1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
|
//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file defines CallEvent and its subclasses, which represent path-
/// sensitive instances of different kinds of function and method calls
/// (C, C++, and Objective-C).
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/AST/ParentMap.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
QualType CallEvent::getResultType() const {
const Expr *E = getOriginExpr();
assert(E && "Calls without origin expressions do not have results");
QualType ResultTy = E->getType();
ASTContext &Ctx = getState()->getStateManager().getContext();
// A function that returns a reference to 'int' will have a result type
// of simply 'int'. Check the origin expr's value kind to recover the
// proper type.
switch (E->getValueKind()) {
case VK_LValue:
ResultTy = Ctx.getLValueReferenceType(ResultTy);
break;
case VK_XValue:
ResultTy = Ctx.getRValueReferenceType(ResultTy);
break;
case VK_RValue:
// No adjustment is necessary.
break;
}
return ResultTy;
}
static bool isCallbackArg(SVal V, QualType T) {
// If the parameter is 0, it's harmless.
if (V.isZeroConstant())
return false;
// If a parameter is a block or a callback, assume it can modify pointer.
if (T->isBlockPointerType() ||
T->isFunctionPointerType() ||
T->isObjCSelType())
return true;
// Check if a callback is passed inside a struct (for both, struct passed by
// reference and by value). Dig just one level into the struct for now.
if (T->isAnyPointerType() || T->isReferenceType())
T = T->getPointeeType();
if (const RecordType *RT = T->getAsStructureType()) {
const RecordDecl *RD = RT->getDecl();
for (const auto *I : RD->fields()) {
QualType FieldT = I->getType();
if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
return true;
}
}
return false;
}
bool CallEvent::hasNonZeroCallbackArg() const {
unsigned NumOfArgs = getNumArgs();
// If calling using a function pointer, assume the function does not
// have a callback. TODO: We could check the types of the arguments here.
if (!getDecl())
return false;
unsigned Idx = 0;
for (CallEvent::param_type_iterator I = param_type_begin(),
E = param_type_end();
I != E && Idx < NumOfArgs; ++I, ++Idx) {
if (NumOfArgs <= Idx)
break;
if (isCallbackArg(getArgSVal(Idx), *I))
return true;
}
return false;
}
bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
if (!FD)
return false;
return CheckerContext::isCLibraryFunction(FD, FunctionName);
}
/// \brief Returns true if a type is a pointer-to-const or reference-to-const
/// with no further indirection.
static bool isPointerToConst(QualType Ty) {
QualType PointeeTy = Ty->getPointeeType();
if (PointeeTy == QualType())
return false;
if (!PointeeTy.isConstQualified())
return false;
if (PointeeTy->isAnyPointerType())
return false;
return true;
}
// Try to retrieve the function declaration and find the function parameter
// types which are pointers/references to a non-pointer const.
// We will not invalidate the corresponding argument regions.
static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
const CallEvent &Call) {
unsigned Idx = 0;
for (CallEvent::param_type_iterator I = Call.param_type_begin(),
E = Call.param_type_end();
I != E; ++I, ++Idx) {
if (isPointerToConst(*I))
PreserveArgs.insert(Idx);
}
}
ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
ProgramStateRef Orig) const {
ProgramStateRef Result = (Orig ? Orig : getState());
// Don't invalidate anything if the callee is marked pure/const.
if (const Decl *callee = getDecl())
if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
return Result;
SmallVector<SVal, 8> ValuesToInvalidate;
RegionAndSymbolInvalidationTraits ETraits;
getExtraInvalidatedValues(ValuesToInvalidate);
// Indexes of arguments whose values will be preserved by the call.
llvm::SmallSet<unsigned, 4> PreserveArgs;
if (!argumentsMayEscape())
findPtrToConstParams(PreserveArgs, *this);
for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
// Mark this region for invalidation. We batch invalidate regions
// below for efficiency.
if (PreserveArgs.count(Idx))
if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
ETraits.setTrait(MR->StripCasts(),
RegionAndSymbolInvalidationTraits::TK_PreserveContents);
// TODO: Factor this out + handle the lower level const pointers.
ValuesToInvalidate.push_back(getArgSVal(Idx));
}
// Invalidate designated regions using the batch invalidation API.
// NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
// global variables.
return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
BlockCount, getLocationContext(),
/*CausedByPointerEscape*/ true,
/*Symbols=*/nullptr, this, &ETraits);
}
ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
const ProgramPointTag *Tag) const {
if (const Expr *E = getOriginExpr()) {
if (IsPreVisit)
return PreStmt(E, getLocationContext(), Tag);
return PostStmt(E, getLocationContext(), Tag);
}
const Decl *D = getDecl();
assert(D && "Cannot get a program point without a statement or decl");
SourceLocation Loc = getSourceRange().getBegin();
if (IsPreVisit)
return PreImplicitCall(D, Loc, getLocationContext(), Tag);
return PostImplicitCall(D, Loc, getLocationContext(), Tag);
}
SVal CallEvent::getArgSVal(unsigned Index) const {
const Expr *ArgE = getArgExpr(Index);
if (!ArgE)
return UnknownVal();
return getSVal(ArgE);
}
SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
const Expr *ArgE = getArgExpr(Index);
if (!ArgE)
return SourceRange();
return ArgE->getSourceRange();
}
SVal CallEvent::getReturnValue() const {
const Expr *E = getOriginExpr();
if (!E)
return UndefinedVal();
return getSVal(E);
}
LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
void CallEvent::dump(raw_ostream &Out) const {
ASTContext &Ctx = getState()->getStateManager().getContext();
if (const Expr *E = getOriginExpr()) {
E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
Out << "\n";
return;
}
if (const Decl *D = getDecl()) {
Out << "Call to ";
D->print(Out, Ctx.getPrintingPolicy());
return;
}
// FIXME: a string representation of the kind would be nice.
Out << "Unknown call (type " << getKind() << ")";
}
bool CallEvent::isCallStmt(const Stmt *S) {
return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
|| isa<CXXConstructExpr>(S)
|| isa<CXXNewExpr>(S);
}
QualType CallEvent::getDeclaredResultType(const Decl *D) {
assert(D);
if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D))
return FD->getReturnType();
if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getReturnType();
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
// Blocks are difficult because the return type may not be stored in the
// BlockDecl itself. The AST should probably be enhanced, but for now we
// just do what we can.
// If the block is declared without an explicit argument list, the
// signature-as-written just includes the return type, not the entire
// function type.
// FIXME: All blocks should have signatures-as-written, even if the return
// type is inferred. (That's signified with a dependent result type.)
if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
QualType Ty = TSI->getType();
if (const FunctionType *FT = Ty->getAs<FunctionType>())
Ty = FT->getReturnType();
if (!Ty->isDependentType())
return Ty;
}
return QualType();
}
llvm_unreachable("unknown callable kind");
}
bool CallEvent::isVariadic(const Decl *D) {
assert(D);
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
return FD->isVariadic();
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->isVariadic();
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->isVariadic();
llvm_unreachable("unknown callable kind");
}
static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
CallEvent::BindingsTy &Bindings,
SValBuilder &SVB,
const CallEvent &Call,
ArrayRef<ParmVarDecl*> parameters) {
MemRegionManager &MRMgr = SVB.getRegionManager();
// If the function has fewer parameters than the call has arguments, we simply
// do not bind any values to them.
unsigned NumArgs = Call.getNumArgs();
unsigned Idx = 0;
ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
for (; I != E && Idx < NumArgs; ++I, ++Idx) {
const ParmVarDecl *ParamDecl = *I;
assert(ParamDecl && "Formal parameter has no decl?");
SVal ArgVal = Call.getArgSVal(Idx);
if (!ArgVal.isUnknown()) {
Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
}
}
// FIXME: Variadic arguments are not handled at all right now.
}
ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
const FunctionDecl *D = getDecl();
if (!D)
return None;
return D->parameters();
}
void AnyFunctionCall::getInitialStackFrameContents(
const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
const FunctionDecl *D = cast<FunctionDecl>(CalleeCtx->getDecl());
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
D->parameters());
}
bool AnyFunctionCall::argumentsMayEscape() const {
if (hasNonZeroCallbackArg())
return true;
const FunctionDecl *D = getDecl();
if (!D)
return true;
const IdentifierInfo *II = D->getIdentifier();
if (!II)
return false;
// This set of "escaping" APIs is
// - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
// value into thread local storage. The value can later be retrieved with
// 'void *ptheread_getspecific(pthread_key)'. So even thought the
// parameter is 'const void *', the region escapes through the call.
if (II->isStr("pthread_setspecific"))
return true;
// - xpc_connection_set_context stores a value which can be retrieved later
// with xpc_connection_get_context.
if (II->isStr("xpc_connection_set_context"))
return true;
// - funopen - sets a buffer for future IO calls.
if (II->isStr("funopen"))
return true;
StringRef FName = II->getName();
// - CoreFoundation functions that end with "NoCopy" can free a passed-in
// buffer even if it is const.
if (FName.endswith("NoCopy"))
return true;
// - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
// be deallocated by NSMapRemove.
if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
return true;
// - Many CF containers allow objects to escape through custom
// allocators/deallocators upon container construction. (PR12101)
if (FName.startswith("CF") || FName.startswith("CG")) {
return StrInStrNoCase(FName, "InsertValue") != StringRef::npos ||
StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
StrInStrNoCase(FName, "WithData") != StringRef::npos ||
StrInStrNoCase(FName, "AppendValue") != StringRef::npos ||
StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
}
return false;
}
const FunctionDecl *SimpleFunctionCall::getDecl() const {
const FunctionDecl *D = getOriginExpr()->getDirectCallee();
if (D)
return D;
return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
}
const FunctionDecl *CXXInstanceCall::getDecl() const {
const CallExpr *CE = cast_or_null<CallExpr>(getOriginExpr());
if (!CE)
return AnyFunctionCall::getDecl();
const FunctionDecl *D = CE->getDirectCallee();
if (D)
return D;
return getSVal(CE->getCallee()).getAsFunctionDecl();
}
void CXXInstanceCall::getExtraInvalidatedValues(ValueList &Values) const {
Values.push_back(getCXXThisVal());
}
SVal CXXInstanceCall::getCXXThisVal() const {
const Expr *Base = getCXXThisExpr();
// FIXME: This doesn't handle an overloaded ->* operator.
if (!Base)
return UnknownVal();
SVal ThisVal = getSVal(Base);
assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
return ThisVal;
}
RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
// Do we have a decl at all?
const Decl *D = getDecl();
if (!D)
return RuntimeDefinition();
// If the method is non-virtual, we know we can inline it.
const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
if (!MD->isVirtual())
return AnyFunctionCall::getRuntimeDefinition();
// Do we know the implicit 'this' object being called?
const MemRegion *R = getCXXThisVal().getAsRegion();
if (!R)
return RuntimeDefinition();
// Do we know anything about the type of 'this'?
DynamicTypeInfo DynType = getState()->getDynamicTypeInfo(R);
if (!DynType.isValid())
return RuntimeDefinition();
// Is the type a C++ class? (This is mostly a defensive check.)
QualType RegionType = DynType.getType()->getPointeeType();
assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
if (!RD || !RD->hasDefinition())
return RuntimeDefinition();
// Find the decl for this method in that class.
const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
if (!Result) {
// We might not even get the original statically-resolved method due to
// some particularly nasty casting (e.g. casts to sister classes).
// However, we should at least be able to search up and down our own class
// hierarchy, and some real bugs have been caught by checking this.
assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
// FIXME: This is checking that our DynamicTypeInfo is at least as good as
// the static type. However, because we currently don't update
// DynamicTypeInfo when an object is cast, we can't actually be sure the
// DynamicTypeInfo is up to date. This assert should be re-enabled once
// this is fixed. <rdar://problem/12287087>
//assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
return RuntimeDefinition();
}
// Does the decl that we found have an implementation?
const FunctionDecl *Definition;
if (!Result->hasBody(Definition))
return RuntimeDefinition();
// We found a definition. If we're not sure that this devirtualization is
// actually what will happen at runtime, make sure to provide the region so
// that ExprEngine can decide what to do with it.
if (DynType.canBeASubClass())
return RuntimeDefinition(Definition, R->StripCasts());
return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
}
void CXXInstanceCall::getInitialStackFrameContents(
const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
// Handle the binding of 'this' in the new stack frame.
SVal ThisVal = getCXXThisVal();
if (!ThisVal.isUnknown()) {
ProgramStateManager &StateMgr = getState()->getStateManager();
SValBuilder &SVB = StateMgr.getSValBuilder();
const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
// If we devirtualized to a different member function, we need to make sure
// we have the proper layering of CXXBaseObjectRegions.
if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
ASTContext &Ctx = SVB.getContext();
const CXXRecordDecl *Class = MD->getParent();
QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
// FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
bool Failed;
ThisVal = StateMgr.getStoreManager().evalDynamicCast(ThisVal, Ty, Failed);
assert(!Failed && "Calling an incorrectly devirtualized method");
}
if (!ThisVal.isUnknown())
Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
}
}
const Expr *CXXMemberCall::getCXXThisExpr() const {
return getOriginExpr()->getImplicitObjectArgument();
}
RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
// C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
// id-expression in the class member access expression is a qualified-id,
// that function is called. Otherwise, its final overrider in the dynamic type
// of the object expression is called.
if (const MemberExpr *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
if (ME->hasQualifier())
return AnyFunctionCall::getRuntimeDefinition();
return CXXInstanceCall::getRuntimeDefinition();
}
const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
return getOriginExpr()->getArg(0);
}
const BlockDataRegion *BlockCall::getBlockRegion() const {
const Expr *Callee = getOriginExpr()->getCallee();
const MemRegion *DataReg = getSVal(Callee).getAsRegion();
return dyn_cast_or_null<BlockDataRegion>(DataReg);
}
ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
const BlockDecl *D = getDecl();
if (!D)
return nullptr;
return D->parameters();
}
void BlockCall::getExtraInvalidatedValues(ValueList &Values) const {
// FIXME: This also needs to invalidate captured globals.
if (const MemRegion *R = getBlockRegion())
Values.push_back(loc::MemRegionVal(R));
}
void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
const BlockDecl *D = cast<BlockDecl>(CalleeCtx->getDecl());
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
D->parameters());
}
SVal CXXConstructorCall::getCXXThisVal() const {
if (Data)
return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
return UnknownVal();
}
void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values) const {
if (Data)
Values.push_back(loc::MemRegionVal(static_cast<const MemRegion *>(Data)));
}
void CXXConstructorCall::getInitialStackFrameContents(
const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
SVal ThisVal = getCXXThisVal();
if (!ThisVal.isUnknown()) {
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
const CXXMethodDecl *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
}
}
SVal CXXDestructorCall::getCXXThisVal() const {
if (Data)
return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
return UnknownVal();
}
RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
// Base destructors are always called non-virtually.
// Skip CXXInstanceCall's devirtualization logic in this case.
if (isBaseDestructor())
return AnyFunctionCall::getRuntimeDefinition();
return CXXInstanceCall::getRuntimeDefinition();
}
ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
const ObjCMethodDecl *D = getDecl();
if (!D)
return None;
return D->parameters();
}
void
ObjCMethodCall::getExtraInvalidatedValues(ValueList &Values) const {
Values.push_back(getReceiverSVal());
}
SVal ObjCMethodCall::getSelfSVal() const {
const LocationContext *LCtx = getLocationContext();
const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
if (!SelfDecl)
return SVal();
return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
}
SVal ObjCMethodCall::getReceiverSVal() const {
// FIXME: Is this the best way to handle class receivers?
if (!isInstanceMessage())
return UnknownVal();
if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
return getSVal(RecE);
// An instance message with no expression means we are sending to super.
// In this case the object reference is the same as 'self'.
assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
SVal SelfVal = getSelfSVal();
assert(SelfVal.isValid() && "Calling super but not in ObjC method");
return SelfVal;
}
bool ObjCMethodCall::isReceiverSelfOrSuper() const {
if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
return true;
if (!isInstanceMessage())
return false;
SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
return (RecVal == getSelfSVal());
}
SourceRange ObjCMethodCall::getSourceRange() const {
switch (getMessageKind()) {
case OCM_Message:
return getOriginExpr()->getSourceRange();
case OCM_PropertyAccess:
case OCM_Subscript:
return getContainingPseudoObjectExpr()->getSourceRange();
}
llvm_unreachable("unknown message kind");
}
typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
assert(Data && "Lazy lookup not yet performed.");
assert(getMessageKind() != OCM_Message && "Explicit message send.");
return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
}
ObjCMessageKind ObjCMethodCall::getMessageKind() const {
if (!Data) {
// Find the parent, ignoring implicit casts.
ParentMap &PM = getLocationContext()->getParentMap();
const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
// Check if parent is a PseudoObjectExpr.
if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
const Expr *Syntactic = POE->getSyntacticForm();
// This handles the funny case of assigning to the result of a getter.
// This can happen if the getter returns a non-const reference.
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
Syntactic = BO->getLHS();
ObjCMessageKind K;
switch (Syntactic->getStmtClass()) {
case Stmt::ObjCPropertyRefExprClass:
K = OCM_PropertyAccess;
break;
case Stmt::ObjCSubscriptRefExprClass:
K = OCM_Subscript;
break;
default:
// FIXME: Can this ever happen?
K = OCM_Message;
break;
}
if (K != OCM_Message) {
const_cast<ObjCMethodCall *>(this)->Data
= ObjCMessageDataTy(POE, K).getOpaqueValue();
assert(getMessageKind() == K);
return K;
}
}
const_cast<ObjCMethodCall *>(this)->Data
= ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
assert(getMessageKind() == OCM_Message);
return OCM_Message;
}
ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
if (!Info.getPointer())
return OCM_Message;
return static_cast<ObjCMessageKind>(Info.getInt());
}
bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
Selector Sel) const {
assert(IDecl);
const SourceManager &SM =
getState()->getStateManager().getContext().getSourceManager();
// If the class interface is declared inside the main file, assume it is not
// subcassed.
// TODO: It could actually be subclassed if the subclass is private as well.
// This is probably very rare.
SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
if (InterfLoc.isValid() && SM.isInMainFile(InterfLoc))
return false;
// Assume that property accessors are not overridden.
if (getMessageKind() == OCM_PropertyAccess)
return false;
// We assume that if the method is public (declared outside of main file) or
// has a parent which publicly declares the method, the method could be
// overridden in a subclass.
// Find the first declaration in the class hierarchy that declares
// the selector.
ObjCMethodDecl *D = nullptr;
while (true) {
D = IDecl->lookupMethod(Sel, true);
// Cannot find a public definition.
if (!D)
return false;
// If outside the main file,
if (D->getLocation().isValid() && !SM.isInMainFile(D->getLocation()))
return true;
if (D->isOverriding()) {
// Search in the superclass on the next iteration.
IDecl = D->getClassInterface();
if (!IDecl)
return false;
IDecl = IDecl->getSuperClass();
if (!IDecl)
return false;
continue;
}
return false;
};
llvm_unreachable("The while loop should always terminate.");
}
RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
const ObjCMessageExpr *E = getOriginExpr();
assert(E);
Selector Sel = E->getSelector();
if (E->isInstanceMessage()) {
// Find the receiver type.
const ObjCObjectPointerType *ReceiverT = nullptr;
bool CanBeSubClassed = false;
QualType SupersType = E->getSuperType();
const MemRegion *Receiver = nullptr;
if (!SupersType.isNull()) {
// Super always means the type of immediate predecessor to the method
// where the call occurs.
ReceiverT = cast<ObjCObjectPointerType>(SupersType);
} else {
Receiver = getReceiverSVal().getAsRegion();
if (!Receiver)
return RuntimeDefinition();
DynamicTypeInfo DTI = getState()->getDynamicTypeInfo(Receiver);
QualType DynType = DTI.getType();
CanBeSubClassed = DTI.canBeASubClass();
ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType);
if (ReceiverT && CanBeSubClassed)
if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
if (!canBeOverridenInSubclass(IDecl, Sel))
CanBeSubClassed = false;
}
// Lookup the method implementation.
if (ReceiverT)
if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
// Repeatedly calling lookupPrivateMethod() is expensive, especially
// when in many cases it returns null. We cache the results so
// that repeated queries on the same ObjCIntefaceDecl and Selector
// don't incur the same cost. On some test cases, we can see the
// same query being issued thousands of times.
//
// NOTE: This cache is essentially a "global" variable, but it
// only gets lazily created when we get here. The value of the
// cache probably comes from it being global across ExprEngines,
// where the same queries may get issued. If we are worried about
// concurrency, or possibly loading/unloading ASTs, etc., we may
// need to revisit this someday. In terms of memory, this table
// stays around until clang quits, which also may be bad if we
// need to release memory.
typedef std::pair<const ObjCInterfaceDecl*, Selector>
PrivateMethodKey;
typedef llvm::DenseMap<PrivateMethodKey,
Optional<const ObjCMethodDecl *> >
PrivateMethodCache;
static PrivateMethodCache PMC;
Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
// Query lookupPrivateMethod() if the cache does not hit.
if (!Val.hasValue()) {
Val = IDecl->lookupPrivateMethod(Sel);
// If the method is a property accessor, we should try to "inline" it
// even if we don't actually have an implementation.
if (!*Val)
if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
if (CompileTimeMD->isPropertyAccessor())
Val = IDecl->lookupInstanceMethod(Sel);
}
const ObjCMethodDecl *MD = Val.getValue();
if (CanBeSubClassed)
return RuntimeDefinition(MD, Receiver);
else
return RuntimeDefinition(MD, nullptr);
}
} else {
// This is a class method.
// If we have type info for the receiver class, we are calling via
// class name.
if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
// Find/Return the method implementation.
return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
}
}
return RuntimeDefinition();
}
bool ObjCMethodCall::argumentsMayEscape() const {
if (isInSystemHeader() && !isInstanceMessage()) {
Selector Sel = getSelector();
if (Sel.getNumArgs() == 1 &&
Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
return true;
}
return CallEvent::argumentsMayEscape();
}
void ObjCMethodCall::getInitialStackFrameContents(
const StackFrameContext *CalleeCtx,
BindingsTy &Bindings) const {
const ObjCMethodDecl *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
D->parameters());
SVal SelfVal = getReceiverSVal();
if (!SelfVal.isUnknown()) {
const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
MemRegionManager &MRMgr = SVB.getRegionManager();
Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
}
}
CallEventRef<>
CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
const LocationContext *LCtx) {
if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
return create<CXXMemberCall>(MCE, State, LCtx);
if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
if (MD->isInstance())
return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
} else if (CE->getCallee()->getType()->isBlockPointerType()) {
return create<BlockCall>(CE, State, LCtx);
}
// Otherwise, it's a normal function call, static member function call, or
// something we can't reason about.
return create<SimpleFunctionCall>(CE, State, LCtx);
}
CallEventRef<>
CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
ProgramStateRef State) {
const LocationContext *ParentCtx = CalleeCtx->getParent();
const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
assert(CallerCtx && "This should not be used for top-level stack frames");
const Stmt *CallSite = CalleeCtx->getCallSite();
if (CallSite) {
if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
return getSimpleCall(CE, State, CallerCtx);
switch (CallSite->getStmtClass()) {
case Stmt::CXXConstructExprClass:
case Stmt::CXXTemporaryObjectExprClass: {
SValBuilder &SVB = State->getStateManager().getSValBuilder();
const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
SVal ThisVal = State->getSVal(ThisPtr);
return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
ThisVal.getAsRegion(), State, CallerCtx);
}
case Stmt::CXXNewExprClass:
return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
case Stmt::ObjCMessageExprClass:
return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
State, CallerCtx);
default:
llvm_unreachable("This is not an inlineable statement.");
}
}
// Fall back to the CFG. The only thing we haven't handled yet is
// destructors, though this could change in the future.
const CFGBlock *B = CalleeCtx->getCallSiteBlock();
CFGElement E = (*B)[CalleeCtx->getIndex()];
assert(E.getAs<CFGImplicitDtor>() &&
"All other CFG elements should have exprs");
assert(!E.getAs<CFGTemporaryDtor>() && "We don't handle temporaries yet");
SValBuilder &SVB = State->getStateManager().getSValBuilder();
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
SVal ThisVal = State->getSVal(ThisPtr);
const Stmt *Trigger;
if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
Trigger = AutoDtor->getTriggerStmt();
else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
Trigger = cast<Stmt>(DeleteDtor->getDeleteExpr());
else
Trigger = Dtor->getBody();
return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
E.getAs<CFGBaseDtor>().hasValue(), State,
CallerCtx);
}
|