1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
|
//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR.
// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
// of instructions in order to estimate the profitability of vectorization.
//
// The loop vectorizer combines consecutive loop iterations into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
// of the vectorization.
// 3. InnerLoopVectorizer - A unit that performs the actual
// widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
// of vectorization. It decides on the optimal vector width, which
// can be one, if vectorization is not profitable.
//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// Other ideas/concepts are from:
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
// Vectorizing Compilers.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/VectorUtils.h"
#include <algorithm>
#include <map>
#include <tuple>
using namespace llvm;
using namespace llvm::PatternMatch;
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
STATISTIC(LoopsVectorized, "Number of loops vectorized");
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
static cl::opt<unsigned>
VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
cl::desc("Sets the SIMD width. Zero is autoselect."));
static cl::opt<unsigned>
VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
cl::desc("Sets the vectorization unroll count. "
"Zero is autoselect."));
static cl::opt<bool>
EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
cl::desc("Enable if-conversion during vectorization."));
/// We don't vectorize loops with a known constant trip count below this number.
static cl::opt<unsigned>
TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
cl::Hidden,
cl::desc("Don't vectorize loops with a constant "
"trip count that is smaller than this "
"value."));
/// This enables versioning on the strides of symbolically striding memory
/// accesses in code like the following.
/// for (i = 0; i < N; ++i)
/// A[i * Stride1] += B[i * Stride2] ...
///
/// Will be roughly translated to
/// if (Stride1 == 1 && Stride2 == 1) {
/// for (i = 0; i < N; i+=4)
/// A[i:i+3] += ...
/// } else
/// ...
static cl::opt<bool> EnableMemAccessVersioning(
"enable-mem-access-versioning", cl::init(true), cl::Hidden,
cl::desc("Enable symblic stride memory access versioning"));
/// We don't unroll loops with a known constant trip count below this number.
static const unsigned TinyTripCountUnrollThreshold = 128;
/// When performing memory disambiguation checks at runtime do not make more
/// than this number of comparisons.
static const unsigned RuntimeMemoryCheckThreshold = 8;
/// Maximum simd width.
static const unsigned MaxVectorWidth = 64;
static cl::opt<unsigned> ForceTargetNumScalarRegs(
"force-target-num-scalar-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of scalar registers."));
static cl::opt<unsigned> ForceTargetNumVectorRegs(
"force-target-num-vector-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of vector registers."));
/// Maximum vectorization unroll count.
static const unsigned MaxUnrollFactor = 16;
static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor(
"force-target-max-scalar-unroll", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max unroll factor for scalar "
"loops."));
static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor(
"force-target-max-vector-unroll", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max unroll factor for "
"vectorized loops."));
static cl::opt<unsigned> ForceTargetInstructionCost(
"force-target-instruction-cost", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's expected cost for "
"an instruction to a single constant value. Mostly "
"useful for getting consistent testing."));
static cl::opt<unsigned> SmallLoopCost(
"small-loop-cost", cl::init(20), cl::Hidden,
cl::desc("The cost of a loop that is considered 'small' by the unroller."));
static cl::opt<bool> LoopVectorizeWithBlockFrequency(
"loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
cl::desc("Enable the use of the block frequency analysis to access PGO "
"heuristics minimizing code growth in cold regions and being more "
"aggressive in hot regions."));
// Runtime unroll loops for load/store throughput.
static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
"enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
cl::desc("Enable runtime unrolling until load/store ports are saturated"));
/// The number of stores in a loop that are allowed to need predication.
static cl::opt<unsigned> NumberOfStoresToPredicate(
"vectorize-num-stores-pred", cl::init(1), cl::Hidden,
cl::desc("Max number of stores to be predicated behind an if."));
static cl::opt<bool> EnableIndVarRegisterHeur(
"enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
cl::desc("Count the induction variable only once when unrolling"));
static cl::opt<bool> EnableCondStoresVectorization(
"enable-cond-stores-vec", cl::init(false), cl::Hidden,
cl::desc("Enable if predication of stores during vectorization."));
namespace {
// Forward declarations.
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
/// Optimization analysis message produced during vectorization. Messages inform
/// the user why vectorization did not occur.
class Report {
std::string Message;
raw_string_ostream Out;
Instruction *Instr;
public:
Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
Out << "loop not vectorized: ";
}
template <typename A> Report &operator<<(const A &Value) {
Out << Value;
return *this;
}
Instruction *getInstr() { return Instr; }
std::string &str() { return Out.str(); }
operator Twine() { return Out.str(); }
};
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
/// counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
/// instructions.
/// InnerLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The InnerLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class InnerLoopVectorizer {
public:
InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
DominatorTree *DT, const DataLayout *DL,
const TargetLibraryInfo *TLI, unsigned VecWidth,
unsigned UnrollFactor)
: OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
Legal(nullptr) {}
// Perform the actual loop widening (vectorization).
void vectorize(LoopVectorizationLegality *L) {
Legal = L;
// Create a new empty loop. Unlink the old loop and connect the new one.
createEmptyLoop();
// Widen each instruction in the old loop to a new one in the new loop.
// Use the Legality module to find the induction and reduction variables.
vectorizeLoop();
// Register the new loop and update the analysis passes.
updateAnalysis();
}
virtual ~InnerLoopVectorizer() {}
protected:
/// A small list of PHINodes.
typedef SmallVector<PHINode*, 4> PhiVector;
/// When we unroll loops we have multiple vector values for each scalar.
/// This data structure holds the unrolled and vectorized values that
/// originated from one scalar instruction.
typedef SmallVector<Value*, 2> VectorParts;
// When we if-convert we need create edge masks. We have to cache values so
// that we don't end up with exponential recursion/IR.
typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
VectorParts> EdgeMaskCache;
/// \brief Add code that checks at runtime if the accessed arrays overlap.
///
/// Returns a pair of instructions where the first element is the first
/// instruction generated in possibly a sequence of instructions and the
/// second value is the final comparator value or NULL if no check is needed.
std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
/// \brief Add checks for strides that where assumed to be 1.
///
/// Returns the last check instruction and the first check instruction in the
/// pair as (first, last).
std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
/// Create an empty loop, based on the loop ranges of the old loop.
void createEmptyLoop();
/// Copy and widen the instructions from the old loop.
virtual void vectorizeLoop();
/// \brief The Loop exit block may have single value PHI nodes where the
/// incoming value is 'Undef'. While vectorizing we only handled real values
/// that were defined inside the loop. Here we fix the 'undef case'.
/// See PR14725.
void fixLCSSAPHIs();
/// A helper function that computes the predicate of the block BB, assuming
/// that the header block of the loop is set to True. It returns the *entry*
/// mask for the block BB.
VectorParts createBlockInMask(BasicBlock *BB);
/// A helper function that computes the predicate of the edge between SRC
/// and DST.
VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
/// A helper function to vectorize a single BB within the innermost loop.
void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
/// Vectorize a single PHINode in a block. This method handles the induction
/// variable canonicalization. It supports both VF = 1 for unrolled loops and
/// arbitrary length vectors.
void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
unsigned UF, unsigned VF, PhiVector *PV);
/// Insert the new loop to the loop hierarchy and pass manager
/// and update the analysis passes.
void updateAnalysis();
/// This instruction is un-vectorizable. Implement it as a sequence
/// of scalars. If \p IfPredicateStore is true we need to 'hide' each
/// scalarized instruction behind an if block predicated on the control
/// dependence of the instruction.
virtual void scalarizeInstruction(Instruction *Instr,
bool IfPredicateStore=false);
/// Vectorize Load and Store instructions,
virtual void vectorizeMemoryInstruction(Instruction *Instr);
/// Create a broadcast instruction. This method generates a broadcast
/// instruction (shuffle) for loop invariant values and for the induction
/// value. If this is the induction variable then we extend it to N, N+1, ...
/// this is needed because each iteration in the loop corresponds to a SIMD
/// element.
virtual Value *getBroadcastInstrs(Value *V);
/// This function adds 0, 1, 2 ... to each vector element, starting at zero.
/// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
/// The sequence starts at StartIndex.
virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
/// When we go over instructions in the basic block we rely on previous
/// values within the current basic block or on loop invariant values.
/// When we widen (vectorize) values we place them in the map. If the values
/// are not within the map, they have to be loop invariant, so we simply
/// broadcast them into a vector.
VectorParts &getVectorValue(Value *V);
/// Generate a shuffle sequence that will reverse the vector Vec.
virtual Value *reverseVector(Value *Vec);
/// This is a helper class that holds the vectorizer state. It maps scalar
/// instructions to vector instructions. When the code is 'unrolled' then
/// then a single scalar value is mapped to multiple vector parts. The parts
/// are stored in the VectorPart type.
struct ValueMap {
/// C'tor. UnrollFactor controls the number of vectors ('parts') that
/// are mapped.
ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
/// \return True if 'Key' is saved in the Value Map.
bool has(Value *Key) const { return MapStorage.count(Key); }
/// Initializes a new entry in the map. Sets all of the vector parts to the
/// save value in 'Val'.
/// \return A reference to a vector with splat values.
VectorParts &splat(Value *Key, Value *Val) {
VectorParts &Entry = MapStorage[Key];
Entry.assign(UF, Val);
return Entry;
}
///\return A reference to the value that is stored at 'Key'.
VectorParts &get(Value *Key) {
VectorParts &Entry = MapStorage[Key];
if (Entry.empty())
Entry.resize(UF);
assert(Entry.size() == UF);
return Entry;
}
private:
/// The unroll factor. Each entry in the map stores this number of vector
/// elements.
unsigned UF;
/// Map storage. We use std::map and not DenseMap because insertions to a
/// dense map invalidates its iterators.
std::map<Value *, VectorParts> MapStorage;
};
/// The original loop.
Loop *OrigLoop;
/// Scev analysis to use.
ScalarEvolution *SE;
/// Loop Info.
LoopInfo *LI;
/// Dominator Tree.
DominatorTree *DT;
/// Alias Analysis.
AliasAnalysis *AA;
/// Data Layout.
const DataLayout *DL;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// The vectorization SIMD factor to use. Each vector will have this many
/// vector elements.
unsigned VF;
protected:
/// The vectorization unroll factor to use. Each scalar is vectorized to this
/// many different vector instructions.
unsigned UF;
/// The builder that we use
IRBuilder<> Builder;
// --- Vectorization state ---
/// The vector-loop preheader.
BasicBlock *LoopVectorPreHeader;
/// The scalar-loop preheader.
BasicBlock *LoopScalarPreHeader;
/// Middle Block between the vector and the scalar.
BasicBlock *LoopMiddleBlock;
///The ExitBlock of the scalar loop.
BasicBlock *LoopExitBlock;
///The vector loop body.
SmallVector<BasicBlock *, 4> LoopVectorBody;
///The scalar loop body.
BasicBlock *LoopScalarBody;
/// A list of all bypass blocks. The first block is the entry of the loop.
SmallVector<BasicBlock *, 4> LoopBypassBlocks;
/// The new Induction variable which was added to the new block.
PHINode *Induction;
/// The induction variable of the old basic block.
PHINode *OldInduction;
/// Holds the extended (to the widest induction type) start index.
Value *ExtendedIdx;
/// Maps scalars to widened vectors.
ValueMap WidenMap;
EdgeMaskCache MaskCache;
LoopVectorizationLegality *Legal;
};
class InnerLoopUnroller : public InnerLoopVectorizer {
public:
InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
DominatorTree *DT, const DataLayout *DL,
const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
private:
void scalarizeInstruction(Instruction *Instr,
bool IfPredicateStore = false) override;
void vectorizeMemoryInstruction(Instruction *Instr) override;
Value *getBroadcastInstrs(Value *V) override;
Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
Value *reverseVector(Value *Vec) override;
};
/// \brief Look for a meaningful debug location on the instruction or it's
/// operands.
static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
if (!I)
return I;
DebugLoc Empty;
if (I->getDebugLoc() != Empty)
return I;
for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
if (OpInst->getDebugLoc() != Empty)
return OpInst;
}
return I;
}
/// \brief Set the debug location in the builder using the debug location in the
/// instruction.
static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
B.SetCurrentDebugLocation(Inst->getDebugLoc());
else
B.SetCurrentDebugLocation(DebugLoc());
}
#ifndef NDEBUG
/// \return string containing a file name and a line # for the given loop.
static std::string getDebugLocString(const Loop *L) {
std::string Result;
if (L) {
raw_string_ostream OS(Result);
const DebugLoc LoopDbgLoc = L->getStartLoc();
if (!LoopDbgLoc.isUnknown())
LoopDbgLoc.print(L->getHeader()->getContext(), OS);
else
// Just print the module name.
OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
OS.flush();
}
return Result;
}
#endif
/// \brief Propagate known metadata from one instruction to another.
static void propagateMetadata(Instruction *To, const Instruction *From) {
SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
From->getAllMetadataOtherThanDebugLoc(Metadata);
for (auto M : Metadata) {
unsigned Kind = M.first;
// These are safe to transfer (this is safe for TBAA, even when we
// if-convert, because should that metadata have had a control dependency
// on the condition, and thus actually aliased with some other
// non-speculated memory access when the condition was false, this would be
// caught by the runtime overlap checks).
if (Kind != LLVMContext::MD_tbaa &&
Kind != LLVMContext::MD_fpmath)
continue;
To->setMetadata(Kind, M.second);
}
}
/// \brief Propagate known metadata from one instruction to a vector of others.
static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) {
for (Value *V : To)
if (Instruction *I = dyn_cast<Instruction>(V))
propagateMetadata(I, From);
}
/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
/// to what vectorization factor.
/// This class does not look at the profitability of vectorization, only the
/// legality. This class has two main kinds of checks:
/// * Memory checks - The code in canVectorizeMemory checks if vectorization
/// will change the order of memory accesses in a way that will change the
/// correctness of the program.
/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
/// checks for a number of different conditions, such as the availability of a
/// single induction variable, that all types are supported and vectorize-able,
/// etc. This code reflects the capabilities of InnerLoopVectorizer.
/// This class is also used by InnerLoopVectorizer for identifying
/// induction variable and the different reduction variables.
class LoopVectorizationLegality {
public:
unsigned NumLoads;
unsigned NumStores;
unsigned NumPredStores;
LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
DominatorTree *DT, TargetLibraryInfo *TLI,
AliasAnalysis *AA, Function *F)
: NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr),
WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
}
/// This enum represents the kinds of reductions that we support.
enum ReductionKind {
RK_NoReduction, ///< Not a reduction.
RK_IntegerAdd, ///< Sum of integers.
RK_IntegerMult, ///< Product of integers.
RK_IntegerOr, ///< Bitwise or logical OR of numbers.
RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
RK_FloatAdd, ///< Sum of floats.
RK_FloatMult, ///< Product of floats.
RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
};
/// This enum represents the kinds of inductions that we support.
enum InductionKind {
IK_NoInduction, ///< Not an induction variable.
IK_IntInduction, ///< Integer induction variable. Step = 1.
IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
};
// This enum represents the kind of minmax reduction.
enum MinMaxReductionKind {
MRK_Invalid,
MRK_UIntMin,
MRK_UIntMax,
MRK_SIntMin,
MRK_SIntMax,
MRK_FloatMin,
MRK_FloatMax
};
/// This struct holds information about reduction variables.
struct ReductionDescriptor {
ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
MinMaxReductionKind MK)
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
// The starting value of the reduction.
// It does not have to be zero!
TrackingVH<Value> StartValue;
// The instruction who's value is used outside the loop.
Instruction *LoopExitInstr;
// The kind of the reduction.
ReductionKind Kind;
// If this a min/max reduction the kind of reduction.
MinMaxReductionKind MinMaxKind;
};
/// This POD struct holds information about a potential reduction operation.
struct ReductionInstDesc {
ReductionInstDesc(bool IsRedux, Instruction *I) :
IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
// Is this instruction a reduction candidate.
bool IsReduction;
// The last instruction in a min/max pattern (select of the select(icmp())
// pattern), or the current reduction instruction otherwise.
Instruction *PatternLastInst;
// If this is a min/max pattern the comparison predicate.
MinMaxReductionKind MinMaxKind;
};
/// This struct holds information about the memory runtime legality
/// check that a group of pointers do not overlap.
struct RuntimePointerCheck {
RuntimePointerCheck() : Need(false) {}
/// Reset the state of the pointer runtime information.
void reset() {
Need = false;
Pointers.clear();
Starts.clear();
Ends.clear();
IsWritePtr.clear();
DependencySetId.clear();
AliasSetId.clear();
}
/// Insert a pointer and calculate the start and end SCEVs.
void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides);
/// This flag indicates if we need to add the runtime check.
bool Need;
/// Holds the pointers that we need to check.
SmallVector<TrackingVH<Value>, 2> Pointers;
/// Holds the pointer value at the beginning of the loop.
SmallVector<const SCEV*, 2> Starts;
/// Holds the pointer value at the end of the loop.
SmallVector<const SCEV*, 2> Ends;
/// Holds the information if this pointer is used for writing to memory.
SmallVector<bool, 2> IsWritePtr;
/// Holds the id of the set of pointers that could be dependent because of a
/// shared underlying object.
SmallVector<unsigned, 2> DependencySetId;
/// Holds the id of the disjoint alias set to which this pointer belongs.
SmallVector<unsigned, 2> AliasSetId;
};
/// A struct for saving information about induction variables.
struct InductionInfo {
InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
/// Start value.
TrackingVH<Value> StartValue;
/// Induction kind.
InductionKind IK;
};
/// ReductionList contains the reduction descriptors for all
/// of the reductions that were found in the loop.
typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
/// InductionList saves induction variables and maps them to the
/// induction descriptor.
typedef MapVector<PHINode*, InductionInfo> InductionList;
/// Returns true if it is legal to vectorize this loop.
/// This does not mean that it is profitable to vectorize this
/// loop, only that it is legal to do so.
bool canVectorize();
/// Returns the Induction variable.
PHINode *getInduction() { return Induction; }
/// Returns the reduction variables found in the loop.
ReductionList *getReductionVars() { return &Reductions; }
/// Returns the induction variables found in the loop.
InductionList *getInductionVars() { return &Inductions; }
/// Returns the widest induction type.
Type *getWidestInductionType() { return WidestIndTy; }
/// Returns True if V is an induction variable in this loop.
bool isInductionVariable(const Value *V);
/// Return true if the block BB needs to be predicated in order for the loop
/// to be vectorized.
bool blockNeedsPredication(BasicBlock *BB);
/// Check if this pointer is consecutive when vectorizing. This happens
/// when the last index of the GEP is the induction variable, or that the
/// pointer itself is an induction variable.
/// This check allows us to vectorize A[idx] into a wide load/store.
/// Returns:
/// 0 - Stride is unknown or non-consecutive.
/// 1 - Address is consecutive.
/// -1 - Address is consecutive, and decreasing.
int isConsecutivePtr(Value *Ptr);
/// Returns true if the value V is uniform within the loop.
bool isUniform(Value *V);
/// Returns true if this instruction will remain scalar after vectorization.
bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
/// Returns the information that we collected about runtime memory check.
RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
/// This function returns the identity element (or neutral element) for
/// the operation K.
static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
bool hasStride(Value *V) { return StrideSet.count(V); }
bool mustCheckStrides() { return !StrideSet.empty(); }
SmallPtrSet<Value *, 8>::iterator strides_begin() {
return StrideSet.begin();
}
SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
private:
/// Check if a single basic block loop is vectorizable.
/// At this point we know that this is a loop with a constant trip count
/// and we only need to check individual instructions.
bool canVectorizeInstrs();
/// When we vectorize loops we may change the order in which
/// we read and write from memory. This method checks if it is
/// legal to vectorize the code, considering only memory constrains.
/// Returns true if the loop is vectorizable
bool canVectorizeMemory();
/// Return true if we can vectorize this loop using the IF-conversion
/// transformation.
bool canVectorizeWithIfConvert();
/// Collect the variables that need to stay uniform after vectorization.
void collectLoopUniforms();
/// Return true if all of the instructions in the block can be speculatively
/// executed. \p SafePtrs is a list of addresses that are known to be legal
/// and we know that we can read from them without segfault.
bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
/// Returns True, if 'Phi' is the kind of reduction variable for type
/// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
/// Returns a struct describing if the instruction 'I' can be a reduction
/// variable of type 'Kind'. If the reduction is a min/max pattern of
/// select(icmp()) this function advances the instruction pointer 'I' from the
/// compare instruction to the select instruction and stores this pointer in
/// 'PatternLastInst' member of the returned struct.
ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
ReductionInstDesc &Desc);
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
ReductionInstDesc &Prev);
/// Returns the induction kind of Phi. This function may return NoInduction
/// if the PHI is not an induction variable.
InductionKind isInductionVariable(PHINode *Phi);
/// \brief Collect memory access with loop invariant strides.
///
/// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
/// invariant.
void collectStridedAcccess(Value *LoadOrStoreInst);
/// Report an analysis message to assist the user in diagnosing loops that are
/// not vectorized.
void emitAnalysis(Report &Message) {
DebugLoc DL = TheLoop->getStartLoc();
if (Instruction *I = Message.getInstr())
DL = I->getDebugLoc();
emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
*TheFunction, DL, Message.str());
}
/// The loop that we evaluate.
Loop *TheLoop;
/// Scev analysis.
ScalarEvolution *SE;
/// DataLayout analysis.
const DataLayout *DL;
/// Dominators.
DominatorTree *DT;
/// Target Library Info.
TargetLibraryInfo *TLI;
/// Alias analysis.
AliasAnalysis *AA;
/// Parent function
Function *TheFunction;
// --- vectorization state --- //
/// Holds the integer induction variable. This is the counter of the
/// loop.
PHINode *Induction;
/// Holds the reduction variables.
ReductionList Reductions;
/// Holds all of the induction variables that we found in the loop.
/// Notice that inductions don't need to start at zero and that induction
/// variables can be pointers.
InductionList Inductions;
/// Holds the widest induction type encountered.
Type *WidestIndTy;
/// Allowed outside users. This holds the reduction
/// vars which can be accessed from outside the loop.
SmallPtrSet<Value*, 4> AllowedExit;
/// This set holds the variables which are known to be uniform after
/// vectorization.
SmallPtrSet<Instruction*, 4> Uniforms;
/// We need to check that all of the pointers in this list are disjoint
/// at runtime.
RuntimePointerCheck PtrRtCheck;
/// Can we assume the absence of NaNs.
bool HasFunNoNaNAttr;
unsigned MaxSafeDepDistBytes;
ValueToValueMap Strides;
SmallPtrSet<Value *, 8> StrideSet;
};
/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because of
/// a number of reasons. In this class we mainly attempt to predict the
/// expected speedup/slowdowns due to the supported instruction set. We use the
/// TargetTransformInfo to query the different backends for the cost of
/// different operations.
class LoopVectorizationCostModel {
public:
LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
LoopVectorizationLegality *Legal,
const TargetTransformInfo &TTI,
const DataLayout *DL, const TargetLibraryInfo *TLI)
: TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
/// Information about vectorization costs
struct VectorizationFactor {
unsigned Width; // Vector width with best cost
unsigned Cost; // Cost of the loop with that width
};
/// \return The most profitable vectorization factor and the cost of that VF.
/// This method checks every power of two up to VF. If UserVF is not ZERO
/// then this vectorization factor will be selected if vectorization is
/// possible.
VectorizationFactor selectVectorizationFactor(bool OptForSize,
unsigned UserVF,
bool ForceVectorization);
/// \return The size (in bits) of the widest type in the code that
/// needs to be vectorized. We ignore values that remain scalar such as
/// 64 bit loop indices.
unsigned getWidestType();
/// \return The most profitable unroll factor.
/// If UserUF is non-zero then this method finds the best unroll-factor
/// based on register pressure and other parameters.
/// VF and LoopCost are the selected vectorization factor and the cost of the
/// selected VF.
unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
unsigned LoopCost);
/// \brief A struct that represents some properties of the register usage
/// of a loop.
struct RegisterUsage {
/// Holds the number of loop invariant values that are used in the loop.
unsigned LoopInvariantRegs;
/// Holds the maximum number of concurrent live intervals in the loop.
unsigned MaxLocalUsers;
/// Holds the number of instructions in the loop.
unsigned NumInstructions;
};
/// \return information about the register usage of the loop.
RegisterUsage calculateRegisterUsage();
private:
/// Returns the expected execution cost. The unit of the cost does
/// not matter because we use the 'cost' units to compare different
/// vector widths. The cost that is returned is *not* normalized by
/// the factor width.
unsigned expectedCost(unsigned VF);
/// Returns the execution time cost of an instruction for a given vector
/// width. Vector width of one means scalar.
unsigned getInstructionCost(Instruction *I, unsigned VF);
/// A helper function for converting Scalar types to vector types.
/// If the incoming type is void, we return void. If the VF is 1, we return
/// the scalar type.
static Type* ToVectorTy(Type *Scalar, unsigned VF);
/// Returns whether the instruction is a load or store and will be a emitted
/// as a vector operation.
bool isConsecutiveLoadOrStore(Instruction *I);
/// The loop that we evaluate.
Loop *TheLoop;
/// Scev analysis.
ScalarEvolution *SE;
/// Loop Info analysis.
LoopInfo *LI;
/// Vectorization legality.
LoopVectorizationLegality *Legal;
/// Vector target information.
const TargetTransformInfo &TTI;
/// Target data layout information.
const DataLayout *DL;
/// Target Library Info.
const TargetLibraryInfo *TLI;
};
/// Utility class for getting and setting loop vectorizer hints in the form
/// of loop metadata.
class LoopVectorizeHints {
public:
enum ForceKind {
FK_Undefined = -1, ///< Not selected.
FK_Disabled = 0, ///< Forcing disabled.
FK_Enabled = 1, ///< Forcing enabled.
};
LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
: Width(VectorizationFactor),
Unroll(DisableUnrolling),
Force(FK_Undefined),
LoopID(L->getLoopID()) {
getHints(L);
// force-vector-unroll overrides DisableUnrolling.
if (VectorizationUnroll.getNumOccurrences() > 0)
Unroll = VectorizationUnroll;
DEBUG(if (DisableUnrolling && Unroll == 1) dbgs()
<< "LV: Unrolling disabled by the pass manager\n");
}
/// Return the loop metadata prefix.
static StringRef Prefix() { return "llvm.loop."; }
MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const {
SmallVector<Value*, 2> Vals;
Vals.push_back(MDString::get(Context, Name));
Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
return MDNode::get(Context, Vals);
}
/// Mark the loop L as already vectorized by setting the width to 1.
void setAlreadyVectorized(Loop *L) {
LLVMContext &Context = L->getHeader()->getContext();
Width = 1;
// Create a new loop id with one more operand for the already_vectorized
// hint. If the loop already has a loop id then copy the existing operands.
SmallVector<Value*, 4> Vals(1);
if (LoopID)
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
Vals.push_back(LoopID->getOperand(i));
Vals.push_back(
createHint(Context, Twine(Prefix(), "vectorize.width").str(), Width));
Vals.push_back(
createHint(Context, Twine(Prefix(), "interleave.count").str(), 1));
MDNode *NewLoopID = MDNode::get(Context, Vals);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
L->setLoopID(NewLoopID);
if (LoopID)
LoopID->replaceAllUsesWith(NewLoopID);
LoopID = NewLoopID;
}
std::string emitRemark() const {
Report R;
R << "vectorization ";
switch (Force) {
case LoopVectorizeHints::FK_Disabled:
R << "is explicitly disabled";
break;
case LoopVectorizeHints::FK_Enabled:
R << "is explicitly enabled";
if (Width != 0 && Unroll != 0)
R << " with width " << Width << " and interleave count " << Unroll;
else if (Width != 0)
R << " with width " << Width;
else if (Unroll != 0)
R << " with interleave count " << Unroll;
break;
case LoopVectorizeHints::FK_Undefined:
R << "was not specified";
break;
}
return R.str();
}
unsigned getWidth() const { return Width; }
unsigned getUnroll() const { return Unroll; }
enum ForceKind getForce() const { return Force; }
MDNode *getLoopID() const { return LoopID; }
private:
/// Find hints specified in the loop metadata.
void getHints(const Loop *L) {
if (!LoopID)
return;
// First operand should refer to the loop id itself.
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
const MDString *S = nullptr;
SmallVector<Value*, 4> Args;
// The expected hint is either a MDString or a MDNode with the first
// operand a MDString.
if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
if (!MD || MD->getNumOperands() == 0)
continue;
S = dyn_cast<MDString>(MD->getOperand(0));
for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
Args.push_back(MD->getOperand(i));
} else {
S = dyn_cast<MDString>(LoopID->getOperand(i));
assert(Args.size() == 0 && "too many arguments for MDString");
}
if (!S)
continue;
// Check if the hint starts with the loop metadata prefix.
StringRef Hint = S->getString();
if (!Hint.startswith(Prefix()))
continue;
// Remove the prefix.
Hint = Hint.substr(Prefix().size(), StringRef::npos);
if (Args.size() == 1)
getHint(Hint, Args[0]);
}
}
// Check string hint with one operand.
void getHint(StringRef Hint, Value *Arg) {
const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
if (!C) return;
unsigned Val = C->getZExtValue();
if (Hint == "vectorize.width") {
if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
Width = Val;
else
DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
} else if (Hint == "vectorize.enable") {
if (C->getBitWidth() == 1)
Force = Val == 1 ? LoopVectorizeHints::FK_Enabled
: LoopVectorizeHints::FK_Disabled;
else
DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n");
} else if (Hint == "interleave.count") {
if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
Unroll = Val;
else
DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
} else {
DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
}
}
/// Vectorization width.
unsigned Width;
/// Vectorization unroll factor.
unsigned Unroll;
/// Vectorization forced
enum ForceKind Force;
MDNode *LoopID;
};
static void emitMissedWarning(Function *F, Loop *L,
const LoopVectorizeHints &LH) {
emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
L->getStartLoc(), LH.emitRemark());
if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
if (LH.getWidth() != 1)
emitLoopVectorizeWarning(
F->getContext(), *F, L->getStartLoc(),
"failed explicitly specified loop vectorization");
else if (LH.getUnroll() != 1)
emitLoopInterleaveWarning(
F->getContext(), *F, L->getStartLoc(),
"failed explicitly specified loop interleaving");
}
}
static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
if (L.empty())
return V.push_back(&L);
for (Loop *InnerL : L)
addInnerLoop(*InnerL, V);
}
/// The LoopVectorize Pass.
struct LoopVectorize : public FunctionPass {
/// Pass identification, replacement for typeid
static char ID;
explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
: FunctionPass(ID),
DisableUnrolling(NoUnrolling),
AlwaysVectorize(AlwaysVectorize) {
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
}
ScalarEvolution *SE;
const DataLayout *DL;
LoopInfo *LI;
TargetTransformInfo *TTI;
DominatorTree *DT;
BlockFrequencyInfo *BFI;
TargetLibraryInfo *TLI;
AliasAnalysis *AA;
bool DisableUnrolling;
bool AlwaysVectorize;
BlockFrequency ColdEntryFreq;
bool runOnFunction(Function &F) override {
SE = &getAnalysis<ScalarEvolution>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
LI = &getAnalysis<LoopInfo>();
TTI = &getAnalysis<TargetTransformInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
BFI = &getAnalysis<BlockFrequencyInfo>();
TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
AA = &getAnalysis<AliasAnalysis>();
// Compute some weights outside of the loop over the loops. Compute this
// using a BranchProbability to re-use its scaling math.
const BranchProbability ColdProb(1, 5); // 20%
ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
// If the target claims to have no vector registers don't attempt
// vectorization.
if (!TTI->getNumberOfRegisters(true))
return false;
if (!DL) {
DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
<< ": Missing data layout\n");
return false;
}
// Build up a worklist of inner-loops to vectorize. This is necessary as
// the act of vectorizing or partially unrolling a loop creates new loops
// and can invalidate iterators across the loops.
SmallVector<Loop *, 8> Worklist;
for (Loop *L : *LI)
addInnerLoop(*L, Worklist);
LoopsAnalyzed += Worklist.size();
// Now walk the identified inner loops.
bool Changed = false;
while (!Worklist.empty())
Changed |= processLoop(Worklist.pop_back_val());
// Process each loop nest in the function.
return Changed;
}
bool processLoop(Loop *L) {
assert(L->empty() && "Only process inner loops.");
#ifndef NDEBUG
const std::string DebugLocStr = getDebugLocString(L);
#endif /* NDEBUG */
DEBUG(dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() << "\" from "
<< DebugLocStr << "\n");
LoopVectorizeHints Hints(L, DisableUnrolling);
DEBUG(dbgs() << "LV: Loop hints:"
<< " force="
<< (Hints.getForce() == LoopVectorizeHints::FK_Disabled
? "disabled"
: (Hints.getForce() == LoopVectorizeHints::FK_Enabled
? "enabled"
: "?")) << " width=" << Hints.getWidth()
<< " unroll=" << Hints.getUnroll() << "\n");
// Function containing loop
Function *F = L->getHeader()->getParent();
// Looking at the diagnostic output is the only way to determine if a loop
// was vectorized (other than looking at the IR or machine code), so it
// is important to generate an optimization remark for each loop. Most of
// these messages are generated by emitOptimizationRemarkAnalysis. Remarks
// generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
// less verbose reporting vectorized loops and unvectorized loops that may
// benefit from vectorization, respectively.
if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
L->getStartLoc(), Hints.emitRemark());
return false;
}
if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
L->getStartLoc(), Hints.emitRemark());
return false;
}
if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) {
DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
emitOptimizationRemarkAnalysis(
F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
"loop not vectorized: vector width and interleave count are "
"explicitly set to 1");
return false;
}
// Check the loop for a trip count threshold:
// do not vectorize loops with a tiny trip count.
BasicBlock *Latch = L->getLoopLatch();
const unsigned TC = SE->getSmallConstantTripCount(L, Latch);
if (TC > 0u && TC < TinyTripCountVectorThreshold) {
DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is not worth vectorizing.");
if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
else {
DEBUG(dbgs() << "\n");
emitOptimizationRemarkAnalysis(
F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
"vectorization is not beneficial and is not explicitly forced");
return false;
}
}
// Check if it is legal to vectorize the loop.
LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints);
return false;
}
// Use the cost model.
LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
// Check the function attributes to find out if this function should be
// optimized for size.
bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
F->hasFnAttribute(Attribute::OptimizeForSize);
// Compute the weighted frequency of this loop being executed and see if it
// is less than 20% of the function entry baseline frequency. Note that we
// always have a canonical loop here because we think we *can* vectoriez.
// FIXME: This is hidden behind a flag due to pervasive problems with
// exactly what block frequency models.
if (LoopVectorizeWithBlockFrequency) {
BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
LoopEntryFreq < ColdEntryFreq)
OptForSize = true;
}
// Check the function attributes to see if implicit floats are allowed.a
// FIXME: This check doesn't seem possibly correct -- what if the loop is
// an integer loop and the vector instructions selected are purely integer
// vector instructions?
if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n");
emitOptimizationRemarkAnalysis(
F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
"loop not vectorized due to NoImplicitFloat attribute");
emitMissedWarning(F, L, Hints);
return false;
}
// Select the optimal vectorization factor.
const LoopVectorizationCostModel::VectorizationFactor VF =
CM.selectVectorizationFactor(OptForSize, Hints.getWidth(),
Hints.getForce() ==
LoopVectorizeHints::FK_Enabled);
// Select the unroll factor.
const unsigned UF =
CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost);
DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
<< DebugLocStr << '\n');
DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
if (VF.Width == 1) {
DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
if (UF == 1) {
emitOptimizationRemarkAnalysis(
F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
"not beneficial to vectorize and user disabled interleaving");
return false;
}
DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
// Report the unrolling decision.
emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
Twine("unrolled with interleaving factor " +
Twine(UF) +
" (vectorization not beneficial)"));
// We decided not to vectorize, but we may want to unroll.
InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
Unroller.vectorize(&LVL);
} else {
// If we decided that it is *legal* to vectorize the loop then do it.
InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
LB.vectorize(&LVL);
++LoopsVectorized;
// Report the vectorization decision.
emitOptimizationRemark(
F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
", unrolling interleave factor: " + Twine(UF) + ")");
}
// Mark the loop as already vectorized to avoid vectorizing again.
Hints.setAlreadyVectorized(L);
DEBUG(verifyFunction(*L->getHeader()->getParent()));
return true;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addRequired<BlockFrequencyInfo>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<TargetTransformInfo>();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<AliasAnalysis>();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
// LoopVectorizationCostModel.
//===----------------------------------------------------------------------===//
static Value *stripIntegerCast(Value *V) {
if (CastInst *CI = dyn_cast<CastInst>(V))
if (CI->getOperand(0)->getType()->isIntegerTy())
return CI->getOperand(0);
return V;
}
///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
///
/// If \p OrigPtr is not null, use it to look up the stride value instead of
/// \p Ptr.
static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
ValueToValueMap &PtrToStride,
Value *Ptr, Value *OrigPtr = nullptr) {
const SCEV *OrigSCEV = SE->getSCEV(Ptr);
// If there is an entry in the map return the SCEV of the pointer with the
// symbolic stride replaced by one.
ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
if (SI != PtrToStride.end()) {
Value *StrideVal = SI->second;
// Strip casts.
StrideVal = stripIntegerCast(StrideVal);
// Replace symbolic stride by one.
Value *One = ConstantInt::get(StrideVal->getType(), 1);
ValueToValueMap RewriteMap;
RewriteMap[StrideVal] = One;
const SCEV *ByOne =
SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
<< "\n");
return ByOne;
}
// Otherwise, just return the SCEV of the original pointer.
return SE->getSCEV(Ptr);
}
void LoopVectorizationLegality::RuntimePointerCheck::insert(
ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
unsigned ASId, ValueToValueMap &Strides) {
// Get the stride replaced scev.
const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
assert(AR && "Invalid addrec expression");
const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
Pointers.push_back(Ptr);
Starts.push_back(AR->getStart());
Ends.push_back(ScEnd);
IsWritePtr.push_back(WritePtr);
DependencySetId.push_back(DepSetId);
AliasSetId.push_back(ASId);
}
Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
// We need to place the broadcast of invariant variables outside the loop.
Instruction *Instr = dyn_cast<Instruction>(V);
bool NewInstr =
(Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
Instr->getParent()) != LoopVectorBody.end());
bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
// Place the code for broadcasting invariant variables in the new preheader.
IRBuilder<>::InsertPointGuard Guard(Builder);
if (Invariant)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
return Shuf;
}
Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
bool Negate) {
assert(Val->getType()->isVectorTy() && "Must be a vector");
assert(Val->getType()->getScalarType()->isIntegerTy() &&
"Elem must be an integer");
// Create the types.
Type *ITy = Val->getType()->getScalarType();
VectorType *Ty = cast<VectorType>(Val->getType());
int VLen = Ty->getNumElements();
SmallVector<Constant*, 8> Indices;
// Create a vector of consecutive numbers from zero to VF.
for (int i = 0; i < VLen; ++i) {
int64_t Idx = Negate ? (-i) : i;
Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
}
// Add the consecutive indices to the vector value.
Constant *Cv = ConstantVector::get(Indices);
assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
return Builder.CreateAdd(Val, Cv, "induction");
}
/// \brief Find the operand of the GEP that should be checked for consecutive
/// stores. This ignores trailing indices that have no effect on the final
/// pointer.
static unsigned getGEPInductionOperand(const DataLayout *DL,
const GetElementPtrInst *Gep) {
unsigned LastOperand = Gep->getNumOperands() - 1;
unsigned GEPAllocSize = DL->getTypeAllocSize(
cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
// Walk backwards and try to peel off zeros.
while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
// Find the type we're currently indexing into.
gep_type_iterator GEPTI = gep_type_begin(Gep);
std::advance(GEPTI, LastOperand - 1);
// If it's a type with the same allocation size as the result of the GEP we
// can peel off the zero index.
if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
break;
--LastOperand;
}
return LastOperand;
}
int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
// Make sure that the pointer does not point to structs.
if (Ptr->getType()->getPointerElementType()->isAggregateType())
return 0;
// If this value is a pointer induction variable we know it is consecutive.
PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
if (Phi && Inductions.count(Phi)) {
InductionInfo II = Inductions[Phi];
if (IK_PtrInduction == II.IK)
return 1;
else if (IK_ReversePtrInduction == II.IK)
return -1;
}
GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
if (!Gep)
return 0;
unsigned NumOperands = Gep->getNumOperands();
Value *GpPtr = Gep->getPointerOperand();
// If this GEP value is a consecutive pointer induction variable and all of
// the indices are constant then we know it is consecutive. We can
Phi = dyn_cast<PHINode>(GpPtr);
if (Phi && Inductions.count(Phi)) {
// Make sure that the pointer does not point to structs.
PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
if (GepPtrType->getElementType()->isAggregateType())
return 0;
// Make sure that all of the index operands are loop invariant.
for (unsigned i = 1; i < NumOperands; ++i)
if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
return 0;
InductionInfo II = Inductions[Phi];
if (IK_PtrInduction == II.IK)
return 1;
else if (IK_ReversePtrInduction == II.IK)
return -1;
}
unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
// Check that all of the gep indices are uniform except for our induction
// operand.
for (unsigned i = 0; i != NumOperands; ++i)
if (i != InductionOperand &&
!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
return 0;
// We can emit wide load/stores only if the last non-zero index is the
// induction variable.
const SCEV *Last = nullptr;
if (!Strides.count(Gep))
Last = SE->getSCEV(Gep->getOperand(InductionOperand));
else {
// Because of the multiplication by a stride we can have a s/zext cast.
// We are going to replace this stride by 1 so the cast is safe to ignore.
//
// %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
// %0 = trunc i64 %indvars.iv to i32
// %mul = mul i32 %0, %Stride1
// %idxprom = zext i32 %mul to i64 << Safe cast.
// %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
//
Last = replaceSymbolicStrideSCEV(SE, Strides,
Gep->getOperand(InductionOperand), Gep);
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
Last =
(C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
? C->getOperand()
: Last;
}
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
const SCEV *Step = AR->getStepRecurrence(*SE);
// The memory is consecutive because the last index is consecutive
// and all other indices are loop invariant.
if (Step->isOne())
return 1;
if (Step->isAllOnesValue())
return -1;
}
return 0;
}
bool LoopVectorizationLegality::isUniform(Value *V) {
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}
InnerLoopVectorizer::VectorParts&
InnerLoopVectorizer::getVectorValue(Value *V) {
assert(V != Induction && "The new induction variable should not be used.");
assert(!V->getType()->isVectorTy() && "Can't widen a vector");
// If we have a stride that is replaced by one, do it here.
if (Legal->hasStride(V))
V = ConstantInt::get(V->getType(), 1);
// If we have this scalar in the map, return it.
if (WidenMap.has(V))
return WidenMap.get(V);
// If this scalar is unknown, assume that it is a constant or that it is
// loop invariant. Broadcast V and save the value for future uses.
Value *B = getBroadcastInstrs(V);
return WidenMap.splat(V, B);
}
Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
assert(Vec->getType()->isVectorTy() && "Invalid type");
SmallVector<Constant*, 8> ShuffleMask;
for (unsigned i = 0; i < VF; ++i)
ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
ConstantVector::get(ShuffleMask),
"reverse");
}
void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
// Attempt to issue a wide load.
LoadInst *LI = dyn_cast<LoadInst>(Instr);
StoreInst *SI = dyn_cast<StoreInst>(Instr);
assert((LI || SI) && "Invalid Load/Store instruction");
Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
Type *DataTy = VectorType::get(ScalarDataTy, VF);
Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
// An alignment of 0 means target abi alignment. We need to use the scalar's
// target abi alignment in such a case.
if (!Alignment)
Alignment = DL->getABITypeAlignment(ScalarDataTy);
unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
if (SI && Legal->blockNeedsPredication(SI->getParent()))
return scalarizeInstruction(Instr, true);
if (ScalarAllocatedSize != VectorElementSize)
return scalarizeInstruction(Instr);
// If the pointer is loop invariant or if it is non-consecutive,
// scalarize the load.
int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
bool Reverse = ConsecutiveStride < 0;
bool UniformLoad = LI && Legal->isUniform(Ptr);
if (!ConsecutiveStride || UniformLoad)
return scalarizeInstruction(Instr);
Constant *Zero = Builder.getInt32(0);
VectorParts &Entry = WidenMap.get(Instr);
// Handle consecutive loads/stores.
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
setDebugLocFromInst(Builder, Gep);
Value *PtrOperand = Gep->getPointerOperand();
Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
// Create the new GEP with the new induction variable.
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
Gep2->setOperand(0, FirstBasePtr);
Gep2->setName("gep.indvar.base");
Ptr = Builder.Insert(Gep2);
} else if (Gep) {
setDebugLocFromInst(Builder, Gep);
assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
OrigLoop) && "Base ptr must be invariant");
// The last index does not have to be the induction. It can be
// consecutive and be a function of the index. For example A[I+1];
unsigned NumOperands = Gep->getNumOperands();
unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
// Create the new GEP with the new induction variable.
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
for (unsigned i = 0; i < NumOperands; ++i) {
Value *GepOperand = Gep->getOperand(i);
Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
// Update last index or loop invariant instruction anchored in loop.
if (i == InductionOperand ||
(GepOperandInst && OrigLoop->contains(GepOperandInst))) {
assert((i == InductionOperand ||
SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
"Must be last index or loop invariant");
VectorParts &GEPParts = getVectorValue(GepOperand);
Value *Index = GEPParts[0];
Index = Builder.CreateExtractElement(Index, Zero);
Gep2->setOperand(i, Index);
Gep2->setName("gep.indvar.idx");
}
}
Ptr = Builder.Insert(Gep2);
} else {
// Use the induction element ptr.
assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
setDebugLocFromInst(Builder, Ptr);
VectorParts &PtrVal = getVectorValue(Ptr);
Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
}
// Handle Stores:
if (SI) {
assert(!Legal->isUniform(SI->getPointerOperand()) &&
"We do not allow storing to uniform addresses");
setDebugLocFromInst(Builder, SI);
// We don't want to update the value in the map as it might be used in
// another expression. So don't use a reference type for "StoredVal".
VectorParts StoredVal = getVectorValue(SI->getValueOperand());
for (unsigned Part = 0; Part < UF; ++Part) {
// Calculate the pointer for the specific unroll-part.
Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
if (Reverse) {
// If we store to reverse consecutive memory locations then we need
// to reverse the order of elements in the stored value.
StoredVal[Part] = reverseVector(StoredVal[Part]);
// If the address is consecutive but reversed, then the
// wide store needs to start at the last vector element.
PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
}
Value *VecPtr = Builder.CreateBitCast(PartPtr,
DataTy->getPointerTo(AddressSpace));
StoreInst *NewSI =
Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
propagateMetadata(NewSI, SI);
}
return;
}
// Handle loads.
assert(LI && "Must have a load instruction");
setDebugLocFromInst(Builder, LI);
for (unsigned Part = 0; Part < UF; ++Part) {
// Calculate the pointer for the specific unroll-part.
Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
if (Reverse) {
// If the address is consecutive but reversed, then the
// wide store needs to start at the last vector element.
PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
}
Value *VecPtr = Builder.CreateBitCast(PartPtr,
DataTy->getPointerTo(AddressSpace));
LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
propagateMetadata(NewLI, LI);
Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
}
}
void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
// Holds vector parameters or scalars, in case of uniform vals.
SmallVector<VectorParts, 4> Params;
setDebugLocFromInst(Builder, Instr);
// Find all of the vectorized parameters.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
Value *SrcOp = Instr->getOperand(op);
// If we are accessing the old induction variable, use the new one.
if (SrcOp == OldInduction) {
Params.push_back(getVectorValue(SrcOp));
continue;
}
// Try using previously calculated values.
Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
// If the src is an instruction that appeared earlier in the basic block
// then it should already be vectorized.
if (SrcInst && OrigLoop->contains(SrcInst)) {
assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
// The parameter is a vector value from earlier.
Params.push_back(WidenMap.get(SrcInst));
} else {
// The parameter is a scalar from outside the loop. Maybe even a constant.
VectorParts Scalars;
Scalars.append(UF, SrcOp);
Params.push_back(Scalars);
}
}
assert(Params.size() == Instr->getNumOperands() &&
"Invalid number of operands");
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
Value *UndefVec = IsVoidRetTy ? nullptr :
UndefValue::get(VectorType::get(Instr->getType(), VF));
// Create a new entry in the WidenMap and initialize it to Undef or Null.
VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
Instruction *InsertPt = Builder.GetInsertPoint();
BasicBlock *IfBlock = Builder.GetInsertBlock();
BasicBlock *CondBlock = nullptr;
VectorParts Cond;
Loop *VectorLp = nullptr;
if (IfPredicateStore) {
assert(Instr->getParent()->getSinglePredecessor() &&
"Only support single predecessor blocks");
Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
Instr->getParent());
VectorLp = LI->getLoopFor(IfBlock);
assert(VectorLp && "Must have a loop for this block");
}
// For each vector unroll 'part':
for (unsigned Part = 0; Part < UF; ++Part) {
// For each scalar that we create:
for (unsigned Width = 0; Width < VF; ++Width) {
// Start if-block.
Value *Cmp = nullptr;
if (IfPredicateStore) {
Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
LoopVectorBody.push_back(CondBlock);
VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
// Update Builder with newly created basic block.
Builder.SetInsertPoint(InsertPt);
}
Instruction *Cloned = Instr->clone();
if (!IsVoidRetTy)
Cloned->setName(Instr->getName() + ".cloned");
// Replace the operands of the cloned instructions with extracted scalars.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
Value *Op = Params[op][Part];
// Param is a vector. Need to extract the right lane.
if (Op->getType()->isVectorTy())
Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
Cloned->setOperand(op, Op);
}
// Place the cloned scalar in the new loop.
Builder.Insert(Cloned);
// If the original scalar returns a value we need to place it in a vector
// so that future users will be able to use it.
if (!IsVoidRetTy)
VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
Builder.getInt32(Width));
// End if-block.
if (IfPredicateStore) {
BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
LoopVectorBody.push_back(NewIfBlock);
VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
Builder.SetInsertPoint(InsertPt);
Instruction *OldBr = IfBlock->getTerminator();
BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
OldBr->eraseFromParent();
IfBlock = NewIfBlock;
}
}
}
}
static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
Instruction *Loc) {
if (FirstInst)
return FirstInst;
if (Instruction *I = dyn_cast<Instruction>(V))
return I->getParent() == Loc->getParent() ? I : nullptr;
return nullptr;
}
std::pair<Instruction *, Instruction *>
InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
Instruction *tnullptr = nullptr;
if (!Legal->mustCheckStrides())
return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
IRBuilder<> ChkBuilder(Loc);
// Emit checks.
Value *Check = nullptr;
Instruction *FirstInst = nullptr;
for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
SE = Legal->strides_end();
SI != SE; ++SI) {
Value *Ptr = stripIntegerCast(*SI);
Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
"stride.chk");
// Store the first instruction we create.
FirstInst = getFirstInst(FirstInst, C, Loc);
if (Check)
Check = ChkBuilder.CreateOr(Check, C);
else
Check = C;
}
// We have to do this trickery because the IRBuilder might fold the check to a
// constant expression in which case there is no Instruction anchored in a
// the block.
LLVMContext &Ctx = Loc->getContext();
Instruction *TheCheck =
BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
ChkBuilder.Insert(TheCheck, "stride.not.one");
FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
return std::make_pair(FirstInst, TheCheck);
}
std::pair<Instruction *, Instruction *>
InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
Legal->getRuntimePointerCheck();
Instruction *tnullptr = nullptr;
if (!PtrRtCheck->Need)
return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
unsigned NumPointers = PtrRtCheck->Pointers.size();
SmallVector<TrackingVH<Value> , 2> Starts;
SmallVector<TrackingVH<Value> , 2> Ends;
LLVMContext &Ctx = Loc->getContext();
SCEVExpander Exp(*SE, "induction");
Instruction *FirstInst = nullptr;
for (unsigned i = 0; i < NumPointers; ++i) {
Value *Ptr = PtrRtCheck->Pointers[i];
const SCEV *Sc = SE->getSCEV(Ptr);
if (SE->isLoopInvariant(Sc, OrigLoop)) {
DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
*Ptr <<"\n");
Starts.push_back(Ptr);
Ends.push_back(Ptr);
} else {
DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
unsigned AS = Ptr->getType()->getPointerAddressSpace();
// Use this type for pointer arithmetic.
Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
Starts.push_back(Start);
Ends.push_back(End);
}
}
IRBuilder<> ChkBuilder(Loc);
// Our instructions might fold to a constant.
Value *MemoryRuntimeCheck = nullptr;
for (unsigned i = 0; i < NumPointers; ++i) {
for (unsigned j = i+1; j < NumPointers; ++j) {
// No need to check if two readonly pointers intersect.
if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
continue;
// Only need to check pointers between two different dependency sets.
if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
continue;
// Only need to check pointers in the same alias set.
if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j])
continue;
unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
(AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
"Trying to bounds check pointers with different address spaces");
Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
if (MemoryRuntimeCheck) {
IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
"conflict.rdx");
FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
}
MemoryRuntimeCheck = IsConflict;
}
}
// We have to do this trickery because the IRBuilder might fold the check to a
// constant expression in which case there is no Instruction anchored in a
// the block.
Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
ConstantInt::getTrue(Ctx));
ChkBuilder.Insert(Check, "memcheck.conflict");
FirstInst = getFirstInst(FirstInst, Check, Loc);
return std::make_pair(FirstInst, Check);
}
void InnerLoopVectorizer::createEmptyLoop() {
/*
In this function we generate a new loop. The new loop will contain
the vectorized instructions while the old loop will continue to run the
scalar remainder.
[ ] <-- Back-edge taken count overflow check.
/ |
/ v
| [ ] <-- vector loop bypass (may consist of multiple blocks).
| / |
| / v
|| [ ] <-- vector pre header.
|| |
|| v
|| [ ] \
|| [ ]_| <-- vector loop.
|| |
| \ v
| >[ ] <--- middle-block.
| / |
| / v
-|- >[ ] <--- new preheader.
| |
| v
| [ ] \
| [ ]_| <-- old scalar loop to handle remainder.
\ |
\ v
>[ ] <-- exit block.
...
*/
BasicBlock *OldBasicBlock = OrigLoop->getHeader();
BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
BasicBlock *ExitBlock = OrigLoop->getExitBlock();
assert(BypassBlock && "Invalid loop structure");
assert(ExitBlock && "Must have an exit block");
// Some loops have a single integer induction variable, while other loops
// don't. One example is c++ iterators that often have multiple pointer
// induction variables. In the code below we also support a case where we
// don't have a single induction variable.
OldInduction = Legal->getInduction();
Type *IdxTy = Legal->getWidestInductionType();
// Find the loop boundaries.
const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
// The exit count might have the type of i64 while the phi is i32. This can
// happen if we have an induction variable that is sign extended before the
// compare. The only way that we get a backedge taken count is that the
// induction variable was signed and as such will not overflow. In such a case
// truncation is legal.
if (ExitCount->getType()->getPrimitiveSizeInBits() >
IdxTy->getPrimitiveSizeInBits())
ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
// Get the total trip count from the count by adding 1.
ExitCount = SE->getAddExpr(BackedgeTakeCount,
SE->getConstant(BackedgeTakeCount->getType(), 1));
// Expand the trip count and place the new instructions in the preheader.
// Notice that the pre-header does not change, only the loop body.
SCEVExpander Exp(*SE, "induction");
// We need to test whether the backedge-taken count is uint##_max. Adding one
// to it will cause overflow and an incorrect loop trip count in the vector
// body. In case of overflow we want to directly jump to the scalar remainder
// loop.
Value *BackedgeCount =
Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
BypassBlock->getTerminator());
if (BackedgeCount->getType()->isPointerTy())
BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
"backedge.ptrcnt.to.int",
BypassBlock->getTerminator());
Instruction *CheckBCOverflow =
CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
Constant::getAllOnesValue(BackedgeCount->getType()),
"backedge.overflow", BypassBlock->getTerminator());
// The loop index does not have to start at Zero. Find the original start
// value from the induction PHI node. If we don't have an induction variable
// then we know that it starts at zero.
Builder.SetInsertPoint(BypassBlock->getTerminator());
Value *StartIdx = ExtendedIdx = OldInduction ?
Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
IdxTy):
ConstantInt::get(IdxTy, 0);
// We need an instruction to anchor the overflow check on. StartIdx needs to
// be defined before the overflow check branch. Because the scalar preheader
// is going to merge the start index and so the overflow branch block needs to
// contain a definition of the start index.
Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
BypassBlock->getTerminator());
// Count holds the overall loop count (N).
Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
BypassBlock->getTerminator());
LoopBypassBlocks.push_back(BypassBlock);
// Split the single block loop into the two loop structure described above.
BasicBlock *VectorPH =
BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
BasicBlock *VecBody =
VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
BasicBlock *MiddleBlock =
VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
BasicBlock *ScalarPH =
MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
// Create and register the new vector loop.
Loop* Lp = new Loop();
Loop *ParentLoop = OrigLoop->getParentLoop();
// Insert the new loop into the loop nest and register the new basic blocks
// before calling any utilities such as SCEV that require valid LoopInfo.
if (ParentLoop) {
ParentLoop->addChildLoop(Lp);
ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
} else {
LI->addTopLevelLoop(Lp);
}
Lp->addBasicBlockToLoop(VecBody, LI->getBase());
// Use this IR builder to create the loop instructions (Phi, Br, Cmp)
// inside the loop.
Builder.SetInsertPoint(VecBody->getFirstNonPHI());
// Generate the induction variable.
setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
Induction = Builder.CreatePHI(IdxTy, 2, "index");
// The loop step is equal to the vectorization factor (num of SIMD elements)
// times the unroll factor (num of SIMD instructions).
Constant *Step = ConstantInt::get(IdxTy, VF * UF);
// This is the IR builder that we use to add all of the logic for bypassing
// the new vector loop.
IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
setDebugLocFromInst(BypassBuilder,
getDebugLocFromInstOrOperands(OldInduction));
// We may need to extend the index in case there is a type mismatch.
// We know that the count starts at zero and does not overflow.
if (Count->getType() != IdxTy) {
// The exit count can be of pointer type. Convert it to the correct
// integer type.
if (ExitCount->getType()->isPointerTy())
Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
else
Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
}
// Add the start index to the loop count to get the new end index.
Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
// Now we need to generate the expression for N - (N % VF), which is
// the part that the vectorized body will execute.
Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
"end.idx.rnd.down");
// Now, compare the new count to zero. If it is zero skip the vector loop and
// jump to the scalar loop.
Value *Cmp =
BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
BasicBlock *LastBypassBlock = BypassBlock;
// Generate code to check that the loops trip count that we computed by adding
// one to the backedge-taken count will not overflow.
{
auto PastOverflowCheck =
std::next(BasicBlock::iterator(OverflowCheckAnchor));
BasicBlock *CheckBlock =
LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
if (ParentLoop)
ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
LoopBypassBlocks.push_back(CheckBlock);
Instruction *OldTerm = LastBypassBlock->getTerminator();
BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
OldTerm->eraseFromParent();
LastBypassBlock = CheckBlock;
}
// Generate the code to check that the strides we assumed to be one are really
// one. We want the new basic block to start at the first instruction in a
// sequence of instructions that form a check.
Instruction *StrideCheck;
Instruction *FirstCheckInst;
std::tie(FirstCheckInst, StrideCheck) =
addStrideCheck(LastBypassBlock->getTerminator());
if (StrideCheck) {
// Create a new block containing the stride check.
BasicBlock *CheckBlock =
LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
if (ParentLoop)
ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
LoopBypassBlocks.push_back(CheckBlock);
// Replace the branch into the memory check block with a conditional branch
// for the "few elements case".
Instruction *OldTerm = LastBypassBlock->getTerminator();
BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
OldTerm->eraseFromParent();
Cmp = StrideCheck;
LastBypassBlock = CheckBlock;
}
// Generate the code that checks in runtime if arrays overlap. We put the
// checks into a separate block to make the more common case of few elements
// faster.
Instruction *MemRuntimeCheck;
std::tie(FirstCheckInst, MemRuntimeCheck) =
addRuntimeCheck(LastBypassBlock->getTerminator());
if (MemRuntimeCheck) {
// Create a new block containing the memory check.
BasicBlock *CheckBlock =
LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
if (ParentLoop)
ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
LoopBypassBlocks.push_back(CheckBlock);
// Replace the branch into the memory check block with a conditional branch
// for the "few elements case".
Instruction *OldTerm = LastBypassBlock->getTerminator();
BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
OldTerm->eraseFromParent();
Cmp = MemRuntimeCheck;
LastBypassBlock = CheckBlock;
}
LastBypassBlock->getTerminator()->eraseFromParent();
BranchInst::Create(MiddleBlock, VectorPH, Cmp,
LastBypassBlock);
// We are going to resume the execution of the scalar loop.
// Go over all of the induction variables that we found and fix the
// PHIs that are left in the scalar version of the loop.
// The starting values of PHI nodes depend on the counter of the last
// iteration in the vectorized loop.
// If we come from a bypass edge then we need to start from the original
// start value.
// This variable saves the new starting index for the scalar loop.
PHINode *ResumeIndex = nullptr;
LoopVectorizationLegality::InductionList::iterator I, E;
LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
// Set builder to point to last bypass block.
BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
for (I = List->begin(), E = List->end(); I != E; ++I) {
PHINode *OrigPhi = I->first;
LoopVectorizationLegality::InductionInfo II = I->second;
Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
MiddleBlock->getTerminator());
// We might have extended the type of the induction variable but we need a
// truncated version for the scalar loop.
PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
MiddleBlock->getTerminator()) : nullptr;
// Create phi nodes to merge from the backedge-taken check block.
PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
ScalarPH->getTerminator());
BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
PHINode *BCTruncResumeVal = nullptr;
if (OrigPhi == OldInduction) {
BCTruncResumeVal =
PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
ScalarPH->getTerminator());
BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
}
Value *EndValue = nullptr;
switch (II.IK) {
case LoopVectorizationLegality::IK_NoInduction:
llvm_unreachable("Unknown induction");
case LoopVectorizationLegality::IK_IntInduction: {
// Handle the integer induction counter.
assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
// We have the canonical induction variable.
if (OrigPhi == OldInduction) {
// Create a truncated version of the resume value for the scalar loop,
// we might have promoted the type to a larger width.
EndValue =
BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
// The new PHI merges the original incoming value, in case of a bypass,
// or the value at the end of the vectorized loop.
for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
TruncResumeVal->addIncoming(EndValue, VecBody);
BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
// We know what the end value is.
EndValue = IdxEndRoundDown;
// We also know which PHI node holds it.
ResumeIndex = ResumeVal;
break;
}
// Not the canonical induction variable - add the vector loop count to the
// start value.
Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
II.StartValue->getType(),
"cast.crd");
EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
break;
}
case LoopVectorizationLegality::IK_ReverseIntInduction: {
// Convert the CountRoundDown variable to the PHI size.
Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
II.StartValue->getType(),
"cast.crd");
// Handle reverse integer induction counter.
EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
break;
}
case LoopVectorizationLegality::IK_PtrInduction: {
// For pointer induction variables, calculate the offset using
// the end index.
EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
"ptr.ind.end");
break;
}
case LoopVectorizationLegality::IK_ReversePtrInduction: {
// The value at the end of the loop for the reverse pointer is calculated
// by creating a GEP with a negative index starting from the start value.
Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
"rev.ind.end");
EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
"rev.ptr.ind.end");
break;
}
}// end of case
// The new PHI merges the original incoming value, in case of a bypass,
// or the value at the end of the vectorized loop.
for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
if (OrigPhi == OldInduction)
ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
else
ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
}
ResumeVal->addIncoming(EndValue, VecBody);
// Fix the scalar body counter (PHI node).
unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
// The old induction's phi node in the scalar body needs the truncated
// value.
if (OrigPhi == OldInduction) {
BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
} else {
BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
}
}
// If we are generating a new induction variable then we also need to
// generate the code that calculates the exit value. This value is not
// simply the end of the counter because we may skip the vectorized body
// in case of a runtime check.
if (!OldInduction){
assert(!ResumeIndex && "Unexpected resume value found");
ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
MiddleBlock->getTerminator());
for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
}
// Make sure that we found the index where scalar loop needs to continue.
assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
"Invalid resume Index");
// Add a check in the middle block to see if we have completed
// all of the iterations in the first vector loop.
// If (N - N%VF) == N, then we *don't* need to run the remainder.
Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
ResumeIndex, "cmp.n",
MiddleBlock->getTerminator());
BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
// Remove the old terminator.
MiddleBlock->getTerminator()->eraseFromParent();
// Create i+1 and fill the PHINode.
Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
Induction->addIncoming(StartIdx, VectorPH);
Induction->addIncoming(NextIdx, VecBody);
// Create the compare.
Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
// Now we have two terminators. Remove the old one from the block.
VecBody->getTerminator()->eraseFromParent();
// Get ready to start creating new instructions into the vectorized body.
Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
// Save the state.
LoopVectorPreHeader = VectorPH;
LoopScalarPreHeader = ScalarPH;
LoopMiddleBlock = MiddleBlock;
LoopExitBlock = ExitBlock;
LoopVectorBody.push_back(VecBody);
LoopScalarBody = OldBasicBlock;
LoopVectorizeHints Hints(Lp, true);
Hints.setAlreadyVectorized(Lp);
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
Constant*
LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
switch (K) {
case RK_IntegerXor:
case RK_IntegerAdd:
case RK_IntegerOr:
// Adding, Xoring, Oring zero to a number does not change it.
return ConstantInt::get(Tp, 0);
case RK_IntegerMult:
// Multiplying a number by 1 does not change it.
return ConstantInt::get(Tp, 1);
case RK_IntegerAnd:
// AND-ing a number with an all-1 value does not change it.
return ConstantInt::get(Tp, -1, true);
case RK_FloatMult:
// Multiplying a number by 1 does not change it.
return ConstantFP::get(Tp, 1.0L);
case RK_FloatAdd:
// Adding zero to a number does not change it.
return ConstantFP::get(Tp, 0.0L);
default:
llvm_unreachable("Unknown reduction kind");
}
}
/// This function translates the reduction kind to an LLVM binary operator.
static unsigned
getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
switch (Kind) {
case LoopVectorizationLegality::RK_IntegerAdd:
return Instruction::Add;
case LoopVectorizationLegality::RK_IntegerMult:
return Instruction::Mul;
case LoopVectorizationLegality::RK_IntegerOr:
return Instruction::Or;
case LoopVectorizationLegality::RK_IntegerAnd:
return Instruction::And;
case LoopVectorizationLegality::RK_IntegerXor:
return Instruction::Xor;
case LoopVectorizationLegality::RK_FloatMult:
return Instruction::FMul;
case LoopVectorizationLegality::RK_FloatAdd:
return Instruction::FAdd;
case LoopVectorizationLegality::RK_IntegerMinMax:
return Instruction::ICmp;
case LoopVectorizationLegality::RK_FloatMinMax:
return Instruction::FCmp;
default:
llvm_unreachable("Unknown reduction operation");
}
}
Value *createMinMaxOp(IRBuilder<> &Builder,
LoopVectorizationLegality::MinMaxReductionKind RK,
Value *Left,
Value *Right) {
CmpInst::Predicate P = CmpInst::ICMP_NE;
switch (RK) {
default:
llvm_unreachable("Unknown min/max reduction kind");
case LoopVectorizationLegality::MRK_UIntMin:
P = CmpInst::ICMP_ULT;
break;
case LoopVectorizationLegality::MRK_UIntMax:
P = CmpInst::ICMP_UGT;
break;
case LoopVectorizationLegality::MRK_SIntMin:
P = CmpInst::ICMP_SLT;
break;
case LoopVectorizationLegality::MRK_SIntMax:
P = CmpInst::ICMP_SGT;
break;
case LoopVectorizationLegality::MRK_FloatMin:
P = CmpInst::FCMP_OLT;
break;
case LoopVectorizationLegality::MRK_FloatMax:
P = CmpInst::FCMP_OGT;
break;
}
Value *Cmp;
if (RK == LoopVectorizationLegality::MRK_FloatMin ||
RK == LoopVectorizationLegality::MRK_FloatMax)
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
else
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
return Select;
}
namespace {
struct CSEDenseMapInfo {
static bool canHandle(Instruction *I) {
return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
}
static inline Instruction *getEmptyKey() {
return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline Instruction *getTombstoneKey() {
return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(Instruction *I) {
assert(canHandle(I) && "Unknown instruction!");
return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
I->value_op_end()));
}
static bool isEqual(Instruction *LHS, Instruction *RHS) {
if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
LHS == getTombstoneKey() || RHS == getTombstoneKey())
return LHS == RHS;
return LHS->isIdenticalTo(RHS);
}
};
}
/// \brief Check whether this block is a predicated block.
/// Due to if predication of stores we might create a sequence of "if(pred) a[i]
/// = ...; " blocks. We start with one vectorized basic block. For every
/// conditional block we split this vectorized block. Therefore, every second
/// block will be a predicated one.
static bool isPredicatedBlock(unsigned BlockNum) {
return BlockNum % 2;
}
///\brief Perform cse of induction variable instructions.
static void cse(SmallVector<BasicBlock *, 4> &BBs) {
// Perform simple cse.
SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
BasicBlock *BB = BBs[i];
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
Instruction *In = I++;
if (!CSEDenseMapInfo::canHandle(In))
continue;
// Check if we can replace this instruction with any of the
// visited instructions.
if (Instruction *V = CSEMap.lookup(In)) {
In->replaceAllUsesWith(V);
In->eraseFromParent();
continue;
}
// Ignore instructions in conditional blocks. We create "if (pred) a[i] =
// ...;" blocks for predicated stores. Every second block is a predicated
// block.
if (isPredicatedBlock(i))
continue;
CSEMap[In] = In;
}
}
}
/// \brief Adds a 'fast' flag to floating point operations.
static Value *addFastMathFlag(Value *V) {
if (isa<FPMathOperator>(V)){
FastMathFlags Flags;
Flags.setUnsafeAlgebra();
cast<Instruction>(V)->setFastMathFlags(Flags);
}
return V;
}
void InnerLoopVectorizer::vectorizeLoop() {
//===------------------------------------------------===//
//
// Notice: any optimization or new instruction that go
// into the code below should be also be implemented in
// the cost-model.
//
//===------------------------------------------------===//
Constant *Zero = Builder.getInt32(0);
// In order to support reduction variables we need to be able to vectorize
// Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
// stages. First, we create a new vector PHI node with no incoming edges.
// We use this value when we vectorize all of the instructions that use the
// PHI. Next, after all of the instructions in the block are complete we
// add the new incoming edges to the PHI. At this point all of the
// instructions in the basic block are vectorized, so we can use them to
// construct the PHI.
PhiVector RdxPHIsToFix;
// Scan the loop in a topological order to ensure that defs are vectorized
// before users.
LoopBlocksDFS DFS(OrigLoop);
DFS.perform(LI);
// Vectorize all of the blocks in the original loop.
for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
be = DFS.endRPO(); bb != be; ++bb)
vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
// At this point every instruction in the original loop is widened to
// a vector form. We are almost done. Now, we need to fix the PHI nodes
// that we vectorized. The PHI nodes are currently empty because we did
// not want to introduce cycles. Notice that the remaining PHI nodes
// that we need to fix are reduction variables.
// Create the 'reduced' values for each of the induction vars.
// The reduced values are the vector values that we scalarize and combine
// after the loop is finished.
for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
it != e; ++it) {
PHINode *RdxPhi = *it;
assert(RdxPhi && "Unable to recover vectorized PHI");
// Find the reduction variable descriptor.
assert(Legal->getReductionVars()->count(RdxPhi) &&
"Unable to find the reduction variable");
LoopVectorizationLegality::ReductionDescriptor RdxDesc =
(*Legal->getReductionVars())[RdxPhi];
setDebugLocFromInst(Builder, RdxDesc.StartValue);
// We need to generate a reduction vector from the incoming scalar.
// To do so, we need to generate the 'identity' vector and override
// one of the elements with the incoming scalar reduction. We need
// to do it in the vector-loop preheader.
Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
// This is the vector-clone of the value that leaves the loop.
VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
Type *VecTy = VectorExit[0]->getType();
// Find the reduction identity variable. Zero for addition, or, xor,
// one for multiplication, -1 for And.
Value *Identity;
Value *VectorStart;
if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
// MinMax reduction have the start value as their identify.
if (VF == 1) {
VectorStart = Identity = RdxDesc.StartValue;
} else {
VectorStart = Identity = Builder.CreateVectorSplat(VF,
RdxDesc.StartValue,
"minmax.ident");
}
} else {
// Handle other reduction kinds:
Constant *Iden =
LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
VecTy->getScalarType());
if (VF == 1) {
Identity = Iden;
// This vector is the Identity vector where the first element is the
// incoming scalar reduction.
VectorStart = RdxDesc.StartValue;
} else {
Identity = ConstantVector::getSplat(VF, Iden);
// This vector is the Identity vector where the first element is the
// incoming scalar reduction.
VectorStart = Builder.CreateInsertElement(Identity,
RdxDesc.StartValue, Zero);
}
}
// Fix the vector-loop phi.
// We created the induction variable so we know that the
// preheader is the first entry.
BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
// Reductions do not have to start at zero. They can start with
// any loop invariant values.
VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
BasicBlock *Latch = OrigLoop->getLoopLatch();
Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
VectorParts &Val = getVectorValue(LoopVal);
for (unsigned part = 0; part < UF; ++part) {
// Make sure to add the reduction stat value only to the
// first unroll part.
Value *StartVal = (part == 0) ? VectorStart : Identity;
cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
LoopVectorBody.back());
}
// Before each round, move the insertion point right between
// the PHIs and the values we are going to write.
// This allows us to write both PHINodes and the extractelement
// instructions.
Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
VectorParts RdxParts;
setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
for (unsigned part = 0; part < UF; ++part) {
// This PHINode contains the vectorized reduction variable, or
// the initial value vector, if we bypass the vector loop.
VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
Value *StartVal = (part == 0) ? VectorStart : Identity;
for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
NewPhi->addIncoming(RdxExitVal[part],
LoopVectorBody.back());
RdxParts.push_back(NewPhi);
}
// Reduce all of the unrolled parts into a single vector.
Value *ReducedPartRdx = RdxParts[0];
unsigned Op = getReductionBinOp(RdxDesc.Kind);
setDebugLocFromInst(Builder, ReducedPartRdx);
for (unsigned part = 1; part < UF; ++part) {
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
// Floating point operations had to be 'fast' to enable the reduction.
ReducedPartRdx = addFastMathFlag(
Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
ReducedPartRdx, "bin.rdx"));
else
ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
ReducedPartRdx, RdxParts[part]);
}
if (VF > 1) {
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
// and vector ops, reducing the set of values being computed by half each
// round.
assert(isPowerOf2_32(VF) &&
"Reduction emission only supported for pow2 vectors!");
Value *TmpVec = ReducedPartRdx;
SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
for (unsigned i = VF; i != 1; i >>= 1) {
// Move the upper half of the vector to the lower half.
for (unsigned j = 0; j != i/2; ++j)
ShuffleMask[j] = Builder.getInt32(i/2 + j);
// Fill the rest of the mask with undef.
std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
UndefValue::get(Builder.getInt32Ty()));
Value *Shuf =
Builder.CreateShuffleVector(TmpVec,
UndefValue::get(TmpVec->getType()),
ConstantVector::get(ShuffleMask),
"rdx.shuf");
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
// Floating point operations had to be 'fast' to enable the reduction.
TmpVec = addFastMathFlag(Builder.CreateBinOp(
(Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
else
TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
}
// The result is in the first element of the vector.
ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
Builder.getInt32(0));
}
// Create a phi node that merges control-flow from the backedge-taken check
// block and the middle block.
PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
LoopScalarPreHeader->getTerminator());
BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
// Now, we need to fix the users of the reduction variable
// inside and outside of the scalar remainder loop.
// We know that the loop is in LCSSA form. We need to update the
// PHI nodes in the exit blocks.
for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
if (!LCSSAPhi) break;
// All PHINodes need to have a single entry edge, or two if
// we already fixed them.
assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
// We found our reduction value exit-PHI. Update it with the
// incoming bypass edge.
if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
// Add an edge coming from the bypass.
LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
break;
}
}// end of the LCSSA phi scan.
// Fix the scalar loop reduction variable with the incoming reduction sum
// from the vector body and from the backedge value.
int IncomingEdgeBlockIdx =
(RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
// Pick the other block.
int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
(RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
(RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
}// end of for each redux variable.
fixLCSSAPHIs();
// Remove redundant induction instructions.
cse(LoopVectorBody);
}
void InnerLoopVectorizer::fixLCSSAPHIs() {
for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
if (!LCSSAPhi) break;
if (LCSSAPhi->getNumIncomingValues() == 1)
LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
LoopMiddleBlock);
}
}
InnerLoopVectorizer::VectorParts
InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
"Invalid edge");
// Look for cached value.
std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
if (ECEntryIt != MaskCache.end())
return ECEntryIt->second;
VectorParts SrcMask = createBlockInMask(Src);
// The terminator has to be a branch inst!
BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
assert(BI && "Unexpected terminator found");
if (BI->isConditional()) {
VectorParts EdgeMask = getVectorValue(BI->getCondition());
if (BI->getSuccessor(0) != Dst)
for (unsigned part = 0; part < UF; ++part)
EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
for (unsigned part = 0; part < UF; ++part)
EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
MaskCache[Edge] = EdgeMask;
return EdgeMask;
}
MaskCache[Edge] = SrcMask;
return SrcMask;
}
InnerLoopVectorizer::VectorParts
InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
// Loop incoming mask is all-one.
if (OrigLoop->getHeader() == BB) {
Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
return getVectorValue(C);
}
// This is the block mask. We OR all incoming edges, and with zero.
Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
VectorParts BlockMask = getVectorValue(Zero);
// For each pred:
for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
VectorParts EM = createEdgeMask(*it, BB);
for (unsigned part = 0; part < UF; ++part)
BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
}
return BlockMask;
}
void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
InnerLoopVectorizer::VectorParts &Entry,
unsigned UF, unsigned VF, PhiVector *PV) {
PHINode* P = cast<PHINode>(PN);
// Handle reduction variables:
if (Legal->getReductionVars()->count(P)) {
for (unsigned part = 0; part < UF; ++part) {
// This is phase one of vectorizing PHIs.
Type *VecTy = (VF == 1) ? PN->getType() :
VectorType::get(PN->getType(), VF);
Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
LoopVectorBody.back()-> getFirstInsertionPt());
}
PV->push_back(P);
return;
}
setDebugLocFromInst(Builder, P);
// Check for PHI nodes that are lowered to vector selects.
if (P->getParent() != OrigLoop->getHeader()) {
// We know that all PHIs in non-header blocks are converted into
// selects, so we don't have to worry about the insertion order and we
// can just use the builder.
// At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
unsigned NumIncoming = P->getNumIncomingValues();
// Generate a sequence of selects of the form:
// SELECT(Mask3, In3,
// SELECT(Mask2, In2,
// ( ...)))
for (unsigned In = 0; In < NumIncoming; In++) {
VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
P->getParent());
VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
for (unsigned part = 0; part < UF; ++part) {
// We might have single edge PHIs (blocks) - use an identity
// 'select' for the first PHI operand.
if (In == 0)
Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
In0[part]);
else
// Select between the current value and the previous incoming edge
// based on the incoming mask.
Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
Entry[part], "predphi");
}
}
return;
}
// This PHINode must be an induction variable.
// Make sure that we know about it.
assert(Legal->getInductionVars()->count(P) &&
"Not an induction variable");
LoopVectorizationLegality::InductionInfo II =
Legal->getInductionVars()->lookup(P);
switch (II.IK) {
case LoopVectorizationLegality::IK_NoInduction:
llvm_unreachable("Unknown induction");
case LoopVectorizationLegality::IK_IntInduction: {
assert(P->getType() == II.StartValue->getType() && "Types must match");
Type *PhiTy = P->getType();
Value *Broadcasted;
if (P == OldInduction) {
// Handle the canonical induction variable. We might have had to
// extend the type.
Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
} else {
// Handle other induction variables that are now based on the
// canonical one.
Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
"normalized.idx");
NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
"offset.idx");
}
Broadcasted = getBroadcastInstrs(Broadcasted);
// After broadcasting the induction variable we need to make the vector
// consecutive by adding 0, 1, 2, etc.
for (unsigned part = 0; part < UF; ++part)
Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
return;
}
case LoopVectorizationLegality::IK_ReverseIntInduction:
case LoopVectorizationLegality::IK_PtrInduction:
case LoopVectorizationLegality::IK_ReversePtrInduction:
// Handle reverse integer and pointer inductions.
Value *StartIdx = ExtendedIdx;
// This is the normalized GEP that starts counting at zero.
Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
"normalized.idx");
// Handle the reverse integer induction variable case.
if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
"resize.norm.idx");
Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
"reverse.idx");
// This is a new value so do not hoist it out.
Value *Broadcasted = getBroadcastInstrs(ReverseInd);
// After broadcasting the induction variable we need to make the
// vector consecutive by adding ... -3, -2, -1, 0.
for (unsigned part = 0; part < UF; ++part)
Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
true);
return;
}
// Handle the pointer induction variable case.
assert(P->getType()->isPointerTy() && "Unexpected type.");
// Is this a reverse induction ptr or a consecutive induction ptr.
bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
II.IK);
// This is the vector of results. Notice that we don't generate
// vector geps because scalar geps result in better code.
for (unsigned part = 0; part < UF; ++part) {
if (VF == 1) {
int EltIndex = (part) * (Reverse ? -1 : 1);
Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
Value *GlobalIdx;
if (Reverse)
GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
else
GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
"next.gep");
Entry[part] = SclrGep;
continue;
}
Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
for (unsigned int i = 0; i < VF; ++i) {
int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
Value *GlobalIdx;
if (!Reverse)
GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
else
GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
"next.gep");
VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
Builder.getInt32(i),
"insert.gep");
}
Entry[part] = VecVal;
}
return;
}
}
void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
// For each instruction in the old loop.
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
VectorParts &Entry = WidenMap.get(it);
switch (it->getOpcode()) {
case Instruction::Br:
// Nothing to do for PHIs and BR, since we already took care of the
// loop control flow instructions.
continue;
case Instruction::PHI:{
// Vectorize PHINodes.
widenPHIInstruction(it, Entry, UF, VF, PV);
continue;
}// End of PHI.
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Just widen binops.
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
setDebugLocFromInst(Builder, BinOp);
VectorParts &A = getVectorValue(it->getOperand(0));
VectorParts &B = getVectorValue(it->getOperand(1));
// Use this vector value for all users of the original instruction.
for (unsigned Part = 0; Part < UF; ++Part) {
Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
// Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
}
if (VecOp && isa<PossiblyExactOperator>(VecOp))
VecOp->setIsExact(BinOp->isExact());
// Copy the fast-math flags.
if (VecOp && isa<FPMathOperator>(V))
VecOp->setFastMathFlags(it->getFastMathFlags());
Entry[Part] = V;
}
propagateMetadata(Entry, it);
break;
}
case Instruction::Select: {
// Widen selects.
// If the selector is loop invariant we can create a select
// instruction with a scalar condition. Otherwise, use vector-select.
bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
OrigLoop);
setDebugLocFromInst(Builder, it);
// The condition can be loop invariant but still defined inside the
// loop. This means that we can't just use the original 'cond' value.
// We have to take the 'vectorized' value and pick the first lane.
// Instcombine will make this a no-op.
VectorParts &Cond = getVectorValue(it->getOperand(0));
VectorParts &Op0 = getVectorValue(it->getOperand(1));
VectorParts &Op1 = getVectorValue(it->getOperand(2));
Value *ScalarCond = (VF == 1) ? Cond[0] :
Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
for (unsigned Part = 0; Part < UF; ++Part) {
Entry[Part] = Builder.CreateSelect(
InvariantCond ? ScalarCond : Cond[Part],
Op0[Part],
Op1[Part]);
}
propagateMetadata(Entry, it);
break;
}
case Instruction::ICmp:
case Instruction::FCmp: {
// Widen compares. Generate vector compares.
bool FCmp = (it->getOpcode() == Instruction::FCmp);
CmpInst *Cmp = dyn_cast<CmpInst>(it);
setDebugLocFromInst(Builder, it);
VectorParts &A = getVectorValue(it->getOperand(0));
VectorParts &B = getVectorValue(it->getOperand(1));
for (unsigned Part = 0; Part < UF; ++Part) {
Value *C = nullptr;
if (FCmp)
C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
else
C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
Entry[Part] = C;
}
propagateMetadata(Entry, it);
break;
}
case Instruction::Store:
case Instruction::Load:
vectorizeMemoryInstruction(it);
break;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
CastInst *CI = dyn_cast<CastInst>(it);
setDebugLocFromInst(Builder, it);
/// Optimize the special case where the source is the induction
/// variable. Notice that we can only optimize the 'trunc' case
/// because: a. FP conversions lose precision, b. sext/zext may wrap,
/// c. other casts depend on pointer size.
if (CI->getOperand(0) == OldInduction &&
it->getOpcode() == Instruction::Trunc) {
Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
CI->getType());
Value *Broadcasted = getBroadcastInstrs(ScalarCast);
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
propagateMetadata(Entry, it);
break;
}
/// Vectorize casts.
Type *DestTy = (VF == 1) ? CI->getType() :
VectorType::get(CI->getType(), VF);
VectorParts &A = getVectorValue(it->getOperand(0));
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
propagateMetadata(Entry, it);
break;
}
case Instruction::Call: {
// Ignore dbg intrinsics.
if (isa<DbgInfoIntrinsic>(it))
break;
setDebugLocFromInst(Builder, it);
Module *M = BB->getParent()->getParent();
CallInst *CI = cast<CallInst>(it);
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
assert(ID && "Not an intrinsic call!");
switch (ID) {
case Intrinsic::lifetime_end:
case Intrinsic::lifetime_start:
scalarizeInstruction(it);
break;
default:
bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1);
for (unsigned Part = 0; Part < UF; ++Part) {
SmallVector<Value *, 4> Args;
for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
if (HasScalarOpd && i == 1) {
Args.push_back(CI->getArgOperand(i));
continue;
}
VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
Args.push_back(Arg[Part]);
}
Type *Tys[] = {CI->getType()};
if (VF > 1)
Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
Function *F = Intrinsic::getDeclaration(M, ID, Tys);
Entry[Part] = Builder.CreateCall(F, Args);
}
propagateMetadata(Entry, it);
break;
}
break;
}
default:
// All other instructions are unsupported. Scalarize them.
scalarizeInstruction(it);
break;
}// end of switch.
}// end of for_each instr.
}
void InnerLoopVectorizer::updateAnalysis() {
// Forget the original basic block.
SE->forgetLoop(OrigLoop);
// Update the dominator tree information.
assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
"Entry does not dominate exit.");
for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
// Due to if predication of stores we might create a sequence of "if(pred)
// a[i] = ...; " blocks.
for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
if (i == 0)
DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
else if (isPredicatedBlock(i)) {
DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
} else {
DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
}
}
DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
DEBUG(DT->verifyDomTree());
}
/// \brief Check whether it is safe to if-convert this phi node.
///
/// Phi nodes with constant expressions that can trap are not safe to if
/// convert.
static bool canIfConvertPHINodes(BasicBlock *BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
PHINode *Phi = dyn_cast<PHINode>(I);
if (!Phi)
return true;
for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
if (C->canTrap())
return false;
}
return true;
}
bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
if (!EnableIfConversion) {
emitAnalysis(Report() << "if-conversion is disabled");
return false;
}
assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
// A list of pointers that we can safely read and write to.
SmallPtrSet<Value *, 8> SafePointes;
// Collect safe addresses.
for (Loop::block_iterator BI = TheLoop->block_begin(),
BE = TheLoop->block_end(); BI != BE; ++BI) {
BasicBlock *BB = *BI;
if (blockNeedsPredication(BB))
continue;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
SafePointes.insert(LI->getPointerOperand());
else if (StoreInst *SI = dyn_cast<StoreInst>(I))
SafePointes.insert(SI->getPointerOperand());
}
}
// Collect the blocks that need predication.
BasicBlock *Header = TheLoop->getHeader();
for (Loop::block_iterator BI = TheLoop->block_begin(),
BE = TheLoop->block_end(); BI != BE; ++BI) {
BasicBlock *BB = *BI;
// We don't support switch statements inside loops.
if (!isa<BranchInst>(BB->getTerminator())) {
emitAnalysis(Report(BB->getTerminator())
<< "loop contains a switch statement");
return false;
}
// We must be able to predicate all blocks that need to be predicated.
if (blockNeedsPredication(BB)) {
if (!blockCanBePredicated(BB, SafePointes)) {
emitAnalysis(Report(BB->getTerminator())
<< "control flow cannot be substituted for a select");
return false;
}
} else if (BB != Header && !canIfConvertPHINodes(BB)) {
emitAnalysis(Report(BB->getTerminator())
<< "control flow cannot be substituted for a select");
return false;
}
}
// We can if-convert this loop.
return true;
}
bool LoopVectorizationLegality::canVectorize() {
// We must have a loop in canonical form. Loops with indirectbr in them cannot
// be canonicalized.
if (!TheLoop->getLoopPreheader()) {
emitAnalysis(
Report() << "loop control flow is not understood by vectorizer");
return false;
}
// We can only vectorize innermost loops.
if (TheLoop->getSubLoopsVector().size()) {
emitAnalysis(Report() << "loop is not the innermost loop");
return false;
}
// We must have a single backedge.
if (TheLoop->getNumBackEdges() != 1) {
emitAnalysis(
Report() << "loop control flow is not understood by vectorizer");
return false;
}
// We must have a single exiting block.
if (!TheLoop->getExitingBlock()) {
emitAnalysis(
Report() << "loop control flow is not understood by vectorizer");
return false;
}
// We only handle bottom-tested loops, i.e. loop in which the condition is
// checked at the end of each iteration. With that we can assume that all
// instructions in the loop are executed the same number of times.
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
emitAnalysis(
Report() << "loop control flow is not understood by vectorizer");
return false;
}
// We need to have a loop header.
DEBUG(dbgs() << "LV: Found a loop: " <<
TheLoop->getHeader()->getName() << '\n');
// Check if we can if-convert non-single-bb loops.
unsigned NumBlocks = TheLoop->getNumBlocks();
if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
return false;
}
// ScalarEvolution needs to be able to find the exit count.
const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
if (ExitCount == SE->getCouldNotCompute()) {
emitAnalysis(Report() << "could not determine number of loop iterations");
DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
return false;
}
// Check if we can vectorize the instructions and CFG in this loop.
if (!canVectorizeInstrs()) {
DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
return false;
}
// Go over each instruction and look at memory deps.
if (!canVectorizeMemory()) {
DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
return false;
}
// Collect all of the variables that remain uniform after vectorization.
collectLoopUniforms();
DEBUG(dbgs() << "LV: We can vectorize this loop" <<
(PtrRtCheck.Need ? " (with a runtime bound check)" : "")
<<"!\n");
// Okay! We can vectorize. At this point we don't have any other mem analysis
// which may limit our maximum vectorization factor, so just return true with
// no restrictions.
return true;
}
static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
if (Ty->isPointerTy())
return DL.getIntPtrType(Ty);
// It is possible that char's or short's overflow when we ask for the loop's
// trip count, work around this by changing the type size.
if (Ty->getScalarSizeInBits() < 32)
return Type::getInt32Ty(Ty->getContext());
return Ty;
}
static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
Ty0 = convertPointerToIntegerType(DL, Ty0);
Ty1 = convertPointerToIntegerType(DL, Ty1);
if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
return Ty0;
return Ty1;
}
/// \brief Check that the instruction has outside loop users and is not an
/// identified reduction variable.
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
SmallPtrSet<Value *, 4> &Reductions) {
// Reduction instructions are allowed to have exit users. All other
// instructions must not have external users.
if (!Reductions.count(Inst))
//Check that all of the users of the loop are inside the BB.
for (User *U : Inst->users()) {
Instruction *UI = cast<Instruction>(U);
// This user may be a reduction exit value.
if (!TheLoop->contains(UI)) {
DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
return true;
}
}
return false;
}
bool LoopVectorizationLegality::canVectorizeInstrs() {
BasicBlock *PreHeader = TheLoop->getLoopPreheader();
BasicBlock *Header = TheLoop->getHeader();
// Look for the attribute signaling the absence of NaNs.
Function &F = *Header->getParent();
if (F.hasFnAttribute("no-nans-fp-math"))
HasFunNoNaNAttr = F.getAttributes().getAttribute(
AttributeSet::FunctionIndex,
"no-nans-fp-math").getValueAsString() == "true";
// For each block in the loop.
for (Loop::block_iterator bb = TheLoop->block_begin(),
be = TheLoop->block_end(); bb != be; ++bb) {
// Scan the instructions in the block and look for hazards.
for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
++it) {
if (PHINode *Phi = dyn_cast<PHINode>(it)) {
Type *PhiTy = Phi->getType();
// Check that this PHI type is allowed.
if (!PhiTy->isIntegerTy() &&
!PhiTy->isFloatingPointTy() &&
!PhiTy->isPointerTy()) {
emitAnalysis(Report(it)
<< "loop control flow is not understood by vectorizer");
DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
return false;
}
// If this PHINode is not in the header block, then we know that we
// can convert it to select during if-conversion. No need to check if
// the PHIs in this block are induction or reduction variables.
if (*bb != Header) {
// Check that this instruction has no outside users or is an
// identified reduction value with an outside user.
if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
continue;
emitAnalysis(Report(it) << "value that could not be identified as "
"reduction is used outside the loop");
return false;
}
// We only allow if-converted PHIs with more than two incoming values.
if (Phi->getNumIncomingValues() != 2) {
emitAnalysis(Report(it)
<< "control flow not understood by vectorizer");
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
return false;
}
// This is the value coming from the preheader.
Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
// Check if this is an induction variable.
InductionKind IK = isInductionVariable(Phi);
if (IK_NoInduction != IK) {
// Get the widest type.
if (!WidestIndTy)
WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
else
WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
// Int inductions are special because we only allow one IV.
if (IK == IK_IntInduction) {
// Use the phi node with the widest type as induction. Use the last
// one if there are multiple (no good reason for doing this other
// than it is expedient).
if (!Induction || PhiTy == WidestIndTy)
Induction = Phi;
}
DEBUG(dbgs() << "LV: Found an induction variable.\n");
Inductions[Phi] = InductionInfo(StartValue, IK);
// Until we explicitly handle the case of an induction variable with
// an outside loop user we have to give up vectorizing this loop.
if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
emitAnalysis(Report(it) << "use of induction value outside of the "
"loop is not handled by vectorizer");
return false;
}
continue;
}
if (AddReductionVar(Phi, RK_IntegerAdd)) {
DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_IntegerMult)) {
DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_IntegerOr)) {
DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_IntegerAnd)) {
DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_IntegerXor)) {
DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_IntegerMinMax)) {
DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_FloatMult)) {
DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_FloatAdd)) {
DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_FloatMinMax)) {
DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
"\n");
continue;
}
emitAnalysis(Report(it) << "unvectorizable operation");
DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
return false;
}// end of PHI handling
// We still don't handle functions. However, we can ignore dbg intrinsic
// calls and we do handle certain intrinsic and libm functions.
CallInst *CI = dyn_cast<CallInst>(it);
if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
emitAnalysis(Report(it) << "call instruction cannot be vectorized");
DEBUG(dbgs() << "LV: Found a call site.\n");
return false;
}
// Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
// second argument is the same (i.e. loop invariant)
if (CI &&
hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
emitAnalysis(Report(it)
<< "intrinsic instruction cannot be vectorized");
DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
return false;
}
}
// Check that the instruction return type is vectorizable.
// Also, we can't vectorize extractelement instructions.
if ((!VectorType::isValidElementType(it->getType()) &&
!it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
emitAnalysis(Report(it)
<< "instruction return type cannot be vectorized");
DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
return false;
}
// Check that the stored type is vectorizable.
if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
Type *T = ST->getValueOperand()->getType();
if (!VectorType::isValidElementType(T)) {
emitAnalysis(Report(ST) << "store instruction cannot be vectorized");
return false;
}
if (EnableMemAccessVersioning)
collectStridedAcccess(ST);
}
if (EnableMemAccessVersioning)
if (LoadInst *LI = dyn_cast<LoadInst>(it))
collectStridedAcccess(LI);
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
emitAnalysis(Report(it) << "value cannot be used outside the loop");
return false;
}
} // next instr.
}
if (!Induction) {
DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
if (Inductions.empty()) {
emitAnalysis(Report()
<< "loop induction variable could not be identified");
return false;
}
}
return true;
}
///\brief Remove GEPs whose indices but the last one are loop invariant and
/// return the induction operand of the gep pointer.
static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
const DataLayout *DL, Loop *Lp) {
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
if (!GEP)
return Ptr;
unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
// Check that all of the gep indices are uniform except for our induction
// operand.
for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
if (i != InductionOperand &&
!SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
return Ptr;
return GEP->getOperand(InductionOperand);
}
///\brief Look for a cast use of the passed value.
static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
Value *UniqueCast = nullptr;
for (User *U : Ptr->users()) {
CastInst *CI = dyn_cast<CastInst>(U);
if (CI && CI->getType() == Ty) {
if (!UniqueCast)
UniqueCast = CI;
else
return nullptr;
}
}
return UniqueCast;
}
///\brief Get the stride of a pointer access in a loop.
/// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
/// pointer to the Value, or null otherwise.
static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
const DataLayout *DL, Loop *Lp) {
const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
if (!PtrTy || PtrTy->isAggregateType())
return nullptr;
// Try to remove a gep instruction to make the pointer (actually index at this
// point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
// pointer, otherwise, we are analyzing the index.
Value *OrigPtr = Ptr;
// The size of the pointer access.
int64_t PtrAccessSize = 1;
Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
const SCEV *V = SE->getSCEV(Ptr);
if (Ptr != OrigPtr)
// Strip off casts.
while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
V = C->getOperand();
const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
if (!S)
return nullptr;
V = S->getStepRecurrence(*SE);
if (!V)
return nullptr;
// Strip off the size of access multiplication if we are still analyzing the
// pointer.
if (OrigPtr == Ptr) {
DL->getTypeAllocSize(PtrTy->getElementType());
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
if (M->getOperand(0)->getSCEVType() != scConstant)
return nullptr;
const APInt &APStepVal =
cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
// Huge step value - give up.
if (APStepVal.getBitWidth() > 64)
return nullptr;
int64_t StepVal = APStepVal.getSExtValue();
if (PtrAccessSize != StepVal)
return nullptr;
V = M->getOperand(1);
}
}
// Strip off casts.
Type *StripedOffRecurrenceCast = nullptr;
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
StripedOffRecurrenceCast = C->getType();
V = C->getOperand();
}
// Look for the loop invariant symbolic value.
const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
if (!U)
return nullptr;
Value *Stride = U->getValue();
if (!Lp->isLoopInvariant(Stride))
return nullptr;
// If we have stripped off the recurrence cast we have to make sure that we
// return the value that is used in this loop so that we can replace it later.
if (StripedOffRecurrenceCast)
Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
return Stride;
}
void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
Value *Ptr = nullptr;
if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
Ptr = LI->getPointerOperand();
else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
Ptr = SI->getPointerOperand();
else
return;
Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
if (!Stride)
return;
DEBUG(dbgs() << "LV: Found a strided access that we can version");
DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
Strides[Ptr] = Stride;
StrideSet.insert(Stride);
}
void LoopVectorizationLegality::collectLoopUniforms() {
// We now know that the loop is vectorizable!
// Collect variables that will remain uniform after vectorization.
std::vector<Value*> Worklist;
BasicBlock *Latch = TheLoop->getLoopLatch();
// Start with the conditional branch and walk up the block.
Worklist.push_back(Latch->getTerminator()->getOperand(0));
// Also add all consecutive pointer values; these values will be uniform
// after vectorization (and subsequent cleanup) and, until revectorization is
// supported, all dependencies must also be uniform.
for (Loop::block_iterator B = TheLoop->block_begin(),
BE = TheLoop->block_end(); B != BE; ++B)
for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
I != IE; ++I)
if (I->getType()->isPointerTy() && isConsecutivePtr(I))
Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
while (Worklist.size()) {
Instruction *I = dyn_cast<Instruction>(Worklist.back());
Worklist.pop_back();
// Look at instructions inside this loop.
// Stop when reaching PHI nodes.
// TODO: we need to follow values all over the loop, not only in this block.
if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
continue;
// This is a known uniform.
Uniforms.insert(I);
// Insert all operands.
Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
}
}
namespace {
/// \brief Analyses memory accesses in a loop.
///
/// Checks whether run time pointer checks are needed and builds sets for data
/// dependence checking.
class AccessAnalysis {
public:
/// \brief Read or write access location.
typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
/// \brief Set of potential dependent memory accesses.
typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) :
DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {}
/// \brief Register a load and whether it is only read from.
void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
Value *Ptr = const_cast<Value*>(Loc.Ptr);
AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.TBAATag);
Accesses.insert(MemAccessInfo(Ptr, false));
if (IsReadOnly)
ReadOnlyPtr.insert(Ptr);
}
/// \brief Register a store.
void addStore(AliasAnalysis::Location &Loc) {
Value *Ptr = const_cast<Value*>(Loc.Ptr);
AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.TBAATag);
Accesses.insert(MemAccessInfo(Ptr, true));
}
/// \brief Check whether we can check the pointers at runtime for
/// non-intersection.
bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
unsigned &NumComparisons, ScalarEvolution *SE,
Loop *TheLoop, ValueToValueMap &Strides,
bool ShouldCheckStride = false);
/// \brief Goes over all memory accesses, checks whether a RT check is needed
/// and builds sets of dependent accesses.
void buildDependenceSets() {
processMemAccesses();
}
bool isRTCheckNeeded() { return IsRTCheckNeeded; }
bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
void resetDepChecks() { CheckDeps.clear(); }
MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
private:
typedef SetVector<MemAccessInfo> PtrAccessSet;
/// \brief Go over all memory access and check whether runtime pointer checks
/// are needed /// and build sets of dependency check candidates.
void processMemAccesses();
/// Set of all accesses.
PtrAccessSet Accesses;
/// Set of accesses that need a further dependence check.
MemAccessInfoSet CheckDeps;
/// Set of pointers that are read only.
SmallPtrSet<Value*, 16> ReadOnlyPtr;
const DataLayout *DL;
/// An alias set tracker to partition the access set by underlying object and
//intrinsic property (such as TBAA metadata).
AliasSetTracker AST;
/// Sets of potentially dependent accesses - members of one set share an
/// underlying pointer. The set "CheckDeps" identfies which sets really need a
/// dependence check.
DepCandidates &DepCands;
bool IsRTCheckNeeded;
};
} // end anonymous namespace
/// \brief Check whether a pointer can participate in a runtime bounds check.
static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
Value *Ptr) {
const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
if (!AR)
return false;
return AR->isAffine();
}
/// \brief Check the stride of the pointer and ensure that it does not wrap in
/// the address space.
static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
const Loop *Lp, ValueToValueMap &StridesMap);
bool AccessAnalysis::canCheckPtrAtRT(
LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
ValueToValueMap &StridesMap, bool ShouldCheckStride) {
// Find pointers with computable bounds. We are going to use this information
// to place a runtime bound check.
bool CanDoRT = true;
bool IsDepCheckNeeded = isDependencyCheckNeeded();
NumComparisons = 0;
// We assign a consecutive id to access from different alias sets.
// Accesses between different groups doesn't need to be checked.
unsigned ASId = 1;
for (auto &AS : AST) {
unsigned NumReadPtrChecks = 0;
unsigned NumWritePtrChecks = 0;
// We assign consecutive id to access from different dependence sets.
// Accesses within the same set don't need a runtime check.
unsigned RunningDepId = 1;
DenseMap<Value *, unsigned> DepSetId;
for (auto A : AS) {
Value *Ptr = A.getValue();
bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
MemAccessInfo Access(Ptr, IsWrite);
if (IsWrite)
++NumWritePtrChecks;
else
++NumReadPtrChecks;
if (hasComputableBounds(SE, StridesMap, Ptr) &&
// When we run after a failing dependency check we have to make sure we
// don't have wrapping pointers.
(!ShouldCheckStride ||
isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
// The id of the dependence set.
unsigned DepId;
if (IsDepCheckNeeded) {
Value *Leader = DepCands.getLeaderValue(Access).getPointer();
unsigned &LeaderId = DepSetId[Leader];
if (!LeaderId)
LeaderId = RunningDepId++;
DepId = LeaderId;
} else
// Each access has its own dependence set.
DepId = RunningDepId++;
RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
} else {
CanDoRT = false;
}
}
if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
NumComparisons += 0; // Only one dependence set.
else {
NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
NumWritePtrChecks - 1));
}
++ASId;
}
// If the pointers that we would use for the bounds comparison have different
// address spaces, assume the values aren't directly comparable, so we can't
// use them for the runtime check. We also have to assume they could
// overlap. In the future there should be metadata for whether address spaces
// are disjoint.
unsigned NumPointers = RtCheck.Pointers.size();
for (unsigned i = 0; i < NumPointers; ++i) {
for (unsigned j = i + 1; j < NumPointers; ++j) {
// Only need to check pointers between two different dependency sets.
if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
continue;
// Only need to check pointers in the same alias set.
if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
continue;
Value *PtrI = RtCheck.Pointers[i];
Value *PtrJ = RtCheck.Pointers[j];
unsigned ASi = PtrI->getType()->getPointerAddressSpace();
unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
if (ASi != ASj) {
DEBUG(dbgs() << "LV: Runtime check would require comparison between"
" different address spaces\n");
return false;
}
}
}
return CanDoRT;
}
void AccessAnalysis::processMemAccesses() {
// We process the set twice: first we process read-write pointers, last we
// process read-only pointers. This allows us to skip dependence tests for
// read-only pointers.
DEBUG(dbgs() << "LV: Processing memory accesses...\n");
DEBUG(dbgs() << " AST: "; AST.dump());
DEBUG(dbgs() << "LV: Accesses:\n");
DEBUG({
for (auto A : Accesses)
dbgs() << "\t" << *A.getPointer() << " (" <<
(A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
"read-only" : "read")) << ")\n";
});
// The AliasSetTracker has nicely partitioned our pointers by metadata
// compatibility and potential for underlying-object overlap. As a result, we
// only need to check for potential pointer dependencies within each alias
// set.
for (auto &AS : AST) {
// Note that both the alias-set tracker and the alias sets themselves used
// linked lists internally and so the iteration order here is deterministic
// (matching the original instruction order within each set).
bool SetHasWrite = false;
// Map of pointers to last access encountered.
typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
UnderlyingObjToAccessMap ObjToLastAccess;
// Set of access to check after all writes have been processed.
PtrAccessSet DeferredAccesses;
// Iterate over each alias set twice, once to process read/write pointers,
// and then to process read-only pointers.
for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
bool UseDeferred = SetIteration > 0;
PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
for (auto A : AS) {
Value *Ptr = A.getValue();
bool IsWrite = S.count(MemAccessInfo(Ptr, true));
// If we're using the deferred access set, then it contains only reads.
bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
if (UseDeferred && !IsReadOnlyPtr)
continue;
// Otherwise, the pointer must be in the PtrAccessSet, either as a read
// or a write.
assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
S.count(MemAccessInfo(Ptr, false))) &&
"Alias-set pointer not in the access set?");
MemAccessInfo Access(Ptr, IsWrite);
DepCands.insert(Access);
// Memorize read-only pointers for later processing and skip them in the
// first round (they need to be checked after we have seen all write
// pointers). Note: we also mark pointer that are not consecutive as
// "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need
// the second check for "!IsWrite".
if (!UseDeferred && IsReadOnlyPtr) {
DeferredAccesses.insert(Access);
continue;
}
// If this is a write - check other reads and writes for conflicts. If
// this is a read only check other writes for conflicts (but only if
// there is no other write to the ptr - this is an optimization to
// catch "a[i] = a[i] + " without having to do a dependence check).
if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
CheckDeps.insert(Access);
IsRTCheckNeeded = true;
}
if (IsWrite)
SetHasWrite = true;
// Create sets of pointers connected by a shared alias set and
// underlying object.
typedef SmallVector<Value*, 16> ValueVector;
ValueVector TempObjects;
GetUnderlyingObjects(Ptr, TempObjects, DL);
for (Value *UnderlyingObj : TempObjects) {
UnderlyingObjToAccessMap::iterator Prev =
ObjToLastAccess.find(UnderlyingObj);
if (Prev != ObjToLastAccess.end())
DepCands.unionSets(Access, Prev->second);
ObjToLastAccess[UnderlyingObj] = Access;
}
}
}
}
}
namespace {
/// \brief Checks memory dependences among accesses to the same underlying
/// object to determine whether there vectorization is legal or not (and at
/// which vectorization factor).
///
/// This class works under the assumption that we already checked that memory
/// locations with different underlying pointers are "must-not alias".
/// We use the ScalarEvolution framework to symbolically evalutate access
/// functions pairs. Since we currently don't restructure the loop we can rely
/// on the program order of memory accesses to determine their safety.
/// At the moment we will only deem accesses as safe for:
/// * A negative constant distance assuming program order.
///
/// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
/// a[i] = tmp; y = a[i];
///
/// The latter case is safe because later checks guarantuee that there can't
/// be a cycle through a phi node (that is, we check that "x" and "y" is not
/// the same variable: a header phi can only be an induction or a reduction, a
/// reduction can't have a memory sink, an induction can't have a memory
/// source). This is important and must not be violated (or we have to
/// resort to checking for cycles through memory).
///
/// * A positive constant distance assuming program order that is bigger
/// than the biggest memory access.
///
/// tmp = a[i] OR b[i] = x
/// a[i+2] = tmp y = b[i+2];
///
/// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
///
/// * Zero distances and all accesses have the same size.
///
class MemoryDepChecker {
public:
typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
: SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
ShouldRetryWithRuntimeCheck(false) {}
/// \brief Register the location (instructions are given increasing numbers)
/// of a write access.
void addAccess(StoreInst *SI) {
Value *Ptr = SI->getPointerOperand();
Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
InstMap.push_back(SI);
++AccessIdx;
}
/// \brief Register the location (instructions are given increasing numbers)
/// of a write access.
void addAccess(LoadInst *LI) {
Value *Ptr = LI->getPointerOperand();
Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
InstMap.push_back(LI);
++AccessIdx;
}
/// \brief Check whether the dependencies between the accesses are safe.
///
/// Only checks sets with elements in \p CheckDeps.
bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
/// \brief The maximum number of bytes of a vector register we can vectorize
/// the accesses safely with.
unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
/// \brief In same cases when the dependency check fails we can still
/// vectorize the loop with a dynamic array access check.
bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
private:
ScalarEvolution *SE;
const DataLayout *DL;
const Loop *InnermostLoop;
/// \brief Maps access locations (ptr, read/write) to program order.
DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
/// \brief Memory access instructions in program order.
SmallVector<Instruction *, 16> InstMap;
/// \brief The program order index to be used for the next instruction.
unsigned AccessIdx;
// We can access this many bytes in parallel safely.
unsigned MaxSafeDepDistBytes;
/// \brief If we see a non-constant dependence distance we can still try to
/// vectorize this loop with runtime checks.
bool ShouldRetryWithRuntimeCheck;
/// \brief Check whether there is a plausible dependence between the two
/// accesses.
///
/// Access \p A must happen before \p B in program order. The two indices
/// identify the index into the program order map.
///
/// This function checks whether there is a plausible dependence (or the
/// absence of such can't be proved) between the two accesses. If there is a
/// plausible dependence but the dependence distance is bigger than one
/// element access it records this distance in \p MaxSafeDepDistBytes (if this
/// distance is smaller than any other distance encountered so far).
/// Otherwise, this function returns true signaling a possible dependence.
bool isDependent(const MemAccessInfo &A, unsigned AIdx,
const MemAccessInfo &B, unsigned BIdx,
ValueToValueMap &Strides);
/// \brief Check whether the data dependence could prevent store-load
/// forwarding.
bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
};
} // end anonymous namespace
static bool isInBoundsGep(Value *Ptr) {
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
return GEP->isInBounds();
return false;
}
/// \brief Check whether the access through \p Ptr has a constant stride.
static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
const Loop *Lp, ValueToValueMap &StridesMap) {
const Type *Ty = Ptr->getType();
assert(Ty->isPointerTy() && "Unexpected non-ptr");
// Make sure that the pointer does not point to aggregate types.
const PointerType *PtrTy = cast<PointerType>(Ty);
if (PtrTy->getElementType()->isAggregateType()) {
DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
"\n");
return 0;
}
const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
if (!AR) {
DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
<< *Ptr << " SCEV: " << *PtrScev << "\n");
return 0;
}
// The accesss function must stride over the innermost loop.
if (Lp != AR->getLoop()) {
DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
*Ptr << " SCEV: " << *PtrScev << "\n");
}
// The address calculation must not wrap. Otherwise, a dependence could be
// inverted.
// An inbounds getelementptr that is a AddRec with a unit stride
// cannot wrap per definition. The unit stride requirement is checked later.
// An getelementptr without an inbounds attribute and unit stride would have
// to access the pointer value "0" which is undefined behavior in address
// space 0, therefore we can also vectorize this case.
bool IsInBoundsGEP = isInBoundsGep(Ptr);
bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
<< *Ptr << " SCEV: " << *PtrScev << "\n");
return 0;
}
// Check the step is constant.
const SCEV *Step = AR->getStepRecurrence(*SE);
// Calculate the pointer stride and check if it is consecutive.
const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
if (!C) {
DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
" SCEV: " << *PtrScev << "\n");
return 0;
}
int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
const APInt &APStepVal = C->getValue()->getValue();
// Huge step value - give up.
if (APStepVal.getBitWidth() > 64)
return 0;
int64_t StepVal = APStepVal.getSExtValue();
// Strided access.
int64_t Stride = StepVal / Size;
int64_t Rem = StepVal % Size;
if (Rem)
return 0;
// If the SCEV could wrap but we have an inbounds gep with a unit stride we
// know we can't "wrap around the address space". In case of address space
// zero we know that this won't happen without triggering undefined behavior.
if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
Stride != 1 && Stride != -1)
return 0;
return Stride;
}
bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
unsigned TypeByteSize) {
// If loads occur at a distance that is not a multiple of a feasible vector
// factor store-load forwarding does not take place.
// Positive dependences might cause troubles because vectorizing them might
// prevent store-load forwarding making vectorized code run a lot slower.
// a[i] = a[i-3] ^ a[i-8];
// The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
// hence on your typical architecture store-load forwarding does not take
// place. Vectorizing in such cases does not make sense.
// Store-load forwarding distance.
const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
// Maximum vector factor.
unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
vf *= 2) {
if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
MaxVFWithoutSLForwardIssues = (vf >>=1);
break;
}
}
if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
DEBUG(dbgs() << "LV: Distance " << Distance <<
" that could cause a store-load forwarding conflict\n");
return true;
}
if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
return false;
}
bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
const MemAccessInfo &B, unsigned BIdx,
ValueToValueMap &Strides) {
assert (AIdx < BIdx && "Must pass arguments in program order");
Value *APtr = A.getPointer();
Value *BPtr = B.getPointer();
bool AIsWrite = A.getInt();
bool BIsWrite = B.getInt();
// Two reads are independent.
if (!AIsWrite && !BIsWrite)
return false;
// We cannot check pointers in different address spaces.
if (APtr->getType()->getPointerAddressSpace() !=
BPtr->getType()->getPointerAddressSpace())
return true;
const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
const SCEV *Src = AScev;
const SCEV *Sink = BScev;
// If the induction step is negative we have to invert source and sink of the
// dependence.
if (StrideAPtr < 0) {
//Src = BScev;
//Sink = AScev;
std::swap(APtr, BPtr);
std::swap(Src, Sink);
std::swap(AIsWrite, BIsWrite);
std::swap(AIdx, BIdx);
std::swap(StrideAPtr, StrideBPtr);
}
const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
<< "(Induction step: " << StrideAPtr << ")\n");
DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
<< *InstMap[BIdx] << ": " << *Dist << "\n");
// Need consecutive accesses. We don't want to vectorize
// "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
// the address space.
if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
DEBUG(dbgs() << "Non-consecutive pointer access\n");
return true;
}
const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
if (!C) {
DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
ShouldRetryWithRuntimeCheck = true;
return true;
}
Type *ATy = APtr->getType()->getPointerElementType();
Type *BTy = BPtr->getType()->getPointerElementType();
unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
// Negative distances are not plausible dependencies.
const APInt &Val = C->getValue()->getValue();
if (Val.isNegative()) {
bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
if (IsTrueDataDependence &&
(couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
ATy != BTy))
return true;
DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
return false;
}
// Write to the same location with the same size.
// Could be improved to assert type sizes are the same (i32 == float, etc).
if (Val == 0) {
if (ATy == BTy)
return false;
DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
return true;
}
assert(Val.isStrictlyPositive() && "Expect a positive value");
// Positive distance bigger than max vectorization factor.
if (ATy != BTy) {
DEBUG(dbgs() <<
"LV: ReadWrite-Write positive dependency with different types\n");
return false;
}
unsigned Distance = (unsigned) Val.getZExtValue();
// Bail out early if passed-in parameters make vectorization not feasible.
unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
// The distance must be bigger than the size needed for a vectorized version
// of the operation and the size of the vectorized operation must not be
// bigger than the currrent maximum size.
if (Distance < 2*TypeByteSize ||
2*TypeByteSize > MaxSafeDepDistBytes ||
Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
DEBUG(dbgs() << "LV: Failure because of Positive distance "
<< Val.getSExtValue() << '\n');
return true;
}
MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
Distance : MaxSafeDepDistBytes;
bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
if (IsTrueDataDependence &&
couldPreventStoreLoadForward(Distance, TypeByteSize))
return true;
DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
" with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
return false;
}
bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
MemAccessInfoSet &CheckDeps,
ValueToValueMap &Strides) {
MaxSafeDepDistBytes = -1U;
while (!CheckDeps.empty()) {
MemAccessInfo CurAccess = *CheckDeps.begin();
// Get the relevant memory access set.
EquivalenceClasses<MemAccessInfo>::iterator I =
AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
// Check accesses within this set.
EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
// Check every access pair.
while (AI != AE) {
CheckDeps.erase(*AI);
EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
while (OI != AE) {
// Check every accessing instruction pair in program order.
for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
return false;
if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
return false;
}
++OI;
}
AI++;
}
}
return true;
}
bool LoopVectorizationLegality::canVectorizeMemory() {
typedef SmallVector<Value*, 16> ValueVector;
typedef SmallPtrSet<Value*, 16> ValueSet;
// Holds the Load and Store *instructions*.
ValueVector Loads;
ValueVector Stores;
// Holds all the different accesses in the loop.
unsigned NumReads = 0;
unsigned NumReadWrites = 0;
PtrRtCheck.Pointers.clear();
PtrRtCheck.Need = false;
const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
MemoryDepChecker DepChecker(SE, DL, TheLoop);
// For each block.
for (Loop::block_iterator bb = TheLoop->block_begin(),
be = TheLoop->block_end(); bb != be; ++bb) {
// Scan the BB and collect legal loads and stores.
for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
++it) {
// If this is a load, save it. If this instruction can read from memory
// but is not a load, then we quit. Notice that we don't handle function
// calls that read or write.
if (it->mayReadFromMemory()) {
// Many math library functions read the rounding mode. We will only
// vectorize a loop if it contains known function calls that don't set
// the flag. Therefore, it is safe to ignore this read from memory.
CallInst *Call = dyn_cast<CallInst>(it);
if (Call && getIntrinsicIDForCall(Call, TLI))
continue;
LoadInst *Ld = dyn_cast<LoadInst>(it);
if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
emitAnalysis(Report(Ld)
<< "read with atomic ordering or volatile read");
DEBUG(dbgs() << "LV: Found a non-simple load.\n");
return false;
}
NumLoads++;
Loads.push_back(Ld);
DepChecker.addAccess(Ld);
continue;
}
// Save 'store' instructions. Abort if other instructions write to memory.
if (it->mayWriteToMemory()) {
StoreInst *St = dyn_cast<StoreInst>(it);
if (!St) {
emitAnalysis(Report(it) << "instruction cannot be vectorized");
return false;
}
if (!St->isSimple() && !IsAnnotatedParallel) {
emitAnalysis(Report(St)
<< "write with atomic ordering or volatile write");
DEBUG(dbgs() << "LV: Found a non-simple store.\n");
return false;
}
NumStores++;
Stores.push_back(St);
DepChecker.addAccess(St);
}
} // Next instr.
} // Next block.
// Now we have two lists that hold the loads and the stores.
// Next, we find the pointers that they use.
// Check if we see any stores. If there are no stores, then we don't
// care if the pointers are *restrict*.
if (!Stores.size()) {
DEBUG(dbgs() << "LV: Found a read-only loop!\n");
return true;
}
AccessAnalysis::DepCandidates DependentAccesses;
AccessAnalysis Accesses(DL, AA, DependentAccesses);
// Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
// multiple times on the same object. If the ptr is accessed twice, once
// for read and once for write, it will only appear once (on the write
// list). This is okay, since we are going to check for conflicts between
// writes and between reads and writes, but not between reads and reads.
ValueSet Seen;
ValueVector::iterator I, IE;
for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
StoreInst *ST = cast<StoreInst>(*I);
Value* Ptr = ST->getPointerOperand();
if (isUniform(Ptr)) {
emitAnalysis(
Report(ST)
<< "write to a loop invariant address could not be vectorized");
DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
return false;
}
// If we did *not* see this pointer before, insert it to the read-write
// list. At this phase it is only a 'write' list.
if (Seen.insert(Ptr)) {
++NumReadWrites;
AliasAnalysis::Location Loc = AA->getLocation(ST);
// The TBAA metadata could have a control dependency on the predication
// condition, so we cannot rely on it when determining whether or not we
// need runtime pointer checks.
if (blockNeedsPredication(ST->getParent()))
Loc.TBAATag = nullptr;
Accesses.addStore(Loc);
}
}
if (IsAnnotatedParallel) {
DEBUG(dbgs()
<< "LV: A loop annotated parallel, ignore memory dependency "
<< "checks.\n");
return true;
}
for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
LoadInst *LD = cast<LoadInst>(*I);
Value* Ptr = LD->getPointerOperand();
// If we did *not* see this pointer before, insert it to the
// read list. If we *did* see it before, then it is already in
// the read-write list. This allows us to vectorize expressions
// such as A[i] += x; Because the address of A[i] is a read-write
// pointer. This only works if the index of A[i] is consecutive.
// If the address of i is unknown (for example A[B[i]]) then we may
// read a few words, modify, and write a few words, and some of the
// words may be written to the same address.
bool IsReadOnlyPtr = false;
if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
++NumReads;
IsReadOnlyPtr = true;
}
AliasAnalysis::Location Loc = AA->getLocation(LD);
// The TBAA metadata could have a control dependency on the predication
// condition, so we cannot rely on it when determining whether or not we
// need runtime pointer checks.
if (blockNeedsPredication(LD->getParent()))
Loc.TBAATag = nullptr;
Accesses.addLoad(Loc, IsReadOnlyPtr);
}
// If we write (or read-write) to a single destination and there are no
// other reads in this loop then is it safe to vectorize.
if (NumReadWrites == 1 && NumReads == 0) {
DEBUG(dbgs() << "LV: Found a write-only loop!\n");
return true;
}
// Build dependence sets and check whether we need a runtime pointer bounds
// check.
Accesses.buildDependenceSets();
bool NeedRTCheck = Accesses.isRTCheckNeeded();
// Find pointers with computable bounds. We are going to use this information
// to place a runtime bound check.
unsigned NumComparisons = 0;
bool CanDoRT = false;
if (NeedRTCheck)
CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
Strides);
DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
" pointer comparisons.\n");
// If we only have one set of dependences to check pointers among we don't
// need a runtime check.
if (NumComparisons == 0 && NeedRTCheck)
NeedRTCheck = false;
// Check that we did not collect too many pointers or found an unsizeable
// pointer.
if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
PtrRtCheck.reset();
CanDoRT = false;
}
if (CanDoRT) {
DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
}
if (NeedRTCheck && !CanDoRT) {
emitAnalysis(Report() << "cannot identify array bounds");
DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
"the array bounds.\n");
PtrRtCheck.reset();
return false;
}
PtrRtCheck.Need = NeedRTCheck;
bool CanVecMem = true;
if (Accesses.isDependencyCheckNeeded()) {
DEBUG(dbgs() << "LV: Checking memory dependencies\n");
CanVecMem = DepChecker.areDepsSafe(
DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
DEBUG(dbgs() << "LV: Retrying with memory checks\n");
NeedRTCheck = true;
// Clear the dependency checks. We assume they are not needed.
Accesses.resetDepChecks();
PtrRtCheck.reset();
PtrRtCheck.Need = true;
CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
TheLoop, Strides, true);
// Check that we did not collect too many pointers or found an unsizeable
// pointer.
if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
if (!CanDoRT && NumComparisons > 0)
emitAnalysis(Report()
<< "cannot check memory dependencies at runtime");
else
emitAnalysis(Report()
<< NumComparisons << " exceeds limit of "
<< RuntimeMemoryCheckThreshold
<< " dependent memory operations checked at runtime");
DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
PtrRtCheck.reset();
return false;
}
CanVecMem = true;
}
}
if (!CanVecMem)
emitAnalysis(Report() << "unsafe dependent memory operations in loop");
DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
" need a runtime memory check.\n");
return CanVecMem;
}
static bool hasMultipleUsesOf(Instruction *I,
SmallPtrSet<Instruction *, 8> &Insts) {
unsigned NumUses = 0;
for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
if (Insts.count(dyn_cast<Instruction>(*Use)))
++NumUses;
if (NumUses > 1)
return true;
}
return false;
}
static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
if (!Set.count(dyn_cast<Instruction>(*Use)))
return false;
return true;
}
bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
ReductionKind Kind) {
if (Phi->getNumIncomingValues() != 2)
return false;
// Reduction variables are only found in the loop header block.
if (Phi->getParent() != TheLoop->getHeader())
return false;
// Obtain the reduction start value from the value that comes from the loop
// preheader.
Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
// ExitInstruction is the single value which is used outside the loop.
// We only allow for a single reduction value to be used outside the loop.
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = nullptr;
// Indicates that we found a reduction operation in our scan.
bool FoundReduxOp = false;
// We start with the PHI node and scan for all of the users of this
// instruction. All users must be instructions that can be used as reduction
// variables (such as ADD). We must have a single out-of-block user. The cycle
// must include the original PHI.
bool FoundStartPHI = false;
// To recognize min/max patterns formed by a icmp select sequence, we store
// the number of instruction we saw from the recognized min/max pattern,
// to make sure we only see exactly the two instructions.
unsigned NumCmpSelectPatternInst = 0;
ReductionInstDesc ReduxDesc(false, nullptr);
SmallPtrSet<Instruction *, 8> VisitedInsts;
SmallVector<Instruction *, 8> Worklist;
Worklist.push_back(Phi);
VisitedInsts.insert(Phi);
// A value in the reduction can be used:
// - By the reduction:
// - Reduction operation:
// - One use of reduction value (safe).
// - Multiple use of reduction value (not safe).
// - PHI:
// - All uses of the PHI must be the reduction (safe).
// - Otherwise, not safe.
// - By one instruction outside of the loop (safe).
// - By further instructions outside of the loop (not safe).
// - By an instruction that is not part of the reduction (not safe).
// This is either:
// * An instruction type other than PHI or the reduction operation.
// * A PHI in the header other than the initial PHI.
while (!Worklist.empty()) {
Instruction *Cur = Worklist.back();
Worklist.pop_back();
// No Users.
// If the instruction has no users then this is a broken chain and can't be
// a reduction variable.
if (Cur->use_empty())
return false;
bool IsAPhi = isa<PHINode>(Cur);
// A header PHI use other than the original PHI.
if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
return false;
// Reductions of instructions such as Div, and Sub is only possible if the
// LHS is the reduction variable.
if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
!isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
!VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
return false;
// Any reduction instruction must be of one of the allowed kinds.
ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
if (!ReduxDesc.IsReduction)
return false;
// A reduction operation must only have one use of the reduction value.
if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
hasMultipleUsesOf(Cur, VisitedInsts))
return false;
// All inputs to a PHI node must be a reduction value.
if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
return false;
if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
// Check whether we found a reduction operator.
FoundReduxOp |= !IsAPhi;
// Process users of current instruction. Push non-PHI nodes after PHI nodes
// onto the stack. This way we are going to have seen all inputs to PHI
// nodes once we get to them.
SmallVector<Instruction *, 8> NonPHIs;
SmallVector<Instruction *, 8> PHIs;
for (User *U : Cur->users()) {
Instruction *UI = cast<Instruction>(U);
// Check if we found the exit user.
BasicBlock *Parent = UI->getParent();
if (!TheLoop->contains(Parent)) {
// Exit if you find multiple outside users or if the header phi node is
// being used. In this case the user uses the value of the previous
// iteration, in which case we would loose "VF-1" iterations of the
// reduction operation if we vectorize.
if (ExitInstruction != nullptr || Cur == Phi)
return false;
// The instruction used by an outside user must be the last instruction
// before we feed back to the reduction phi. Otherwise, we loose VF-1
// operations on the value.
if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
return false;
ExitInstruction = Cur;
continue;
}
// Process instructions only once (termination). Each reduction cycle
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
ReductionInstDesc IgnoredVal(false, nullptr);
if (VisitedInsts.insert(UI)) {
if (isa<PHINode>(UI))
PHIs.push_back(UI);
else
NonPHIs.push_back(UI);
} else if (!isa<PHINode>(UI) &&
((!isa<FCmpInst>(UI) &&
!isa<ICmpInst>(UI) &&
!isa<SelectInst>(UI)) ||
!isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
return false;
// Remember that we completed the cycle.
if (UI == Phi)
FoundStartPHI = true;
}
Worklist.append(PHIs.begin(), PHIs.end());
Worklist.append(NonPHIs.begin(), NonPHIs.end());
}
// This means we have seen one but not the other instruction of the
// pattern or more than just a select and cmp.
if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
NumCmpSelectPatternInst != 2)
return false;
if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
return false;
// We found a reduction var if we have reached the original phi node and we
// only have a single instruction with out-of-loop users.
// This instruction is allowed to have out-of-loop users.
AllowedExit.insert(ExitInstruction);
// Save the description of this reduction variable.
ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
ReduxDesc.MinMaxKind);
Reductions[Phi] = RD;
// We've ended the cycle. This is a reduction variable if we have an
// outside user and it has a binary op.
return true;
}
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
LoopVectorizationLegality::ReductionInstDesc
LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
ReductionInstDesc &Prev) {
assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
"Expect a select instruction");
Instruction *Cmp = nullptr;
SelectInst *Select = nullptr;
// We must handle the select(cmp()) as a single instruction. Advance to the
// select.
if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
return ReductionInstDesc(false, I);
return ReductionInstDesc(Select, Prev.MinMaxKind);
}
// Only handle single use cases for now.
if (!(Select = dyn_cast<SelectInst>(I)))
return ReductionInstDesc(false, I);
if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
!(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
return ReductionInstDesc(false, I);
if (!Cmp->hasOneUse())
return ReductionInstDesc(false, I);
Value *CmpLeft;
Value *CmpRight;
// Look for a min/max pattern.
if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, MRK_UIntMin);
else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, MRK_UIntMax);
else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, MRK_SIntMax);
else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, MRK_SIntMin);
else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, MRK_FloatMin);
else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, MRK_FloatMax);
else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, MRK_FloatMin);
else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return ReductionInstDesc(Select, MRK_FloatMax);
return ReductionInstDesc(false, I);
}
LoopVectorizationLegality::ReductionInstDesc
LoopVectorizationLegality::isReductionInstr(Instruction *I,
ReductionKind Kind,
ReductionInstDesc &Prev) {
bool FP = I->getType()->isFloatingPointTy();
bool FastMath = (FP && I->isCommutative() && I->isAssociative());
switch (I->getOpcode()) {
default:
return ReductionInstDesc(false, I);
case Instruction::PHI:
if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
Kind != RK_FloatMinMax))
return ReductionInstDesc(false, I);
return ReductionInstDesc(I, Prev.MinMaxKind);
case Instruction::Sub:
case Instruction::Add:
return ReductionInstDesc(Kind == RK_IntegerAdd, I);
case Instruction::Mul:
return ReductionInstDesc(Kind == RK_IntegerMult, I);
case Instruction::And:
return ReductionInstDesc(Kind == RK_IntegerAnd, I);
case Instruction::Or:
return ReductionInstDesc(Kind == RK_IntegerOr, I);
case Instruction::Xor:
return ReductionInstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
case Instruction::FAdd:
return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select:
if (Kind != RK_IntegerMinMax &&
(!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
return ReductionInstDesc(false, I);
return isMinMaxSelectCmpPattern(I, Prev);
}
}
LoopVectorizationLegality::InductionKind
LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
return IK_NoInduction;
// Check that the PHI is consecutive.
const SCEV *PhiScev = SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
if (!AR) {
DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return IK_NoInduction;
}
const SCEV *Step = AR->getStepRecurrence(*SE);
// Integer inductions need to have a stride of one.
if (PhiTy->isIntegerTy()) {
if (Step->isOne())
return IK_IntInduction;
if (Step->isAllOnesValue())
return IK_ReverseIntInduction;
return IK_NoInduction;
}
// Calculate the pointer stride and check if it is consecutive.
const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
if (!C)
return IK_NoInduction;
assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
Type *PointerElementType = PhiTy->getPointerElementType();
// The pointer stride cannot be determined if the pointer element type is not
// sized.
if (!PointerElementType->isSized())
return IK_NoInduction;
uint64_t Size = DL->getTypeAllocSize(PointerElementType);
if (C->getValue()->equalsInt(Size))
return IK_PtrInduction;
else if (C->getValue()->equalsInt(0 - Size))
return IK_ReversePtrInduction;
return IK_NoInduction;
}
bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
Value *In0 = const_cast<Value*>(V);
PHINode *PN = dyn_cast_or_null<PHINode>(In0);
if (!PN)
return false;
return Inductions.count(PN);
}
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
assert(TheLoop->contains(BB) && "Unknown block used");
// Blocks that do not dominate the latch need predication.
BasicBlock* Latch = TheLoop->getLoopLatch();
return !DT->dominates(BB, Latch);
}
bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
SmallPtrSet<Value *, 8>& SafePtrs) {
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
// We might be able to hoist the load.
if (it->mayReadFromMemory()) {
LoadInst *LI = dyn_cast<LoadInst>(it);
if (!LI || !SafePtrs.count(LI->getPointerOperand()))
return false;
}
// We don't predicate stores at the moment.
if (it->mayWriteToMemory()) {
StoreInst *SI = dyn_cast<StoreInst>(it);
// We only support predication of stores in basic blocks with one
// predecessor.
if (!SI || ++NumPredStores > NumberOfStoresToPredicate ||
!SafePtrs.count(SI->getPointerOperand()) ||
!SI->getParent()->getSinglePredecessor())
return false;
}
if (it->mayThrow())
return false;
// Check that we don't have a constant expression that can trap as operand.
for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
OI != OE; ++OI) {
if (Constant *C = dyn_cast<Constant>(*OI))
if (C->canTrap())
return false;
}
// The instructions below can trap.
switch (it->getOpcode()) {
default: continue;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
return false;
}
}
return true;
}
LoopVectorizationCostModel::VectorizationFactor
LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
unsigned UserVF,
bool ForceVectorization) {
// Width 1 means no vectorize
VectorizationFactor Factor = { 1U, 0U };
if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
return Factor;
}
if (!EnableCondStoresVectorization && Legal->NumPredStores) {
DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
return Factor;
}
// Find the trip count.
unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
unsigned WidestType = getWidestType();
unsigned WidestRegister = TTI.getRegisterBitWidth(true);
unsigned MaxSafeDepDist = -1U;
if (Legal->getMaxSafeDepDistBytes() != -1U)
MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
WidestRegister : MaxSafeDepDist);
unsigned MaxVectorSize = WidestRegister / WidestType;
DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
DEBUG(dbgs() << "LV: The Widest register is: "
<< WidestRegister << " bits.\n");
if (MaxVectorSize == 0) {
DEBUG(dbgs() << "LV: The target has no vector registers.\n");
MaxVectorSize = 1;
}
assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
" into one vector!");
unsigned VF = MaxVectorSize;
// If we optimize the program for size, avoid creating the tail loop.
if (OptForSize) {
// If we are unable to calculate the trip count then don't try to vectorize.
if (TC < 2) {
DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
return Factor;
}
// Find the maximum SIMD width that can fit within the trip count.
VF = TC % MaxVectorSize;
if (VF == 0)
VF = MaxVectorSize;
// If the trip count that we found modulo the vectorization factor is not
// zero then we require a tail.
if (VF < 2) {
DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
return Factor;
}
}
if (UserVF != 0) {
assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
Factor.Width = UserVF;
return Factor;
}
float Cost = expectedCost(1);
#ifndef NDEBUG
const float ScalarCost = Cost;
#endif /* NDEBUG */
unsigned Width = 1;
DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
// Ignore scalar width, because the user explicitly wants vectorization.
if (ForceVectorization && VF > 1) {
Width = 2;
Cost = expectedCost(Width) / (float)Width;
}
for (unsigned i=2; i <= VF; i*=2) {
// Notice that the vector loop needs to be executed less times, so
// we need to divide the cost of the vector loops by the width of
// the vector elements.
float VectorCost = expectedCost(i) / (float)i;
DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
(int)VectorCost << ".\n");
if (VectorCost < Cost) {
Cost = VectorCost;
Width = i;
}
}
DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
<< "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n");
DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
Factor.Width = Width;
Factor.Cost = Width * Cost;
return Factor;
}
unsigned LoopVectorizationCostModel::getWidestType() {
unsigned MaxWidth = 8;
// For each block.
for (Loop::block_iterator bb = TheLoop->block_begin(),
be = TheLoop->block_end(); bb != be; ++bb) {
BasicBlock *BB = *bb;
// For each instruction in the loop.
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
Type *T = it->getType();
// Only examine Loads, Stores and PHINodes.
if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
continue;
// Examine PHI nodes that are reduction variables.
if (PHINode *PN = dyn_cast<PHINode>(it))
if (!Legal->getReductionVars()->count(PN))
continue;
// Examine the stored values.
if (StoreInst *ST = dyn_cast<StoreInst>(it))
T = ST->getValueOperand()->getType();
// Ignore loaded pointer types and stored pointer types that are not
// consecutive. However, we do want to take consecutive stores/loads of
// pointer vectors into account.
if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
continue;
MaxWidth = std::max(MaxWidth,
(unsigned)DL->getTypeSizeInBits(T->getScalarType()));
}
}
return MaxWidth;
}
unsigned
LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
unsigned UserUF,
unsigned VF,
unsigned LoopCost) {
// -- The unroll heuristics --
// We unroll the loop in order to expose ILP and reduce the loop overhead.
// There are many micro-architectural considerations that we can't predict
// at this level. For example frontend pressure (on decode or fetch) due to
// code size, or the number and capabilities of the execution ports.
//
// We use the following heuristics to select the unroll factor:
// 1. If the code has reductions the we unroll in order to break the cross
// iteration dependency.
// 2. If the loop is really small then we unroll in order to reduce the loop
// overhead.
// 3. We don't unroll if we think that we will spill registers to memory due
// to the increased register pressure.
// Use the user preference, unless 'auto' is selected.
if (UserUF != 0)
return UserUF;
// When we optimize for size we don't unroll.
if (OptForSize)
return 1;
// We used the distance for the unroll factor.
if (Legal->getMaxSafeDepDistBytes() != -1U)
return 1;
// Do not unroll loops with a relatively small trip count.
unsigned TC = SE->getSmallConstantTripCount(TheLoop,
TheLoop->getLoopLatch());
if (TC > 1 && TC < TinyTripCountUnrollThreshold)
return 1;
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
" registers\n");
if (VF == 1) {
if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumScalarRegs;
} else {
if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumVectorRegs;
}
LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
// We divide by these constants so assume that we have at least one
// instruction that uses at least one register.
R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
R.NumInstructions = std::max(R.NumInstructions, 1U);
// We calculate the unroll factor using the following formula.
// Subtract the number of loop invariants from the number of available
// registers. These registers are used by all of the unrolled instances.
// Next, divide the remaining registers by the number of registers that is
// required by the loop, in order to estimate how many parallel instances
// fit without causing spills. All of this is rounded down if necessary to be
// a power of two. We want power of two unroll factors to simplify any
// addressing operations or alignment considerations.
unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
R.MaxLocalUsers);
// Don't count the induction variable as unrolled.
if (EnableIndVarRegisterHeur)
UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
std::max(1U, (R.MaxLocalUsers - 1)));
// Clamp the unroll factor ranges to reasonable factors.
unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
// Check if the user has overridden the unroll max.
if (VF == 1) {
if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0)
MaxUnrollSize = ForceTargetMaxScalarUnrollFactor;
} else {
if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0)
MaxUnrollSize = ForceTargetMaxVectorUnrollFactor;
}
// If we did not calculate the cost for VF (because the user selected the VF)
// then we calculate the cost of VF here.
if (LoopCost == 0)
LoopCost = expectedCost(VF);
// Clamp the calculated UF to be between the 1 and the max unroll factor
// that the target allows.
if (UF > MaxUnrollSize)
UF = MaxUnrollSize;
else if (UF < 1)
UF = 1;
// Unroll if we vectorized this loop and there is a reduction that could
// benefit from unrolling.
if (VF > 1 && Legal->getReductionVars()->size()) {
DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
return UF;
}
// Note that if we've already vectorized the loop we will have done the
// runtime check and so unrolling won't require further checks.
bool UnrollingRequiresRuntimePointerCheck =
(VF == 1 && Legal->getRuntimePointerCheck()->Need);
// We want to unroll small loops in order to reduce the loop overhead and
// potentially expose ILP opportunities.
DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
if (!UnrollingRequiresRuntimePointerCheck &&
LoopCost < SmallLoopCost) {
// We assume that the cost overhead is 1 and we use the cost model
// to estimate the cost of the loop and unroll until the cost of the
// loop overhead is about 5% of the cost of the loop.
unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
// Unroll until store/load ports (estimated by max unroll factor) are
// saturated.
unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1);
if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
return std::max(StoresUF, LoadsUF);
}
DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
return SmallUF;
}
DEBUG(dbgs() << "LV: Not Unrolling.\n");
return 1;
}
LoopVectorizationCostModel::RegisterUsage
LoopVectorizationCostModel::calculateRegisterUsage() {
// This function calculates the register usage by measuring the highest number
// of values that are alive at a single location. Obviously, this is a very
// rough estimation. We scan the loop in a topological order in order and
// assign a number to each instruction. We use RPO to ensure that defs are
// met before their users. We assume that each instruction that has in-loop
// users starts an interval. We record every time that an in-loop value is
// used, so we have a list of the first and last occurrences of each
// instruction. Next, we transpose this data structure into a multi map that
// holds the list of intervals that *end* at a specific location. This multi
// map allows us to perform a linear search. We scan the instructions linearly
// and record each time that a new interval starts, by placing it in a set.
// If we find this value in the multi-map then we remove it from the set.
// The max register usage is the maximum size of the set.
// We also search for instructions that are defined outside the loop, but are
// used inside the loop. We need this number separately from the max-interval
// usage number because when we unroll, loop-invariant values do not take
// more register.
LoopBlocksDFS DFS(TheLoop);
DFS.perform(LI);
RegisterUsage R;
R.NumInstructions = 0;
// Each 'key' in the map opens a new interval. The values
// of the map are the index of the 'last seen' usage of the
// instruction that is the key.
typedef DenseMap<Instruction*, unsigned> IntervalMap;
// Maps instruction to its index.
DenseMap<unsigned, Instruction*> IdxToInstr;
// Marks the end of each interval.
IntervalMap EndPoint;
// Saves the list of instruction indices that are used in the loop.
SmallSet<Instruction*, 8> Ends;
// Saves the list of values that are used in the loop but are
// defined outside the loop, such as arguments and constants.
SmallPtrSet<Value*, 8> LoopInvariants;
unsigned Index = 0;
for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
be = DFS.endRPO(); bb != be; ++bb) {
R.NumInstructions += (*bb)->size();
for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
++it) {
Instruction *I = it;
IdxToInstr[Index++] = I;
// Save the end location of each USE.
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
Value *U = I->getOperand(i);
Instruction *Instr = dyn_cast<Instruction>(U);
// Ignore non-instruction values such as arguments, constants, etc.
if (!Instr) continue;
// If this instruction is outside the loop then record it and continue.
if (!TheLoop->contains(Instr)) {
LoopInvariants.insert(Instr);
continue;
}
// Overwrite previous end points.
EndPoint[Instr] = Index;
Ends.insert(Instr);
}
}
}
// Saves the list of intervals that end with the index in 'key'.
typedef SmallVector<Instruction*, 2> InstrList;
DenseMap<unsigned, InstrList> TransposeEnds;
// Transpose the EndPoints to a list of values that end at each index.
for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
it != e; ++it)
TransposeEnds[it->second].push_back(it->first);
SmallSet<Instruction*, 8> OpenIntervals;
unsigned MaxUsage = 0;
DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
for (unsigned int i = 0; i < Index; ++i) {
Instruction *I = IdxToInstr[i];
// Ignore instructions that are never used within the loop.
if (!Ends.count(I)) continue;
// Remove all of the instructions that end at this location.
InstrList &List = TransposeEnds[i];
for (unsigned int j=0, e = List.size(); j < e; ++j)
OpenIntervals.erase(List[j]);
// Count the number of live interals.
MaxUsage = std::max(MaxUsage, OpenIntervals.size());
DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
OpenIntervals.size() << '\n');
// Add the current instruction to the list of open intervals.
OpenIntervals.insert(I);
}
unsigned Invariant = LoopInvariants.size();
DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
R.LoopInvariantRegs = Invariant;
R.MaxLocalUsers = MaxUsage;
return R;
}
unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
unsigned Cost = 0;
// For each block.
for (Loop::block_iterator bb = TheLoop->block_begin(),
be = TheLoop->block_end(); bb != be; ++bb) {
unsigned BlockCost = 0;
BasicBlock *BB = *bb;
// For each instruction in the old loop.
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
// Skip dbg intrinsics.
if (isa<DbgInfoIntrinsic>(it))
continue;
unsigned C = getInstructionCost(it, VF);
// Check if we should override the cost.
if (ForceTargetInstructionCost.getNumOccurrences() > 0)
C = ForceTargetInstructionCost;
BlockCost += C;
DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
VF << " For instruction: " << *it << '\n');
}
// We assume that if-converted blocks have a 50% chance of being executed.
// When the code is scalar then some of the blocks are avoided due to CF.
// When the code is vectorized we execute all code paths.
if (VF == 1 && Legal->blockNeedsPredication(*bb))
BlockCost /= 2;
Cost += BlockCost;
}
return Cost;
}
/// \brief Check whether the address computation for a non-consecutive memory
/// access looks like an unlikely candidate for being merged into the indexing
/// mode.
///
/// We look for a GEP which has one index that is an induction variable and all
/// other indices are loop invariant. If the stride of this access is also
/// within a small bound we decide that this address computation can likely be
/// merged into the addressing mode.
/// In all other cases, we identify the address computation as complex.
static bool isLikelyComplexAddressComputation(Value *Ptr,
LoopVectorizationLegality *Legal,
ScalarEvolution *SE,
const Loop *TheLoop) {
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
if (!Gep)
return true;
// We are looking for a gep with all loop invariant indices except for one
// which should be an induction variable.
unsigned NumOperands = Gep->getNumOperands();
for (unsigned i = 1; i < NumOperands; ++i) {
Value *Opd = Gep->getOperand(i);
if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
!Legal->isInductionVariable(Opd))
return true;
}
// Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
// can likely be merged into the address computation.
unsigned MaxMergeDistance = 64;
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
if (!AddRec)
return true;
// Check the step is constant.
const SCEV *Step = AddRec->getStepRecurrence(*SE);
// Calculate the pointer stride and check if it is consecutive.
const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
if (!C)
return true;
const APInt &APStepVal = C->getValue()->getValue();
// Huge step value - give up.
if (APStepVal.getBitWidth() > 64)
return true;
int64_t StepVal = APStepVal.getSExtValue();
return StepVal > MaxMergeDistance;
}
static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
return true;
return false;
}
unsigned
LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// If we know that this instruction will remain uniform, check the cost of
// the scalar version.
if (Legal->isUniformAfterVectorization(I))
VF = 1;
Type *RetTy = I->getType();
Type *VectorTy = ToVectorTy(RetTy, VF);
// TODO: We need to estimate the cost of intrinsic calls.
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
// We mark this instruction as zero-cost because the cost of GEPs in
// vectorized code depends on whether the corresponding memory instruction
// is scalarized or not. Therefore, we handle GEPs with the memory
// instruction cost.
return 0;
case Instruction::Br: {
return TTI.getCFInstrCost(I->getOpcode());
}
case Instruction::PHI:
//TODO: IF-converted IFs become selects.
return 0;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// Since we will replace the stride by 1 the multiplication should go away.
if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
return 0;
// Certain instructions can be cheaper to vectorize if they have a constant
// second vector operand. One example of this are shifts on x86.
TargetTransformInfo::OperandValueKind Op1VK =
TargetTransformInfo::OK_AnyValue;
TargetTransformInfo::OperandValueKind Op2VK =
TargetTransformInfo::OK_AnyValue;
Value *Op2 = I->getOperand(1);
// Check for a splat of a constant or for a non uniform vector of constants.
if (isa<ConstantInt>(Op2))
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
if (cast<Constant>(Op2)->getSplatValue() != nullptr)
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
}
return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
}
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
Type *CondTy = SI->getCondition()->getType();
if (!ScalarCond)
CondTy = VectorType::get(CondTy, VF);
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
VectorTy = ToVectorTy(ValTy, VF);
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
}
case Instruction::Store:
case Instruction::Load: {
StoreInst *SI = dyn_cast<StoreInst>(I);
LoadInst *LI = dyn_cast<LoadInst>(I);
Type *ValTy = (SI ? SI->getValueOperand()->getType() :
LI->getType());
VectorTy = ToVectorTy(ValTy, VF);
unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
unsigned AS = SI ? SI->getPointerAddressSpace() :
LI->getPointerAddressSpace();
Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
// We add the cost of address computation here instead of with the gep
// instruction because only here we know whether the operation is
// scalarized.
if (VF == 1)
return TTI.getAddressComputationCost(VectorTy) +
TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
// Scalarized loads/stores.
int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
bool Reverse = ConsecutiveStride < 0;
unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
bool IsComplexComputation =
isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
unsigned Cost = 0;
// The cost of extracting from the value vector and pointer vector.
Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
for (unsigned i = 0; i < VF; ++i) {
// The cost of extracting the pointer operand.
Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
// In case of STORE, the cost of ExtractElement from the vector.
// In case of LOAD, the cost of InsertElement into the returned
// vector.
Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
Instruction::InsertElement,
VectorTy, i);
}
// The cost of the scalar loads/stores.
Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
Alignment, AS);
return Cost;
}
// Wide load/stores.
unsigned Cost = TTI.getAddressComputationCost(VectorTy);
Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
if (Reverse)
Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
VectorTy, 0);
return Cost;
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
// We optimize the truncation of induction variable.
// The cost of these is the same as the scalar operation.
if (I->getOpcode() == Instruction::Trunc &&
Legal->isInductionVariable(I->getOperand(0)))
return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
I->getOperand(0)->getType());
Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(I);
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
assert(ID && "Not an intrinsic call!");
Type *RetTy = ToVectorTy(CI->getType(), VF);
SmallVector<Type*, 4> Tys;
for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
}
default: {
// We are scalarizing the instruction. Return the cost of the scalar
// instruction, plus the cost of insert and extract into vector
// elements, times the vector width.
unsigned Cost = 0;
if (!RetTy->isVoidTy() && VF != 1) {
unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
VectorTy);
unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
VectorTy);
// The cost of inserting the results plus extracting each one of the
// operands.
Cost += VF * (InsCost + ExtCost * I->getNumOperands());
}
// The cost of executing VF copies of the scalar instruction. This opcode
// is unknown. Assume that it is the same as 'mul'.
Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
return Cost;
}
}// end of switch.
}
Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
if (Scalar->isVoidTy() || VF == 1)
return Scalar;
return VectorType::get(Scalar, VF);
}
char LoopVectorize::ID = 0;
static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
namespace llvm {
Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
return new LoopVectorize(NoUnrolling, AlwaysVectorize);
}
}
bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
// Check for a store.
if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
// Check for a load.
if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
return false;
}
void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
bool IfPredicateStore) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
// Holds vector parameters or scalars, in case of uniform vals.
SmallVector<VectorParts, 4> Params;
setDebugLocFromInst(Builder, Instr);
// Find all of the vectorized parameters.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
Value *SrcOp = Instr->getOperand(op);
// If we are accessing the old induction variable, use the new one.
if (SrcOp == OldInduction) {
Params.push_back(getVectorValue(SrcOp));
continue;
}
// Try using previously calculated values.
Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
// If the src is an instruction that appeared earlier in the basic block
// then it should already be vectorized.
if (SrcInst && OrigLoop->contains(SrcInst)) {
assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
// The parameter is a vector value from earlier.
Params.push_back(WidenMap.get(SrcInst));
} else {
// The parameter is a scalar from outside the loop. Maybe even a constant.
VectorParts Scalars;
Scalars.append(UF, SrcOp);
Params.push_back(Scalars);
}
}
assert(Params.size() == Instr->getNumOperands() &&
"Invalid number of operands");
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
Value *UndefVec = IsVoidRetTy ? nullptr :
UndefValue::get(Instr->getType());
// Create a new entry in the WidenMap and initialize it to Undef or Null.
VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
Instruction *InsertPt = Builder.GetInsertPoint();
BasicBlock *IfBlock = Builder.GetInsertBlock();
BasicBlock *CondBlock = nullptr;
VectorParts Cond;
Loop *VectorLp = nullptr;
if (IfPredicateStore) {
assert(Instr->getParent()->getSinglePredecessor() &&
"Only support single predecessor blocks");
Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
Instr->getParent());
VectorLp = LI->getLoopFor(IfBlock);
assert(VectorLp && "Must have a loop for this block");
}
// For each vector unroll 'part':
for (unsigned Part = 0; Part < UF; ++Part) {
// For each scalar that we create:
// Start an "if (pred) a[i] = ..." block.
Value *Cmp = nullptr;
if (IfPredicateStore) {
if (Cond[Part]->getType()->isVectorTy())
Cond[Part] =
Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
ConstantInt::get(Cond[Part]->getType(), 1));
CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
LoopVectorBody.push_back(CondBlock);
VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
// Update Builder with newly created basic block.
Builder.SetInsertPoint(InsertPt);
}
Instruction *Cloned = Instr->clone();
if (!IsVoidRetTy)
Cloned->setName(Instr->getName() + ".cloned");
// Replace the operands of the cloned instructions with extracted scalars.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
Value *Op = Params[op][Part];
Cloned->setOperand(op, Op);
}
// Place the cloned scalar in the new loop.
Builder.Insert(Cloned);
// If the original scalar returns a value we need to place it in a vector
// so that future users will be able to use it.
if (!IsVoidRetTy)
VecResults[Part] = Cloned;
// End if-block.
if (IfPredicateStore) {
BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
LoopVectorBody.push_back(NewIfBlock);
VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
Builder.SetInsertPoint(InsertPt);
Instruction *OldBr = IfBlock->getTerminator();
BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
OldBr->eraseFromParent();
IfBlock = NewIfBlock;
}
}
}
void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
StoreInst *SI = dyn_cast<StoreInst>(Instr);
bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
return scalarizeInstruction(Instr, IfPredicateStore);
}
Value *InnerLoopUnroller::reverseVector(Value *Vec) {
return Vec;
}
Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
return V;
}
Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
bool Negate) {
// When unrolling and the VF is 1, we only need to add a simple scalar.
Type *ITy = Val->getType();
assert(!ITy->isVectorTy() && "Val must be a scalar");
Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
return Builder.CreateAdd(Val, C, "induction");
}
|