaScript calls.
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
// Handle explicit CC selection
CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
// Mingw64 and native Win64 use Win64 CC
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
// Otherwise, drop to normal X86-64 CC
CCDelegateTo<RetCC_X86_64_C>
]>;
// This is the return-value convention used for the entire X86 backend.
def RetCC_X86 : CallingConv<[
// Check if this is the Intel OpenCL built-ins calling convention
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
CCDelegateTo<RetCC_X86_32>
]>;
//===----------------------------------------------------------------------===//
// X86-64 Argument Calling Conventions
//===----------------------------------------------------------------------===//
def CC_X86_64_C : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<8, 8>>,
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// The first 6 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
// The first 8 MMX vector arguments are passed in XMM registers on Darwin.
CCIfType<[x86mmx],
CCIfSubtarget<"isTargetDarwin()",
CCIfSubtarget<"hasSSE2()",
CCPromoteToType<v2i64>>>>,
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// The first 8 256-bit vector arguments are passed in YMM registers, unless
// this is a vararg function.
// FIXME: This isn't precisely correct; the x86-64 ABI document says that
// fixed arguments to vararg functions are supposed to be passed in
// registers. Actually modeling that would be a lot of work, though.
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasFp256()",
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
YMM4, YMM5, YMM6, YMM7]>>>>,
// The first 8 512-bit vector arguments are passed in ZMM registers.
CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
CCIfSubtarget<"hasAVX512()",
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Long doubles get stack slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80], CCAssignToStack<0, 0>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToStack<32, 32>>,
// 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
CCIfType<[v16i32, v8i64, v16f32, v8f64],
CCAssignToStack<64, 64>>
]>;
// Calling convention used on Win64
def CC_X86_Win64_C : CallingConv<[
// FIXME: Handle byval stuff.
// FIXME: Handle varargs.
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// 128 bit vectors are passed by pointer
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
// 256 bit vectors are passed by pointer
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
// 512 bit vectors are passed by pointer
CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
// The first 4 MMX vector arguments are passed in GPRs.
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
// The first 4 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
[XMM0, XMM1, XMM2, XMM3]>>,
// Do not pass the sret argument in RCX, the Win64 thiscall calling
// convention requires "this" to be passed in RCX.
CCIfCC<"CallingConv::X86_ThisCall",
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ],
[XMM1, XMM2, XMM3]>>>>,
CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
[XMM0, XMM1, XMM2, XMM3]>>,
// The first 4 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
[RCX , RDX , R8 , R9 ]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Long doubles get stack slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80], CCAssignToStack<0, 0>>
]>;
def CC_X86_64_GHC : CallingConv<[
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
CCIfType<[i64],
CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
// Pass in STG registers: F1, F2, F3, F4, D1, D2
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfSubtarget<"hasSSE1()",
CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
]>;
def CC_X86_64_HiPE : CallingConv<[
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
]>;
def CC_X86_64_WebKit_JS : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Only the first integer argument is passed in register.
CCIfType<[i32], CCAssignToReg<[EAX]>>,
CCIfType<[i64], CCAssignToReg<[RAX]>>,
// The remaining integer arguments are passed on the stack. 32bit integer and
// floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
// 64bit integer and floating-point arguments are aligned to 8 byte and stored
// in 8 byte stack slots.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
// No explicit register is specified for the AnyReg calling convention. The
// register allocator may assign the arguments to any free register.
//
// This calling convention is currently only supported by the stackmap and
// patchpoint intrinsics. All other uses will result in an assert on Debug
// builds. On Release builds we fallback to the X86 C calling convention.
def CC_X86_64_AnyReg : CallingConv<[
CCCustom<"CC_X86_AnyReg_Error">
]>;
//===----------------------------------------------------------------------===//
// X86 C Calling Convention
//===----------------------------------------------------------------------===//
/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
/// values are spilled on the stack, and the first 4 vector values go in XMM
/// regs.
def CC_X86_32_Common : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<4, 4>>,
// The first 3 float or double arguments, if marked 'inreg' and if the call
// is not a vararg call and if SSE2 is available, are passed in SSE registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
CCIfSubtarget<"hasSSE2()",
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
// The first 3 __m64 vector arguments are passed in mmx registers if the
// call is not a vararg call.
CCIfNotVarArg<CCIfType<[x86mmx],
CCAssignToReg<[MM0, MM1, MM2]>>>,
// Integer/Float values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
// Doubles get 8-byte slots that are 4-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 4>>,
// Long doubles get slots whose size depends on the subtarget.
CCIfType<[f80], CCAssignToStack<0, 4>>,
// The first 4 SSE vector arguments are passed in XMM registers.
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
// The first 4 AVX 256-bit vector arguments are passed in YMM registers.
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCIfSubtarget<"hasFp256()",
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
// Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
CCAssignToStack<32, 32>>,
// __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
// passed in the parameter area.
CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>;
def CC_X86_32_C : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in ECX.
CCIfNest<CCAssignToReg<[ECX]>>,
// The first 3 integer arguments, if marked 'inreg' and if the call is not
// a vararg call, are passed in integer registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_FastCall : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in EAX.
CCIfNest<CCAssignToReg<[EAX]>>,
// The first 2 integer arguments are passed in ECX/EDX
CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_ThisCall_Common : CallingConv<[
// The first integer argument is passed in ECX
CCIfType<[i32], CCAssignToReg<[ECX]>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_ThisCall_Mingw : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
CCDelegateTo<CC_X86_32_ThisCall_Common>
]>;
def CC_X86_32_ThisCall_Win : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Pass sret arguments indirectly through stack.
CCIfSRet<CCAssignToStack<4, 4>>,
CCDelegateTo<CC_X86_32_ThisCall_Common>
]>;
def CC_X86_32_ThisCall : CallingConv<[
CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
CCDelegateTo<CC_X86_32_ThisCall_Win>
]>;
def CC_X86_32_FastCC : CallingConv<[
// Handles byval parameters. Note that we can't rely on the delegation
// to CC_X86_32_Common for this because that happens after code that
// puts arguments in registers.
CCIfByVal<CCPassByVal<4, 4>>,
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in EAX.
CCIfNest<CCAssignToReg<[EAX]>>,
// The first 2 integer arguments are passed in ECX/EDX
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
// The first 3 float or double arguments, if the call is not a vararg
// call and if SSE2 is available, are passed in SSE registers.
CCIfNotVarArg<CCIfType<[f32,f64],
CCIfSubtarget<"hasSSE2()",
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
// Doubles get 8-byte slots that are 8-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 8>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_GHC : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Pass in STG registers: Base, Sp, Hp, R1
CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
]>;
def CC_X86_32_HiPE : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
// Integer/Float values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>
]>;
// X86-64 Intel OpenCL built-ins calling convention.
def CC_Intel_OCL_BI : CallingConv<[
CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>,
CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
CCIfType<[i32], CCAssignToStack<4, 4>>,
// The SSE vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
// The 256-bit vector arguments are passed in YMM registers.
CCIfType<[v8f32, v4f64, v8i32, v4i64],
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
// The 512-bit vector arguments are passed in ZMM registers.
CCIfType<[v16f32, v8f64, v16i32, v8i64],
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>,
CCDelegateTo<CC_X86_32_C>
]>;
//===----------------------------------------------------------------------===//
// X86 Root Argument Calling Conventions
//===----------------------------------------------------------------------===//
// This is the root argument convention for the X86-32 backend.
def CC_X86_32 : CallingConv<[
CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
// Otherwise, drop to normal X86-32 CC
CCDelegateTo<CC_X86_32_C>
]>;
// This is the root argument convention for the X86-64 backend.
def CC_X86_64 : CallingConv<[
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>,
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
// Mingw64 and native Win64 use Win64 CC
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
// Otherwise, drop to normal X86-64 CC
CCDelegateTo<CC_X86_64_C>
]>;
// This is the argument convention used for the entire X86 backend.
def CC_X86 : CallingConv<[
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
CCDelegateTo<CC_X86_32>
]>;
//===----------------------------------------------------------------------===//
// Callee-saved Registers.
//===----------------------------------------------------------------------===//
def CSR_NoRegs : CalleeSavedRegs<(add)>;
def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15,
(sequence "XMM%u", 6, 15))>;
// All GPRs - except r11
def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
R8, R9, R10, RSP)>;
// All registers - except r11
def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
(sequence "XMM%u", 0, 15))>;
def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
(sequence "YMM%u", 0, 15))>;
def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
R11, R12, R13, R14, R15, RBP,
(sequence "XMM%u", 0, 15))>;
def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX, RSP,
(sequence "XMM%u", 16, 31))>;
def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, RSP,
(sequence "YMM%u", 0, 31)),
(sequence "XMM%u", 0, 15))>;
// Standard C + YMM6-15
def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
R13, R14, R15,
(sequence "YMM%u", 6, 15))>;
def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
R12, R13, R14, R15,
(sequence "ZMM%u", 6, 21),
K4, K5, K6, K7)>;
//Standard C + XMM 8-15
def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64,
(sequence "XMM%u", 8, 15))>;
//Standard C + YMM 8-15
def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64,
(sequence "YMM%u", 8, 15))>;
def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
(sequence "ZMM%u", 16, 31),
K4, K5, K6, K7)>;
|