1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
//===-- tsan_clock.cc -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_clock.h"
#include "tsan_rtl.h"
#include "sanitizer_common/sanitizer_placement_new.h"
// SyncClock and ThreadClock implement vector clocks for sync variables
// (mutexes, atomic variables, file descriptors, etc) and threads, respectively.
// ThreadClock contains fixed-size vector clock for maximum number of threads.
// SyncClock contains growable vector clock for currently necessary number of
// threads.
// Together they implement very simple model of operations, namely:
//
// void ThreadClock::acquire(const SyncClock *src) {
// for (int i = 0; i < kMaxThreads; i++)
// clock[i] = max(clock[i], src->clock[i]);
// }
//
// void ThreadClock::release(SyncClock *dst) const {
// for (int i = 0; i < kMaxThreads; i++)
// dst->clock[i] = max(dst->clock[i], clock[i]);
// }
//
// void ThreadClock::ReleaseStore(SyncClock *dst) const {
// for (int i = 0; i < kMaxThreads; i++)
// dst->clock[i] = clock[i];
// }
//
// void ThreadClock::acq_rel(SyncClock *dst) {
// acquire(dst);
// release(dst);
// }
//
// Conformance to this model is extensively verified in tsan_clock_test.cc.
// However, the implementation is significantly more complex. The complexity
// allows to implement important classes of use cases in O(1) instead of O(N).
//
// The use cases are:
// 1. Singleton/once atomic that has a single release-store operation followed
// by zillions of acquire-loads (the acquire-load is O(1)).
// 2. Thread-local mutex (both lock and unlock can be O(1)).
// 3. Leaf mutex (unlock is O(1)).
// 4. A mutex shared by 2 threads (both lock and unlock can be O(1)).
// 5. An atomic with a single writer (writes can be O(1)).
// The implementation dynamically adopts to workload. So if an atomic is in
// read-only phase, these reads will be O(1); if it later switches to read/write
// phase, the implementation will correctly handle that by switching to O(N).
//
// Thread-safety note: all const operations on SyncClock's are conducted under
// a shared lock; all non-const operations on SyncClock's are conducted under
// an exclusive lock; ThreadClock's are private to respective threads and so
// do not need any protection.
//
// Description of ThreadClock state:
// clk_ - fixed size vector clock.
// nclk_ - effective size of the vector clock (the rest is zeros).
// tid_ - index of the thread associated with he clock ("current thread").
// last_acquire_ - current thread time when it acquired something from
// other threads.
//
// Description of SyncClock state:
// clk_ - variable size vector clock, low kClkBits hold timestamp,
// the remaining bits hold "acquired" flag (the actual value is thread's
// reused counter);
// if acquried == thr->reused_, then the respective thread has already
// acquired this clock (except possibly dirty_tids_).
// dirty_tids_ - holds up to two indeces in the vector clock that other threads
// need to acquire regardless of "acquired" flag value;
// release_store_tid_ - denotes that the clock state is a result of
// release-store operation by the thread with release_store_tid_ index.
// release_store_reused_ - reuse count of release_store_tid_.
// We don't have ThreadState in these methods, so this is an ugly hack that
// works only in C++.
#ifndef SANITIZER_GO
# define CPP_STAT_INC(typ) StatInc(cur_thread(), typ)
#else
# define CPP_STAT_INC(typ) (void)0
#endif
namespace __tsan {
const unsigned kInvalidTid = (unsigned)-1;
ThreadClock::ThreadClock(unsigned tid, unsigned reused)
: tid_(tid)
, reused_(reused + 1) { // 0 has special meaning
CHECK_LT(tid, kMaxTidInClock);
CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
nclk_ = tid_ + 1;
last_acquire_ = 0;
internal_memset(clk_, 0, sizeof(clk_));
clk_[tid_].reused = reused_;
}
void ThreadClock::acquire(ClockCache *c, const SyncClock *src) {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(src->size_, kMaxTid);
CPP_STAT_INC(StatClockAcquire);
// Check if it's empty -> no need to do anything.
const uptr nclk = src->size_;
if (nclk == 0) {
CPP_STAT_INC(StatClockAcquireEmpty);
return;
}
// Check if we've already acquired src after the last release operation on src
bool acquired = false;
if (nclk > tid_) {
CPP_STAT_INC(StatClockAcquireLarge);
if (src->elem(tid_).reused == reused_) {
CPP_STAT_INC(StatClockAcquireRepeat);
for (unsigned i = 0; i < kDirtyTids; i++) {
unsigned tid = src->dirty_tids_[i];
if (tid != kInvalidTid) {
u64 epoch = src->elem(tid).epoch;
if (clk_[tid].epoch < epoch) {
clk_[tid].epoch = epoch;
acquired = true;
}
}
}
if (acquired) {
CPP_STAT_INC(StatClockAcquiredSomething);
last_acquire_ = clk_[tid_].epoch;
}
return;
}
}
// O(N) acquire.
CPP_STAT_INC(StatClockAcquireFull);
nclk_ = max(nclk_, nclk);
for (uptr i = 0; i < nclk; i++) {
u64 epoch = src->elem(i).epoch;
if (clk_[i].epoch < epoch) {
clk_[i].epoch = epoch;
acquired = true;
}
}
// Remember that this thread has acquired this clock.
if (nclk > tid_)
src->elem(tid_).reused = reused_;
if (acquired) {
CPP_STAT_INC(StatClockAcquiredSomething);
last_acquire_ = clk_[tid_].epoch;
}
}
void ThreadClock::release(ClockCache *c, SyncClock *dst) const {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(dst->size_, kMaxTid);
if (dst->size_ == 0) {
// ReleaseStore will correctly set release_store_tid_,
// which can be important for future operations.
ReleaseStore(c, dst);
return;
}
CPP_STAT_INC(StatClockRelease);
// Check if we need to resize dst.
if (dst->size_ < nclk_)
dst->Resize(c, nclk_);
// Check if we had not acquired anything from other threads
// since the last release on dst. If so, we need to update
// only dst->elem(tid_).
if (dst->elem(tid_).epoch > last_acquire_) {
UpdateCurrentThread(dst);
if (dst->release_store_tid_ != tid_ ||
dst->release_store_reused_ != reused_)
dst->release_store_tid_ = kInvalidTid;
return;
}
// O(N) release.
CPP_STAT_INC(StatClockReleaseFull);
// First, remember whether we've acquired dst.
bool acquired = IsAlreadyAcquired(dst);
if (acquired)
CPP_STAT_INC(StatClockReleaseAcquired);
// Update dst->clk_.
for (uptr i = 0; i < nclk_; i++) {
ClockElem &ce = dst->elem(i);
ce.epoch = max(ce.epoch, clk_[i].epoch);
ce.reused = 0;
}
// Clear 'acquired' flag in the remaining elements.
if (nclk_ < dst->size_)
CPP_STAT_INC(StatClockReleaseClearTail);
for (uptr i = nclk_; i < dst->size_; i++)
dst->elem(i).reused = 0;
for (unsigned i = 0; i < kDirtyTids; i++)
dst->dirty_tids_[i] = kInvalidTid;
dst->release_store_tid_ = kInvalidTid;
dst->release_store_reused_ = 0;
// If we've acquired dst, remember this fact,
// so that we don't need to acquire it on next acquire.
if (acquired)
dst->elem(tid_).reused = reused_;
}
void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) const {
DCHECK_LE(nclk_, kMaxTid);
DCHECK_LE(dst->size_, kMaxTid);
CPP_STAT_INC(StatClockStore);
// Check if we need to resize dst.
if (dst->size_ < nclk_)
dst->Resize(c, nclk_);
if (dst->release_store_tid_ == tid_ &&
dst->release_store_reused_ == reused_ &&
dst->elem(tid_).epoch > last_acquire_) {
CPP_STAT_INC(StatClockStoreFast);
UpdateCurrentThread(dst);
return;
}
// O(N) release-store.
CPP_STAT_INC(StatClockStoreFull);
for (uptr i = 0; i < nclk_; i++) {
ClockElem &ce = dst->elem(i);
ce.epoch = clk_[i].epoch;
ce.reused = 0;
}
// Clear the tail of dst->clk_.
if (nclk_ < dst->size_) {
for (uptr i = nclk_; i < dst->size_; i++) {
ClockElem &ce = dst->elem(i);
ce.epoch = 0;
ce.reused = 0;
}
CPP_STAT_INC(StatClockStoreTail);
}
for (unsigned i = 0; i < kDirtyTids; i++)
dst->dirty_tids_[i] = kInvalidTid;
dst->release_store_tid_ = tid_;
dst->release_store_reused_ = reused_;
// Rememeber that we don't need to acquire it in future.
dst->elem(tid_).reused = reused_;
}
void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
CPP_STAT_INC(StatClockAcquireRelease);
acquire(c, dst);
ReleaseStore(c, dst);
}
// Updates only single element related to the current thread in dst->clk_.
void ThreadClock::UpdateCurrentThread(SyncClock *dst) const {
// Update the threads time, but preserve 'acquired' flag.
dst->elem(tid_).epoch = clk_[tid_].epoch;
for (unsigned i = 0; i < kDirtyTids; i++) {
if (dst->dirty_tids_[i] == tid_) {
CPP_STAT_INC(StatClockReleaseFast1);
return;
}
if (dst->dirty_tids_[i] == kInvalidTid) {
CPP_STAT_INC(StatClockReleaseFast2);
dst->dirty_tids_[i] = tid_;
return;
}
}
// Reset all 'acquired' flags, O(N).
CPP_STAT_INC(StatClockReleaseSlow);
for (uptr i = 0; i < dst->size_; i++)
dst->elem(i).reused = 0;
for (unsigned i = 0; i < kDirtyTids; i++)
dst->dirty_tids_[i] = kInvalidTid;
}
// Checks whether the current threads has already acquired src.
bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
if (src->elem(tid_).reused != reused_)
return false;
for (unsigned i = 0; i < kDirtyTids; i++) {
unsigned tid = src->dirty_tids_[i];
if (tid != kInvalidTid) {
if (clk_[tid].epoch < src->elem(tid).epoch)
return false;
}
}
return true;
}
void SyncClock::Resize(ClockCache *c, uptr nclk) {
CPP_STAT_INC(StatClockReleaseResize);
if (RoundUpTo(nclk, ClockBlock::kClockCount) <=
RoundUpTo(size_, ClockBlock::kClockCount)) {
// Growing within the same block.
// Memory is already allocated, just increase the size.
size_ = nclk;
return;
}
if (nclk <= ClockBlock::kClockCount) {
// Grow from 0 to one-level table.
CHECK_EQ(size_, 0);
CHECK_EQ(tab_, 0);
CHECK_EQ(tab_idx_, 0);
size_ = nclk;
tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_));
return;
}
// Growing two-level table.
if (size_ == 0) {
// Allocate first level table.
tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_));
} else if (size_ <= ClockBlock::kClockCount) {
// Transform one-level table to two-level table.
u32 old = tab_idx_;
tab_idx_ = ctx->clock_alloc.Alloc(c);
tab_ = ctx->clock_alloc.Map(tab_idx_);
internal_memset(tab_, 0, sizeof(*tab_));
tab_->table[0] = old;
}
// At this point we have first level table allocated.
// Add second level tables as necessary.
for (uptr i = RoundUpTo(size_, ClockBlock::kClockCount);
i < nclk; i += ClockBlock::kClockCount) {
u32 idx = ctx->clock_alloc.Alloc(c);
ClockBlock *cb = ctx->clock_alloc.Map(idx);
internal_memset(cb, 0, sizeof(*cb));
CHECK_EQ(tab_->table[i/ClockBlock::kClockCount], 0);
tab_->table[i/ClockBlock::kClockCount] = idx;
}
size_ = nclk;
}
// Sets a single element in the vector clock.
// This function is called only from weird places like AcquireGlobal.
void ThreadClock::set(unsigned tid, u64 v) {
DCHECK_LT(tid, kMaxTid);
DCHECK_GE(v, clk_[tid].epoch);
clk_[tid].epoch = v;
if (nclk_ <= tid)
nclk_ = tid + 1;
last_acquire_ = clk_[tid_].epoch;
}
void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
printf("clock=[");
for (uptr i = 0; i < nclk_; i++)
printf("%s%llu", i == 0 ? "" : ",", clk_[i].epoch);
printf("] reused=[");
for (uptr i = 0; i < nclk_; i++)
printf("%s%llu", i == 0 ? "" : ",", clk_[i].reused);
printf("] tid=%u/%u last_acq=%llu",
tid_, reused_, last_acquire_);
}
SyncClock::SyncClock()
: release_store_tid_(kInvalidTid)
, release_store_reused_()
, tab_()
, tab_idx_()
, size_() {
for (uptr i = 0; i < kDirtyTids; i++)
dirty_tids_[i] = kInvalidTid;
}
SyncClock::~SyncClock() {
// Reset must be called before dtor.
CHECK_EQ(size_, 0);
CHECK_EQ(tab_, 0);
CHECK_EQ(tab_idx_, 0);
}
void SyncClock::Reset(ClockCache *c) {
if (size_ == 0) {
// nothing
} else if (size_ <= ClockBlock::kClockCount) {
// One-level table.
ctx->clock_alloc.Free(c, tab_idx_);
} else {
// Two-level table.
for (uptr i = 0; i < size_; i += ClockBlock::kClockCount)
ctx->clock_alloc.Free(c, tab_->table[i / ClockBlock::kClockCount]);
ctx->clock_alloc.Free(c, tab_idx_);
}
tab_ = 0;
tab_idx_ = 0;
size_ = 0;
release_store_tid_ = kInvalidTid;
release_store_reused_ = 0;
for (uptr i = 0; i < kDirtyTids; i++)
dirty_tids_[i] = kInvalidTid;
}
ClockElem &SyncClock::elem(unsigned tid) const {
DCHECK_LT(tid, size_);
if (size_ <= ClockBlock::kClockCount)
return tab_->clock[tid];
u32 idx = tab_->table[tid / ClockBlock::kClockCount];
ClockBlock *cb = ctx->clock_alloc.Map(idx);
return cb->clock[tid % ClockBlock::kClockCount];
}
void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
printf("clock=[");
for (uptr i = 0; i < size_; i++)
printf("%s%llu", i == 0 ? "" : ",", elem(i).epoch);
printf("] reused=[");
for (uptr i = 0; i < size_; i++)
printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
printf("] release_store_tid=%d/%d dirty_tids=%d/%d",
release_store_tid_, release_store_reused_,
dirty_tids_[0], dirty_tids_[1]);
}
} // namespace __tsan
|