1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// \file
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "si-fold-operands"
using namespace llvm;
namespace {
class SIFoldOperands : public MachineFunctionPass {
public:
static char ID;
public:
SIFoldOperands() : MachineFunctionPass(ID) {
initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override {
return "SI Fold Operands";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
struct FoldCandidate {
MachineInstr *UseMI;
unsigned UseOpNo;
MachineOperand *OpToFold;
uint64_t ImmToFold;
FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) :
UseMI(MI), UseOpNo(OpNo) {
if (FoldOp->isImm()) {
OpToFold = nullptr;
ImmToFold = FoldOp->getImm();
} else {
assert(FoldOp->isReg());
OpToFold = FoldOp;
}
}
bool isImm() const {
return !OpToFold;
}
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SIFoldOperands, DEBUG_TYPE,
"SI Fold Operands", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(SIFoldOperands, DEBUG_TYPE,
"SI Fold Operands", false, false)
char SIFoldOperands::ID = 0;
char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
FunctionPass *llvm::createSIFoldOperandsPass() {
return new SIFoldOperands();
}
static bool isSafeToFold(unsigned Opcode) {
switch(Opcode) {
case AMDGPU::V_MOV_B32_e32:
case AMDGPU::V_MOV_B32_e64:
case AMDGPU::V_MOV_B64_PSEUDO:
case AMDGPU::S_MOV_B32:
case AMDGPU::S_MOV_B64:
case AMDGPU::COPY:
return true;
default:
return false;
}
}
static bool updateOperand(FoldCandidate &Fold,
const TargetRegisterInfo &TRI) {
MachineInstr *MI = Fold.UseMI;
MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
assert(Old.isReg());
if (Fold.isImm()) {
Old.ChangeToImmediate(Fold.ImmToFold);
return true;
}
MachineOperand *New = Fold.OpToFold;
if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
TargetRegisterInfo::isVirtualRegister(New->getReg())) {
Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
return true;
}
// FIXME: Handle physical registers.
return false;
}
static bool isUseMIInFoldList(const std::vector<FoldCandidate> &FoldList,
const MachineInstr *MI) {
for (auto Candidate : FoldList) {
if (Candidate.UseMI == MI)
return true;
}
return false;
}
static bool tryAddToFoldList(std::vector<FoldCandidate> &FoldList,
MachineInstr *MI, unsigned OpNo,
MachineOperand *OpToFold,
const SIInstrInfo *TII) {
if (!TII->isOperandLegal(MI, OpNo, OpToFold)) {
// Special case for v_mac_f32_e64 if we are trying to fold into src2
unsigned Opc = MI->getOpcode();
if (Opc == AMDGPU::V_MAC_F32_e64 &&
(int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
// Check if changing this to a v_mad_f32 instruction will allow us to
// fold the operand.
MI->setDesc(TII->get(AMDGPU::V_MAD_F32));
bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
if (FoldAsMAD) {
MI->untieRegOperand(OpNo);
return true;
}
MI->setDesc(TII->get(Opc));
}
// If we are already folding into another operand of MI, then
// we can't commute the instruction, otherwise we risk making the
// other fold illegal.
if (isUseMIInFoldList(FoldList, MI))
return false;
// Operand is not legal, so try to commute the instruction to
// see if this makes it possible to fold.
unsigned CommuteIdx0;
unsigned CommuteIdx1;
bool CanCommute = TII->findCommutedOpIndices(MI, CommuteIdx0, CommuteIdx1);
if (CanCommute) {
if (CommuteIdx0 == OpNo)
OpNo = CommuteIdx1;
else if (CommuteIdx1 == OpNo)
OpNo = CommuteIdx0;
}
if (!CanCommute || !TII->commuteInstruction(MI))
return false;
if (!TII->isOperandLegal(MI, OpNo, OpToFold))
return false;
}
FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
return true;
}
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
const SIRegisterInfo &TRI = TII->getRegisterInfo();
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
MachineBasicBlock::iterator I, Next;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
if (!isSafeToFold(MI.getOpcode()))
continue;
unsigned OpSize = TII->getOpSize(MI, 1);
MachineOperand &OpToFold = MI.getOperand(1);
bool FoldingImm = OpToFold.isImm();
// FIXME: We could also be folding things like FrameIndexes and
// TargetIndexes.
if (!FoldingImm && !OpToFold.isReg())
continue;
// Folding immediates with more than one use will increase program size.
// FIXME: This will also reduce register usage, which may be better
// in some cases. A better heuristic is needed.
if (FoldingImm && !TII->isInlineConstant(OpToFold, OpSize) &&
!MRI.hasOneUse(MI.getOperand(0).getReg()))
continue;
// FIXME: Fold operands with subregs.
if (OpToFold.isReg() &&
(!TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()) ||
OpToFold.getSubReg()))
continue;
std::vector<FoldCandidate> FoldList;
for (MachineRegisterInfo::use_iterator
Use = MRI.use_begin(MI.getOperand(0).getReg()), E = MRI.use_end();
Use != E; ++Use) {
MachineInstr *UseMI = Use->getParent();
const MachineOperand &UseOp = UseMI->getOperand(Use.getOperandNo());
// FIXME: Fold operands with subregs.
if (UseOp.isReg() && ((UseOp.getSubReg() && OpToFold.isReg()) ||
UseOp.isImplicit())) {
continue;
}
APInt Imm;
if (FoldingImm) {
unsigned UseReg = UseOp.getReg();
const TargetRegisterClass *UseRC
= TargetRegisterInfo::isVirtualRegister(UseReg) ?
MRI.getRegClass(UseReg) :
TRI.getPhysRegClass(UseReg);
Imm = APInt(64, OpToFold.getImm());
// Split 64-bit constants into 32-bits for folding.
if (UseOp.getSubReg()) {
if (UseRC->getSize() != 8)
continue;
if (UseOp.getSubReg() == AMDGPU::sub0) {
Imm = Imm.getLoBits(32);
} else {
assert(UseOp.getSubReg() == AMDGPU::sub1);
Imm = Imm.getHiBits(32);
}
}
// In order to fold immediates into copies, we need to change the
// copy to a MOV.
if (UseMI->getOpcode() == AMDGPU::COPY) {
unsigned DestReg = UseMI->getOperand(0).getReg();
const TargetRegisterClass *DestRC
= TargetRegisterInfo::isVirtualRegister(DestReg) ?
MRI.getRegClass(DestReg) :
TRI.getPhysRegClass(DestReg);
unsigned MovOp = TII->getMovOpcode(DestRC);
if (MovOp == AMDGPU::COPY)
continue;
UseMI->setDesc(TII->get(MovOp));
}
}
const MCInstrDesc &UseDesc = UseMI->getDesc();
// Don't fold into target independent nodes. Target independent opcodes
// don't have defined register classes.
if (UseDesc.isVariadic() ||
UseDesc.OpInfo[Use.getOperandNo()].RegClass == -1)
continue;
if (FoldingImm) {
MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
tryAddToFoldList(FoldList, UseMI, Use.getOperandNo(), &ImmOp, TII);
continue;
}
tryAddToFoldList(FoldList, UseMI, Use.getOperandNo(), &OpToFold, TII);
// FIXME: We could try to change the instruction from 64-bit to 32-bit
// to enable more folding opportunites. The shrink operands pass
// already does this.
}
for (FoldCandidate &Fold : FoldList) {
if (updateOperand(Fold, TRI)) {
// Clear kill flags.
if (!Fold.isImm()) {
assert(Fold.OpToFold && Fold.OpToFold->isReg());
Fold.OpToFold->setIsKill(false);
}
DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
Fold.UseOpNo << " of " << *Fold.UseMI << '\n');
}
}
}
}
return false;
}
|