1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
//===-- Metric.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Metric.h"
#include "MemoryGauge.h"
#include <cmath>
using namespace lldb_perf;
template <class T>
Metric<T>::Metric () : Metric ("")
{
}
template <class T>
Metric<T>::Metric (const char* n, const char* d) :
m_name(n ? n : ""),
m_description(d ? d : ""),
m_dataset ()
{
}
template <class T>
void
Metric<T>::Append (T v)
{
m_dataset.push_back(v);
}
template <class T>
size_t
Metric<T>::GetCount () const
{
return m_dataset.size();
}
template <class T>
T
Metric<T>::GetSum () const
{
T sum = 0;
for (auto v : m_dataset)
sum += v;
return sum;
}
template <class T>
T
Metric<T>::GetAverage () const
{
return GetSum()/GetCount();
}
// Knuth's algorithm for stddev - massive cancellation resistant
template <class T>
T
Metric<T>::GetStandardDeviation (StandardDeviationMode mode) const
{
size_t n = 0;
T mean = 0;
T M2 = 0;
for (auto x : m_dataset)
{
n = n + 1;
T delta = x - mean;
mean = mean + delta/n;
M2 = M2+delta*(x-mean);
}
T variance;
if (mode == StandardDeviationMode::ePopulation || n == 1)
variance = M2 / n;
else
variance = M2 / (n - 1);
return sqrt(variance);
}
template class lldb_perf::Metric<double>;
template class lldb_perf::Metric<MemoryStats>;
|