1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SValBuilder, the base class for all (complete) SValBuilder
// implementations.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
using namespace clang;
using namespace ento;
//===----------------------------------------------------------------------===//
// Basic SVal creation.
//===----------------------------------------------------------------------===//
void SValBuilder::anchor() { }
DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
if (Loc::isLocType(type))
return makeNull();
if (type->isIntegralOrEnumerationType())
return makeIntVal(0, type);
// FIXME: Handle floats.
// FIXME: Handle structs.
return UnknownVal();
}
NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
const llvm::APSInt& rhs, QualType type) {
// The Environment ensures we always get a persistent APSInt in
// BasicValueFactory, so we don't need to get the APSInt from
// BasicValueFactory again.
assert(lhs);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
}
NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
BinaryOperator::Opcode op, const SymExpr *rhs,
QualType type) {
assert(rhs);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
}
NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
const SymExpr *rhs, QualType type) {
assert(lhs && rhs);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
}
NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
QualType fromTy, QualType toTy) {
assert(operand);
assert(!Loc::isLocType(toTy));
return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
}
SVal SValBuilder::convertToArrayIndex(SVal val) {
if (val.isUnknownOrUndef())
return val;
// Common case: we have an appropriately sized integer.
if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
const llvm::APSInt& I = CI->getValue();
if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
return val;
}
return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
}
nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
return makeTruthVal(boolean->getValue());
}
DefinedOrUnknownSVal
SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
QualType T = region->getValueType();
if (!SymbolManager::canSymbolicate(T))
return UnknownVal();
SymbolRef sym = SymMgr.getRegionValueSymbol(region);
if (Loc::isLocType(T))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
const Expr *Ex,
const LocationContext *LCtx,
unsigned Count) {
QualType T = Ex->getType();
// Compute the type of the result. If the expression is not an R-value, the
// result should be a location.
QualType ExType = Ex->getType();
if (Ex->isGLValue())
T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
}
DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
const Expr *expr,
const LocationContext *LCtx,
QualType type,
unsigned count) {
if (!SymbolManager::canSymbolicate(type))
return UnknownVal();
SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
if (Loc::isLocType(type))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
const LocationContext *LCtx,
QualType type,
unsigned visitCount) {
if (!SymbolManager::canSymbolicate(type))
return UnknownVal();
SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
if (Loc::isLocType(type))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal
SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
const LocationContext *LCtx,
unsigned VisitCount) {
QualType T = E->getType();
assert(Loc::isLocType(T));
assert(SymbolManager::canSymbolicate(T));
SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
}
DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
const MemRegion *region,
const Expr *expr, QualType type,
unsigned count) {
assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
SymbolRef sym =
SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
if (Loc::isLocType(type))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal
SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
const TypedValueRegion *region) {
QualType T = region->getValueType();
if (!SymbolManager::canSymbolicate(T))
return UnknownVal();
SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
if (Loc::isLocType(T))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
}
DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
CanQualType locTy,
const LocationContext *locContext,
unsigned blockCount) {
const BlockTextRegion *BC =
MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
blockCount);
return loc::MemRegionVal(BD);
}
/// Return a memory region for the 'this' object reference.
loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
const StackFrameContext *SFC) {
return loc::MemRegionVal(getRegionManager().
getCXXThisRegion(D->getThisType(getContext()), SFC));
}
/// Return a memory region for the 'this' object reference.
loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
const StackFrameContext *SFC) {
const Type *T = D->getTypeForDecl();
QualType PT = getContext().getPointerType(QualType(T, 0));
return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
}
Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
E = E->IgnoreParens();
switch (E->getStmtClass()) {
// Handle expressions that we treat differently from the AST's constant
// evaluator.
case Stmt::AddrLabelExprClass:
return makeLoc(cast<AddrLabelExpr>(E));
case Stmt::CXXScalarValueInitExprClass:
case Stmt::ImplicitValueInitExprClass:
return makeZeroVal(E->getType());
case Stmt::ObjCStringLiteralClass: {
const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
return makeLoc(getRegionManager().getObjCStringRegion(SL));
}
case Stmt::StringLiteralClass: {
const StringLiteral *SL = cast<StringLiteral>(E);
return makeLoc(getRegionManager().getStringRegion(SL));
}
// Fast-path some expressions to avoid the overhead of going through the AST's
// constant evaluator
case Stmt::CharacterLiteralClass: {
const CharacterLiteral *C = cast<CharacterLiteral>(E);
return makeIntVal(C->getValue(), C->getType());
}
case Stmt::CXXBoolLiteralExprClass:
return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
case Stmt::IntegerLiteralClass:
return makeIntVal(cast<IntegerLiteral>(E));
case Stmt::ObjCBoolLiteralExprClass:
return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
case Stmt::CXXNullPtrLiteralExprClass:
return makeNull();
case Stmt::ImplicitCastExprClass: {
const CastExpr *CE = cast<CastExpr>(E);
if (CE->getCastKind() == CK_ArrayToPointerDecay) {
Optional<SVal> ArrayVal = getConstantVal(CE->getSubExpr());
if (!ArrayVal)
return None;
return evalCast(*ArrayVal, CE->getType(), CE->getSubExpr()->getType());
}
// FALLTHROUGH
}
// If we don't have a special case, fall back to the AST's constant evaluator.
default: {
// Don't try to come up with a value for materialized temporaries.
if (E->isGLValue())
return None;
ASTContext &Ctx = getContext();
llvm::APSInt Result;
if (E->EvaluateAsInt(Result, Ctx))
return makeIntVal(Result);
if (Loc::isLocType(E->getType()))
if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
return makeNull();
return None;
}
}
}
//===----------------------------------------------------------------------===//
SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
BinaryOperator::Opcode Op,
NonLoc LHS, NonLoc RHS,
QualType ResultTy) {
if (!State->isTainted(RHS) && !State->isTainted(LHS))
return UnknownVal();
const SymExpr *symLHS = LHS.getAsSymExpr();
const SymExpr *symRHS = RHS.getAsSymExpr();
// TODO: When the Max Complexity is reached, we should conjure a symbol
// instead of generating an Unknown value and propagate the taint info to it.
const unsigned MaxComp = 10000; // 100000 28X
if (symLHS && symRHS &&
(symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp)
return makeNonLoc(symLHS, Op, symRHS, ResultTy);
if (symLHS && symLHS->computeComplexity() < MaxComp)
if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
if (symRHS && symRHS->computeComplexity() < MaxComp)
if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
return UnknownVal();
}
SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
SVal lhs, SVal rhs, QualType type) {
if (lhs.isUndef() || rhs.isUndef())
return UndefinedVal();
if (lhs.isUnknown() || rhs.isUnknown())
return UnknownVal();
if (Optional<Loc> LV = lhs.getAs<Loc>()) {
if (Optional<Loc> RV = rhs.getAs<Loc>())
return evalBinOpLL(state, op, *LV, *RV, type);
return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
}
if (Optional<Loc> RV = rhs.getAs<Loc>()) {
// Support pointer arithmetic where the addend is on the left
// and the pointer on the right.
assert(op == BO_Add);
// Commute the operands.
return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
}
return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
type);
}
DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
DefinedOrUnknownSVal lhs,
DefinedOrUnknownSVal rhs) {
return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType())
.castAs<DefinedOrUnknownSVal>();
}
/// Recursively check if the pointer types are equal modulo const, volatile,
/// and restrict qualifiers. Also, assume that all types are similar to 'void'.
/// Assumes the input types are canonical.
static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
QualType FromTy) {
while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
Qualifiers Quals1, Quals2;
ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
// Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
// spaces) are identical.
Quals1.removeCVRQualifiers();
Quals2.removeCVRQualifiers();
if (Quals1 != Quals2)
return false;
}
// If we are casting to void, the 'From' value can be used to represent the
// 'To' value.
if (ToTy->isVoidType())
return true;
if (ToTy != FromTy)
return false;
return true;
}
// FIXME: should rewrite according to the cast kind.
SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
castTy = Context.getCanonicalType(castTy);
originalTy = Context.getCanonicalType(originalTy);
if (val.isUnknownOrUndef() || castTy == originalTy)
return val;
if (castTy->isBooleanType()) {
if (val.isUnknownOrUndef())
return val;
if (val.isConstant())
return makeTruthVal(!val.isZeroConstant(), castTy);
if (!Loc::isLocType(originalTy) &&
!originalTy->isIntegralOrEnumerationType() &&
!originalTy->isMemberPointerType())
return UnknownVal();
if (SymbolRef Sym = val.getAsSymbol(true)) {
BasicValueFactory &BVF = getBasicValueFactory();
// FIXME: If we had a state here, we could see if the symbol is known to
// be zero, but we don't.
return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
}
// Loc values are not always true, they could be weakly linked functions.
if (Optional<Loc> L = val.getAs<Loc>())
return evalCastFromLoc(*L, castTy);
Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
return evalCastFromLoc(L, castTy);
}
// For const casts, casts to void, just propagate the value.
if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
Context.getPointerType(originalTy)))
return val;
// Check for casts from pointers to integers.
if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
return evalCastFromLoc(val.castAs<Loc>(), castTy);
// Check for casts from integers to pointers.
if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
if (const MemRegion *R = LV->getLoc().getAsRegion()) {
StoreManager &storeMgr = StateMgr.getStoreManager();
R = storeMgr.castRegion(R, castTy);
return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
}
return LV->getLoc();
}
return dispatchCast(val, castTy);
}
// Just pass through function and block pointers.
if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
assert(Loc::isLocType(castTy));
return val;
}
// Check for casts from array type to another type.
if (const ArrayType *arrayT =
dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
// We will always decay to a pointer.
QualType elemTy = arrayT->getElementType();
val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
// Are we casting from an array to a pointer? If so just pass on
// the decayed value.
if (castTy->isPointerType() || castTy->isReferenceType())
return val;
// Are we casting from an array to an integer? If so, cast the decayed
// pointer value to an integer.
assert(castTy->isIntegralOrEnumerationType());
// FIXME: Keep these here for now in case we decide soon that we
// need the original decayed type.
// QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
// QualType pointerTy = C.getPointerType(elemTy);
return evalCastFromLoc(val.castAs<Loc>(), castTy);
}
// Check for casts from a region to a specific type.
if (const MemRegion *R = val.getAsRegion()) {
// Handle other casts of locations to integers.
if (castTy->isIntegralOrEnumerationType())
return evalCastFromLoc(loc::MemRegionVal(R), castTy);
// FIXME: We should handle the case where we strip off view layers to get
// to a desugared type.
if (!Loc::isLocType(castTy)) {
// FIXME: There can be gross cases where one casts the result of a function
// (that returns a pointer) to some other value that happens to fit
// within that pointer value. We currently have no good way to
// model such operations. When this happens, the underlying operation
// is that the caller is reasoning about bits. Conceptually we are
// layering a "view" of a location on top of those bits. Perhaps
// we need to be more lazy about mutual possible views, even on an
// SVal? This may be necessary for bit-level reasoning as well.
return UnknownVal();
}
// We get a symbolic function pointer for a dereference of a function
// pointer, but it is of function type. Example:
// struct FPRec {
// void (*my_func)(int * x);
// };
//
// int bar(int x);
//
// int f1_a(struct FPRec* foo) {
// int x;
// (*foo->my_func)(&x);
// return bar(x)+1; // no-warning
// }
assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
originalTy->isBlockPointerType() || castTy->isReferenceType());
StoreManager &storeMgr = StateMgr.getStoreManager();
// Delegate to store manager to get the result of casting a region to a
// different type. If the MemRegion* returned is NULL, this expression
// Evaluates to UnknownVal.
R = storeMgr.castRegion(R, castTy);
return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
}
return dispatchCast(val, castTy);
}
|