1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
|
//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs a simple dominator tree walk that eliminates trivially
// redundant instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "early-cse"
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
STATISTIC(NumCSE, "Number of instructions CSE'd");
STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
STATISTIC(NumCSECall, "Number of call instructions CSE'd");
STATISTIC(NumDSE, "Number of trivial dead stores removed");
static unsigned getHash(const void *V) {
return DenseMapInfo<const void*>::getHashValue(V);
}
//===----------------------------------------------------------------------===//
// SimpleValue
//===----------------------------------------------------------------------===//
namespace {
/// SimpleValue - Instances of this struct represent available values in the
/// scoped hash table.
struct SimpleValue {
Instruction *Inst;
SimpleValue(Instruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
}
bool isSentinel() const {
return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
}
static bool canHandle(Instruction *Inst) {
// This can only handle non-void readnone functions.
if (CallInst *CI = dyn_cast<CallInst>(Inst))
return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
}
};
}
namespace llvm {
template<> struct DenseMapInfo<SimpleValue> {
static inline SimpleValue getEmptyKey() {
return DenseMapInfo<Instruction*>::getEmptyKey();
}
static inline SimpleValue getTombstoneKey() {
return DenseMapInfo<Instruction*>::getTombstoneKey();
}
static unsigned getHashValue(SimpleValue Val);
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
};
}
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
Instruction *Inst = Val.Inst;
// Hash in all of the operands as pointers.
if (BinaryOperator* BinOp = dyn_cast<BinaryOperator>(Inst)) {
Value *LHS = BinOp->getOperand(0);
Value *RHS = BinOp->getOperand(1);
if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
std::swap(LHS, RHS);
if (isa<OverflowingBinaryOperator>(BinOp)) {
// Hash the overflow behavior
unsigned Overflow =
BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
BinOp->hasNoUnsignedWrap() * OverflowingBinaryOperator::NoUnsignedWrap;
return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
}
return hash_combine(BinOp->getOpcode(), LHS, RHS);
}
if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
Value *LHS = CI->getOperand(0);
Value *RHS = CI->getOperand(1);
CmpInst::Predicate Pred = CI->getPredicate();
if (Inst->getOperand(0) > Inst->getOperand(1)) {
std::swap(LHS, RHS);
Pred = CI->getSwappedPredicate();
}
return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
}
if (CastInst *CI = dyn_cast<CastInst>(Inst))
return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
IVI->getOperand(1),
hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
isa<ShuffleVectorInst>(Inst)) && "Invalid/unknown instruction");
// Mix in the opcode.
return hash_combine(Inst->getOpcode(),
hash_combine_range(Inst->value_op_begin(),
Inst->value_op_end()));
}
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
if (LHSI->isIdenticalTo(RHSI)) return true;
// If we're not strictly identical, we still might be a commutable instruction
if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
if (!LHSBinOp->isCommutative())
return false;
assert(isa<BinaryOperator>(RHSI)
&& "same opcode, but different instruction type?");
BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
// Check overflow attributes
if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
assert(isa<OverflowingBinaryOperator>(RHSBinOp)
&& "same opcode, but different operator type?");
if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
return false;
}
// Commuted equality
return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
}
if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
assert(isa<CmpInst>(RHSI)
&& "same opcode, but different instruction type?");
CmpInst *RHSCmp = cast<CmpInst>(RHSI);
// Commuted equality
return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
}
return false;
}
//===----------------------------------------------------------------------===//
// CallValue
//===----------------------------------------------------------------------===//
namespace {
/// CallValue - Instances of this struct represent available call values in
/// the scoped hash table.
struct CallValue {
Instruction *Inst;
CallValue(Instruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
}
bool isSentinel() const {
return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
}
static bool canHandle(Instruction *Inst) {
// Don't value number anything that returns void.
if (Inst->getType()->isVoidTy())
return false;
CallInst *CI = dyn_cast<CallInst>(Inst);
if (!CI || !CI->onlyReadsMemory())
return false;
return true;
}
};
}
namespace llvm {
template<> struct DenseMapInfo<CallValue> {
static inline CallValue getEmptyKey() {
return DenseMapInfo<Instruction*>::getEmptyKey();
}
static inline CallValue getTombstoneKey() {
return DenseMapInfo<Instruction*>::getTombstoneKey();
}
static unsigned getHashValue(CallValue Val);
static bool isEqual(CallValue LHS, CallValue RHS);
};
}
unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
Instruction *Inst = Val.Inst;
// Hash in all of the operands as pointers.
unsigned Res = 0;
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
"Cannot value number calls with metadata operands");
Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
}
// Mix in the opcode.
return (Res << 1) ^ Inst->getOpcode();
}
bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
return LHSI->isIdenticalTo(RHSI);
}
//===----------------------------------------------------------------------===//
// EarlyCSE pass.
//===----------------------------------------------------------------------===//
namespace {
/// EarlyCSE - This pass does a simple depth-first walk over the dominator
/// tree, eliminating trivially redundant instructions and using instsimplify
/// to canonicalize things as it goes. It is intended to be fast and catch
/// obvious cases so that instcombine and other passes are more effective. It
/// is expected that a later pass of GVN will catch the interesting/hard
/// cases.
class EarlyCSE : public FunctionPass {
public:
const DataLayout *DL;
const TargetLibraryInfo *TLI;
DominatorTree *DT;
typedef RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
AllocatorTy> ScopedHTType;
/// AvailableValues - This scoped hash table contains the current values of
/// all of our simple scalar expressions. As we walk down the domtree, we
/// look to see if instructions are in this: if so, we replace them with what
/// we find, otherwise we insert them so that dominated values can succeed in
/// their lookup.
ScopedHTType *AvailableValues;
/// AvailableLoads - This scoped hash table contains the current values
/// of loads. This allows us to get efficient access to dominating loads when
/// we have a fully redundant load. In addition to the most recent load, we
/// keep track of a generation count of the read, which is compared against
/// the current generation count. The current generation count is
/// incremented after every possibly writing memory operation, which ensures
/// that we only CSE loads with other loads that have no intervening store.
typedef RecyclingAllocator<BumpPtrAllocator,
ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
LoadHTType *AvailableLoads;
/// AvailableCalls - This scoped hash table contains the current values
/// of read-only call values. It uses the same generation count as loads.
typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
CallHTType *AvailableCalls;
/// CurrentGeneration - This is the current generation of the memory value.
unsigned CurrentGeneration;
static char ID;
explicit EarlyCSE() : FunctionPass(ID) {
initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
private:
// NodeScope - almost a POD, but needs to call the constructors for the
// scoped hash tables so that a new scope gets pushed on. These are RAII so
// that the scope gets popped when the NodeScope is destroyed.
class NodeScope {
public:
NodeScope(ScopedHTType *availableValues,
LoadHTType *availableLoads,
CallHTType *availableCalls) :
Scope(*availableValues),
LoadScope(*availableLoads),
CallScope(*availableCalls) {}
private:
NodeScope(const NodeScope&) LLVM_DELETED_FUNCTION;
void operator=(const NodeScope&) LLVM_DELETED_FUNCTION;
ScopedHTType::ScopeTy Scope;
LoadHTType::ScopeTy LoadScope;
CallHTType::ScopeTy CallScope;
};
// StackNode - contains all the needed information to create a stack for
// doing a depth first tranversal of the tree. This includes scopes for
// values, loads, and calls as well as the generation. There is a child
// iterator so that the children do not need to be store spearately.
class StackNode {
public:
StackNode(ScopedHTType *availableValues,
LoadHTType *availableLoads,
CallHTType *availableCalls,
unsigned cg, DomTreeNode *n,
DomTreeNode::iterator child, DomTreeNode::iterator end) :
CurrentGeneration(cg), ChildGeneration(cg), Node(n),
ChildIter(child), EndIter(end),
Scopes(availableValues, availableLoads, availableCalls),
Processed(false) {}
// Accessors.
unsigned currentGeneration() { return CurrentGeneration; }
unsigned childGeneration() { return ChildGeneration; }
void childGeneration(unsigned generation) { ChildGeneration = generation; }
DomTreeNode *node() { return Node; }
DomTreeNode::iterator childIter() { return ChildIter; }
DomTreeNode *nextChild() {
DomTreeNode *child = *ChildIter;
++ChildIter;
return child;
}
DomTreeNode::iterator end() { return EndIter; }
bool isProcessed() { return Processed; }
void process() { Processed = true; }
private:
StackNode(const StackNode&) LLVM_DELETED_FUNCTION;
void operator=(const StackNode&) LLVM_DELETED_FUNCTION;
// Members.
unsigned CurrentGeneration;
unsigned ChildGeneration;
DomTreeNode *Node;
DomTreeNode::iterator ChildIter;
DomTreeNode::iterator EndIter;
NodeScope Scopes;
bool Processed;
};
bool processNode(DomTreeNode *Node);
// This transformation requires dominator postdominator info
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfo>();
AU.setPreservesCFG();
}
};
}
char EarlyCSE::ID = 0;
// createEarlyCSEPass - The public interface to this file.
FunctionPass *llvm::createEarlyCSEPass() {
return new EarlyCSE();
}
INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
bool EarlyCSE::processNode(DomTreeNode *Node) {
BasicBlock *BB = Node->getBlock();
// If this block has a single predecessor, then the predecessor is the parent
// of the domtree node and all of the live out memory values are still current
// in this block. If this block has multiple predecessors, then they could
// have invalidated the live-out memory values of our parent value. For now,
// just be conservative and invalidate memory if this block has multiple
// predecessors.
if (!BB->getSinglePredecessor())
++CurrentGeneration;
/// LastStore - Keep track of the last non-volatile store that we saw... for
/// as long as there in no instruction that reads memory. If we see a store
/// to the same location, we delete the dead store. This zaps trivial dead
/// stores which can occur in bitfield code among other things.
StoreInst *LastStore = nullptr;
bool Changed = false;
// See if any instructions in the block can be eliminated. If so, do it. If
// not, add them to AvailableValues.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
Instruction *Inst = I++;
// Dead instructions should just be removed.
if (isInstructionTriviallyDead(Inst, TLI)) {
DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
Inst->eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
// its simpler value.
if (Value *V = SimplifyInstruction(Inst, DL, TLI, DT)) {
DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
// If this is a simple instruction that we can value number, process it.
if (SimpleValue::canHandle(Inst)) {
// See if the instruction has an available value. If so, use it.
if (Value *V = AvailableValues->lookup(Inst)) {
DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
++NumCSE;
continue;
}
// Otherwise, just remember that this value is available.
AvailableValues->insert(Inst, Inst);
continue;
}
// If this is a non-volatile load, process it.
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
// Ignore volatile loads.
if (!LI->isSimple()) {
LastStore = nullptr;
continue;
}
// If we have an available version of this load, and if it is the right
// generation, replace this instruction.
std::pair<Value*, unsigned> InVal =
AvailableLoads->lookup(Inst->getOperand(0));
if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: "
<< *InVal.first << '\n');
if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent();
Changed = true;
++NumCSELoad;
continue;
}
// Otherwise, remember that we have this instruction.
AvailableLoads->insert(Inst->getOperand(0),
std::pair<Value*, unsigned>(Inst, CurrentGeneration));
LastStore = nullptr;
continue;
}
// If this instruction may read from memory, forget LastStore.
if (Inst->mayReadFromMemory())
LastStore = nullptr;
// If this is a read-only call, process it.
if (CallValue::canHandle(Inst)) {
// If we have an available version of this call, and if it is the right
// generation, replace this instruction.
std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: "
<< *InVal.first << '\n');
if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent();
Changed = true;
++NumCSECall;
continue;
}
// Otherwise, remember that we have this instruction.
AvailableCalls->insert(Inst,
std::pair<Value*, unsigned>(Inst, CurrentGeneration));
continue;
}
// Okay, this isn't something we can CSE at all. Check to see if it is
// something that could modify memory. If so, our available memory values
// cannot be used so bump the generation count.
if (Inst->mayWriteToMemory()) {
++CurrentGeneration;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// We do a trivial form of DSE if there are two stores to the same
// location with no intervening loads. Delete the earlier store.
if (LastStore &&
LastStore->getPointerOperand() == SI->getPointerOperand()) {
DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: "
<< *Inst << '\n');
LastStore->eraseFromParent();
Changed = true;
++NumDSE;
LastStore = nullptr;
continue;
}
// Okay, we just invalidated anything we knew about loaded values. Try
// to salvage *something* by remembering that the stored value is a live
// version of the pointer. It is safe to forward from volatile stores
// to non-volatile loads, so we don't have to check for volatility of
// the store.
AvailableLoads->insert(SI->getPointerOperand(),
std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
// Remember that this was the last store we saw for DSE.
if (SI->isSimple())
LastStore = SI;
}
}
}
return Changed;
}
bool EarlyCSE::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
std::vector<StackNode *> nodesToProcess;
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = &getAnalysis<TargetLibraryInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
// Tables that the pass uses when walking the domtree.
ScopedHTType AVTable;
AvailableValues = &AVTable;
LoadHTType LoadTable;
AvailableLoads = &LoadTable;
CallHTType CallTable;
AvailableCalls = &CallTable;
CurrentGeneration = 0;
bool Changed = false;
// Process the root node.
nodesToProcess.push_back(
new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
CurrentGeneration, DT->getRootNode(),
DT->getRootNode()->begin(),
DT->getRootNode()->end()));
// Save the current generation.
unsigned LiveOutGeneration = CurrentGeneration;
// Process the stack.
while (!nodesToProcess.empty()) {
// Grab the first item off the stack. Set the current generation, remove
// the node from the stack, and process it.
StackNode *NodeToProcess = nodesToProcess.back();
// Initialize class members.
CurrentGeneration = NodeToProcess->currentGeneration();
// Check if the node needs to be processed.
if (!NodeToProcess->isProcessed()) {
// Process the node.
Changed |= processNode(NodeToProcess->node());
NodeToProcess->childGeneration(CurrentGeneration);
NodeToProcess->process();
} else if (NodeToProcess->childIter() != NodeToProcess->end()) {
// Push the next child onto the stack.
DomTreeNode *child = NodeToProcess->nextChild();
nodesToProcess.push_back(
new StackNode(AvailableValues,
AvailableLoads,
AvailableCalls,
NodeToProcess->childGeneration(), child,
child->begin(), child->end()));
} else {
// It has been processed, and there are no more children to process,
// so delete it and pop it off the stack.
delete NodeToProcess;
nodesToProcess.pop_back();
}
} // while (!nodes...)
// Reset the current generation.
CurrentGeneration = LiveOutGeneration;
return Changed;
}
|