1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Insert wait instructions for memory reads and writes.
///
/// Memory reads and writes are issued asynchronously, so we need to insert
/// S_WAITCNT instructions when we want to access any of their results or
/// overwrite any register that's used asynchronously.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
namespace {
/// \brief One variable for each of the hardware counters
typedef union {
struct {
unsigned VM;
unsigned EXP;
unsigned LGKM;
} Named;
unsigned Array[3];
} Counters;
typedef enum {
OTHER,
SMEM,
VMEM
} InstType;
typedef Counters RegCounters[512];
typedef std::pair<unsigned, unsigned> RegInterval;
class SIInsertWaits : public MachineFunctionPass {
private:
static char ID;
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
/// \brief Constant hardware limits
static const Counters WaitCounts;
/// \brief Constant zero value
static const Counters ZeroCounts;
/// \brief Counter values we have already waited on.
Counters WaitedOn;
/// \brief Counter values for last instruction issued.
Counters LastIssued;
/// \brief Registers used by async instructions.
RegCounters UsedRegs;
/// \brief Registers defined by async instructions.
RegCounters DefinedRegs;
/// \brief Different export instruction types seen since last wait.
unsigned ExpInstrTypesSeen;
/// \brief Type of the last opcode.
InstType LastOpcodeType;
bool LastInstWritesM0;
/// \brief Get increment/decrement amount for this instruction.
Counters getHwCounts(MachineInstr &MI);
/// \brief Is operand relevant for async execution?
bool isOpRelevant(MachineOperand &Op);
/// \brief Get register interval an operand affects.
RegInterval getRegInterval(MachineOperand &Op);
/// \brief Handle instructions async components
void pushInstruction(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I);
/// \brief Insert the actual wait instruction
bool insertWait(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const Counters &Counts);
/// \brief Do we need def2def checks?
bool unorderedDefines(MachineInstr &MI);
/// \brief Resolve all operand dependencies to counter requirements
Counters handleOperands(MachineInstr &MI);
/// \brief Insert S_NOP between an instruction writing M0 and S_SENDMSG.
void handleSendMsg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I);
public:
SIInsertWaits(TargetMachine &tm) :
MachineFunctionPass(ID),
TII(nullptr),
TRI(nullptr),
ExpInstrTypesSeen(0) { }
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override {
return "SI insert wait instructions";
}
};
} // End anonymous namespace
char SIInsertWaits::ID = 0;
const Counters SIInsertWaits::WaitCounts = { { 15, 7, 7 } };
const Counters SIInsertWaits::ZeroCounts = { { 0, 0, 0 } };
FunctionPass *llvm::createSIInsertWaits(TargetMachine &tm) {
return new SIInsertWaits(tm);
}
Counters SIInsertWaits::getHwCounts(MachineInstr &MI) {
uint64_t TSFlags = TII->get(MI.getOpcode()).TSFlags;
Counters Result;
Result.Named.VM = !!(TSFlags & SIInstrFlags::VM_CNT);
// Only consider stores or EXP for EXP_CNT
Result.Named.EXP = !!(TSFlags & SIInstrFlags::EXP_CNT &&
(MI.getOpcode() == AMDGPU::EXP || MI.getDesc().mayStore()));
// LGKM may uses larger values
if (TSFlags & SIInstrFlags::LGKM_CNT) {
if (TII->isSMRD(MI.getOpcode())) {
MachineOperand &Op = MI.getOperand(0);
assert(Op.isReg() && "First LGKM operand must be a register!");
unsigned Reg = Op.getReg();
unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize();
Result.Named.LGKM = Size > 4 ? 2 : 1;
} else {
// DS
Result.Named.LGKM = 1;
}
} else {
Result.Named.LGKM = 0;
}
return Result;
}
bool SIInsertWaits::isOpRelevant(MachineOperand &Op) {
// Constants are always irrelevant
if (!Op.isReg())
return false;
// Defines are always relevant
if (Op.isDef())
return true;
// For exports all registers are relevant
MachineInstr &MI = *Op.getParent();
if (MI.getOpcode() == AMDGPU::EXP)
return true;
// For stores the stored value is also relevant
if (!MI.getDesc().mayStore())
return false;
// Check if this operand is the value being stored.
// Special case for DS instructions, since the address
// operand comes before the value operand and it may have
// multiple data operands.
if (TII->isDS(MI.getOpcode())) {
MachineOperand *Data = TII->getNamedOperand(MI, AMDGPU::OpName::data);
if (Data && Op.isIdenticalTo(*Data))
return true;
MachineOperand *Data0 = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
if (Data0 && Op.isIdenticalTo(*Data0))
return true;
MachineOperand *Data1 = TII->getNamedOperand(MI, AMDGPU::OpName::data1);
if (Data1 && Op.isIdenticalTo(*Data1))
return true;
return false;
}
// NOTE: This assumes that the value operand is before the
// address operand, and that there is only one value operand.
for (MachineInstr::mop_iterator I = MI.operands_begin(),
E = MI.operands_end(); I != E; ++I) {
if (I->isReg() && I->isUse())
return Op.isIdenticalTo(*I);
}
return false;
}
RegInterval SIInsertWaits::getRegInterval(MachineOperand &Op) {
if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()))
return std::make_pair(0, 0);
unsigned Reg = Op.getReg();
unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize();
assert(Size >= 4);
RegInterval Result;
Result.first = TRI->getEncodingValue(Reg);
Result.second = Result.first + Size / 4;
return Result;
}
void SIInsertWaits::pushInstruction(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
// Get the hardware counter increments and sum them up
Counters Increment = getHwCounts(*I);
unsigned Sum = 0;
for (unsigned i = 0; i < 3; ++i) {
LastIssued.Array[i] += Increment.Array[i];
Sum += Increment.Array[i];
}
// If we don't increase anything then that's it
if (Sum == 0) {
LastOpcodeType = OTHER;
return;
}
if (MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() >=
AMDGPUSubtarget::VOLCANIC_ISLANDS) {
// Any occurence of consecutive VMEM or SMEM instructions forms a VMEM
// or SMEM clause, respectively.
//
// The temporary workaround is to break the clauses with S_NOP.
//
// The proper solution would be to allocate registers such that all source
// and destination registers don't overlap, e.g. this is illegal:
// r0 = load r2
// r2 = load r0
if ((LastOpcodeType == SMEM && TII->isSMRD(I->getOpcode())) ||
(LastOpcodeType == VMEM && Increment.Named.VM)) {
// Insert a NOP to break the clause.
BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP))
.addImm(0);
LastInstWritesM0 = false;
}
if (TII->isSMRD(I->getOpcode()))
LastOpcodeType = SMEM;
else if (Increment.Named.VM)
LastOpcodeType = VMEM;
}
// Remember which export instructions we have seen
if (Increment.Named.EXP) {
ExpInstrTypesSeen |= I->getOpcode() == AMDGPU::EXP ? 1 : 2;
}
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
MachineOperand &Op = I->getOperand(i);
if (!isOpRelevant(Op))
continue;
RegInterval Interval = getRegInterval(Op);
for (unsigned j = Interval.first; j < Interval.second; ++j) {
// Remember which registers we define
if (Op.isDef())
DefinedRegs[j] = LastIssued;
// and which one we are using
if (Op.isUse())
UsedRegs[j] = LastIssued;
}
}
}
bool SIInsertWaits::insertWait(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const Counters &Required) {
// End of program? No need to wait on anything
if (I != MBB.end() && I->getOpcode() == AMDGPU::S_ENDPGM)
return false;
// Figure out if the async instructions execute in order
bool Ordered[3];
// VM_CNT is always ordered
Ordered[0] = true;
// EXP_CNT is unordered if we have both EXP & VM-writes
Ordered[1] = ExpInstrTypesSeen == 3;
// LGKM_CNT is handled as always unordered. TODO: Handle LDS and GDS
Ordered[2] = false;
// The values we are going to put into the S_WAITCNT instruction
Counters Counts = WaitCounts;
// Do we really need to wait?
bool NeedWait = false;
for (unsigned i = 0; i < 3; ++i) {
if (Required.Array[i] <= WaitedOn.Array[i])
continue;
NeedWait = true;
if (Ordered[i]) {
unsigned Value = LastIssued.Array[i] - Required.Array[i];
// Adjust the value to the real hardware possibilities.
Counts.Array[i] = std::min(Value, WaitCounts.Array[i]);
} else
Counts.Array[i] = 0;
// Remember on what we have waited on.
WaitedOn.Array[i] = LastIssued.Array[i] - Counts.Array[i];
}
if (!NeedWait)
return false;
// Reset EXP_CNT instruction types
if (Counts.Named.EXP == 0)
ExpInstrTypesSeen = 0;
// Build the wait instruction
BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
.addImm((Counts.Named.VM & 0xF) |
((Counts.Named.EXP & 0x7) << 4) |
((Counts.Named.LGKM & 0x7) << 8));
LastOpcodeType = OTHER;
LastInstWritesM0 = false;
return true;
}
/// \brief helper function for handleOperands
static void increaseCounters(Counters &Dst, const Counters &Src) {
for (unsigned i = 0; i < 3; ++i)
Dst.Array[i] = std::max(Dst.Array[i], Src.Array[i]);
}
Counters SIInsertWaits::handleOperands(MachineInstr &MI) {
Counters Result = ZeroCounts;
// S_SENDMSG implicitly waits for all outstanding LGKM transfers to finish,
// but we also want to wait for any other outstanding transfers before
// signalling other hardware blocks
if (MI.getOpcode() == AMDGPU::S_SENDMSG)
return LastIssued;
// For each register affected by this
// instruction increase the result sequence
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI.getOperand(i);
RegInterval Interval = getRegInterval(Op);
for (unsigned j = Interval.first; j < Interval.second; ++j) {
if (Op.isDef()) {
increaseCounters(Result, UsedRegs[j]);
increaseCounters(Result, DefinedRegs[j]);
}
if (Op.isUse())
increaseCounters(Result, DefinedRegs[j]);
}
}
return Result;
}
void SIInsertWaits::handleSendMsg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
if (MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() <
AMDGPUSubtarget::VOLCANIC_ISLANDS)
return;
// There must be "S_NOP 0" between an instruction writing M0 and S_SENDMSG.
if (LastInstWritesM0 && I->getOpcode() == AMDGPU::S_SENDMSG) {
BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0);
LastInstWritesM0 = false;
return;
}
// Set whether this instruction sets M0
LastInstWritesM0 = false;
unsigned NumOperands = I->getNumOperands();
for (unsigned i = 0; i < NumOperands; i++) {
const MachineOperand &Op = I->getOperand(i);
if (Op.isReg() && Op.isDef() && Op.getReg() == AMDGPU::M0)
LastInstWritesM0 = true;
}
}
// FIXME: Insert waits listed in Table 4.2 "Required User-Inserted Wait States"
// around other non-memory instructions.
bool SIInsertWaits::runOnMachineFunction(MachineFunction &MF) {
bool Changes = false;
TII = static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
TRI =
static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
MRI = &MF.getRegInfo();
WaitedOn = ZeroCounts;
LastIssued = ZeroCounts;
LastOpcodeType = OTHER;
LastInstWritesM0 = false;
memset(&UsedRegs, 0, sizeof(UsedRegs));
memset(&DefinedRegs, 0, sizeof(DefinedRegs));
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
// Wait for everything before a barrier.
if (I->getOpcode() == AMDGPU::S_BARRIER)
Changes |= insertWait(MBB, I, LastIssued);
else
Changes |= insertWait(MBB, I, handleOperands(*I));
pushInstruction(MBB, I);
handleSendMsg(MBB, I);
}
// Wait for everything at the end of the MBB
Changes |= insertWait(MBB, MBB.getFirstTerminator(), LastIssued);
}
return Changes;
}
|