1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
|
/*
* Copyright 2011 INRIA Saclay
* Copyright 2012-2014 Ecole Normale Superieure
* Copyright 2015 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_space_private.h>
#include <isl_aff_private.h>
#include <isl/hash.h>
#include <isl/constraint.h>
#include <isl/schedule.h>
#include <isl/schedule_node.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <isl/set.h>
#include <isl/union_set.h>
#include <isl_seq.h>
#include <isl_tab.h>
#include <isl_dim_map.h>
#include <isl/map_to_basic_set.h>
#include <isl_sort.h>
#include <isl_options_private.h>
#include <isl_tarjan.h>
#include <isl_morph.h>
/*
* The scheduling algorithm implemented in this file was inspired by
* Bondhugula et al., "Automatic Transformations for Communication-Minimized
* Parallelization and Locality Optimization in the Polyhedral Model".
*/
enum isl_edge_type {
isl_edge_validity = 0,
isl_edge_first = isl_edge_validity,
isl_edge_coincidence,
isl_edge_condition,
isl_edge_conditional_validity,
isl_edge_proximity,
isl_edge_last = isl_edge_proximity
};
/* The constraints that need to be satisfied by a schedule on "domain".
*
* "context" specifies extra constraints on the parameters.
*
* "validity" constraints map domain elements i to domain elements
* that should be scheduled after i. (Hard constraint)
* "proximity" constraints map domain elements i to domains elements
* that should be scheduled as early as possible after i (or before i).
* (Soft constraint)
*
* "condition" and "conditional_validity" constraints map possibly "tagged"
* domain elements i -> s to "tagged" domain elements j -> t.
* The elements of the "conditional_validity" constraints, but without the
* tags (i.e., the elements i -> j) are treated as validity constraints,
* except that during the construction of a tilable band,
* the elements of the "conditional_validity" constraints may be violated
* provided that all adjacent elements of the "condition" constraints
* are local within the band.
* A dependence is local within a band if domain and range are mapped
* to the same schedule point by the band.
*/
struct isl_schedule_constraints {
isl_union_set *domain;
isl_set *context;
isl_union_map *constraint[isl_edge_last + 1];
};
__isl_give isl_schedule_constraints *isl_schedule_constraints_copy(
__isl_keep isl_schedule_constraints *sc)
{
isl_ctx *ctx;
isl_schedule_constraints *sc_copy;
enum isl_edge_type i;
ctx = isl_union_set_get_ctx(sc->domain);
sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints);
if (!sc_copy)
return NULL;
sc_copy->domain = isl_union_set_copy(sc->domain);
sc_copy->context = isl_set_copy(sc->context);
if (!sc_copy->domain || !sc_copy->context)
return isl_schedule_constraints_free(sc_copy);
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]);
if (!sc_copy->constraint[i])
return isl_schedule_constraints_free(sc_copy);
}
return sc_copy;
}
/* Construct an isl_schedule_constraints object for computing a schedule
* on "domain". The initial object does not impose any constraints.
*/
__isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
__isl_take isl_union_set *domain)
{
isl_ctx *ctx;
isl_space *space;
isl_schedule_constraints *sc;
isl_union_map *empty;
enum isl_edge_type i;
if (!domain)
return NULL;
ctx = isl_union_set_get_ctx(domain);
sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
if (!sc)
goto error;
space = isl_union_set_get_space(domain);
sc->domain = domain;
sc->context = isl_set_universe(isl_space_copy(space));
empty = isl_union_map_empty(space);
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
sc->constraint[i] = isl_union_map_copy(empty);
if (!sc->constraint[i])
sc->domain = isl_union_set_free(sc->domain);
}
isl_union_map_free(empty);
if (!sc->domain || !sc->context)
return isl_schedule_constraints_free(sc);
return sc;
error:
isl_union_set_free(domain);
return NULL;
}
/* Replace the context of "sc" by "context".
*/
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_context(
__isl_take isl_schedule_constraints *sc, __isl_take isl_set *context)
{
if (!sc || !context)
goto error;
isl_set_free(sc->context);
sc->context = context;
return sc;
error:
isl_schedule_constraints_free(sc);
isl_set_free(context);
return NULL;
}
/* Replace the validity constraints of "sc" by "validity".
*/
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *validity)
{
if (!sc || !validity)
goto error;
isl_union_map_free(sc->constraint[isl_edge_validity]);
sc->constraint[isl_edge_validity] = validity;
return sc;
error:
isl_schedule_constraints_free(sc);
isl_union_map_free(validity);
return NULL;
}
/* Replace the coincidence constraints of "sc" by "coincidence".
*/
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *coincidence)
{
if (!sc || !coincidence)
goto error;
isl_union_map_free(sc->constraint[isl_edge_coincidence]);
sc->constraint[isl_edge_coincidence] = coincidence;
return sc;
error:
isl_schedule_constraints_free(sc);
isl_union_map_free(coincidence);
return NULL;
}
/* Replace the proximity constraints of "sc" by "proximity".
*/
__isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *proximity)
{
if (!sc || !proximity)
goto error;
isl_union_map_free(sc->constraint[isl_edge_proximity]);
sc->constraint[isl_edge_proximity] = proximity;
return sc;
error:
isl_schedule_constraints_free(sc);
isl_union_map_free(proximity);
return NULL;
}
/* Replace the conditional validity constraints of "sc" by "condition"
* and "validity".
*/
__isl_give isl_schedule_constraints *
isl_schedule_constraints_set_conditional_validity(
__isl_take isl_schedule_constraints *sc,
__isl_take isl_union_map *condition,
__isl_take isl_union_map *validity)
{
if (!sc || !condition || !validity)
goto error;
isl_union_map_free(sc->constraint[isl_edge_condition]);
sc->constraint[isl_edge_condition] = condition;
isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
sc->constraint[isl_edge_conditional_validity] = validity;
return sc;
error:
isl_schedule_constraints_free(sc);
isl_union_map_free(condition);
isl_union_map_free(validity);
return NULL;
}
__isl_null isl_schedule_constraints *isl_schedule_constraints_free(
__isl_take isl_schedule_constraints *sc)
{
enum isl_edge_type i;
if (!sc)
return NULL;
isl_union_set_free(sc->domain);
isl_set_free(sc->context);
for (i = isl_edge_first; i <= isl_edge_last; ++i)
isl_union_map_free(sc->constraint[i]);
free(sc);
return NULL;
}
isl_ctx *isl_schedule_constraints_get_ctx(
__isl_keep isl_schedule_constraints *sc)
{
return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
}
/* Return the validity constraints of "sc".
*/
__isl_give isl_union_map *isl_schedule_constraints_get_validity(
__isl_keep isl_schedule_constraints *sc)
{
if (!sc)
return NULL;
return isl_union_map_copy(sc->constraint[isl_edge_validity]);
}
/* Return the coincidence constraints of "sc".
*/
__isl_give isl_union_map *isl_schedule_constraints_get_coincidence(
__isl_keep isl_schedule_constraints *sc)
{
if (!sc)
return NULL;
return isl_union_map_copy(sc->constraint[isl_edge_coincidence]);
}
/* Return the conditional validity constraints of "sc".
*/
__isl_give isl_union_map *isl_schedule_constraints_get_conditional_validity(
__isl_keep isl_schedule_constraints *sc)
{
if (!sc)
return NULL;
return
isl_union_map_copy(sc->constraint[isl_edge_conditional_validity]);
}
/* Return the conditions for the conditional validity constraints of "sc".
*/
__isl_give isl_union_map *
isl_schedule_constraints_get_conditional_validity_condition(
__isl_keep isl_schedule_constraints *sc)
{
if (!sc)
return NULL;
return isl_union_map_copy(sc->constraint[isl_edge_condition]);
}
void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
{
if (!sc)
return;
fprintf(stderr, "domain: ");
isl_union_set_dump(sc->domain);
fprintf(stderr, "context: ");
isl_set_dump(sc->context);
fprintf(stderr, "validity: ");
isl_union_map_dump(sc->constraint[isl_edge_validity]);
fprintf(stderr, "proximity: ");
isl_union_map_dump(sc->constraint[isl_edge_proximity]);
fprintf(stderr, "coincidence: ");
isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
fprintf(stderr, "condition: ");
isl_union_map_dump(sc->constraint[isl_edge_condition]);
fprintf(stderr, "conditional_validity: ");
isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
}
/* Align the parameters of the fields of "sc".
*/
static __isl_give isl_schedule_constraints *
isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
{
isl_space *space;
enum isl_edge_type i;
if (!sc)
return NULL;
space = isl_union_set_get_space(sc->domain);
space = isl_space_align_params(space, isl_set_get_space(sc->context));
for (i = isl_edge_first; i <= isl_edge_last; ++i)
space = isl_space_align_params(space,
isl_union_map_get_space(sc->constraint[i]));
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
sc->constraint[i] = isl_union_map_align_params(
sc->constraint[i], isl_space_copy(space));
if (!sc->constraint[i])
space = isl_space_free(space);
}
sc->context = isl_set_align_params(sc->context, isl_space_copy(space));
sc->domain = isl_union_set_align_params(sc->domain, space);
if (!sc->context || !sc->domain)
return isl_schedule_constraints_free(sc);
return sc;
}
/* Return the total number of isl_maps in the constraints of "sc".
*/
static __isl_give int isl_schedule_constraints_n_map(
__isl_keep isl_schedule_constraints *sc)
{
enum isl_edge_type i;
int n = 0;
for (i = isl_edge_first; i <= isl_edge_last; ++i)
n += isl_union_map_n_map(sc->constraint[i]);
return n;
}
/* Internal information about a node that is used during the construction
* of a schedule.
* space represents the space in which the domain lives
* sched is a matrix representation of the schedule being constructed
* for this node; if compressed is set, then this schedule is
* defined over the compressed domain space
* sched_map is an isl_map representation of the same (partial) schedule
* sched_map may be NULL; if compressed is set, then this map
* is defined over the uncompressed domain space
* rank is the number of linearly independent rows in the linear part
* of sched
* the columns of cmap represent a change of basis for the schedule
* coefficients; the first rank columns span the linear part of
* the schedule rows
* cinv is the inverse of cmap.
* start is the first variable in the LP problem in the sequences that
* represents the schedule coefficients of this node
* nvar is the dimension of the domain
* nparam is the number of parameters or 0 if we are not constructing
* a parametric schedule
*
* If compressed is set, then hull represents the constraints
* that were used to derive the compression, while compress and
* decompress map the original space to the compressed space and
* vice versa.
*
* scc is the index of SCC (or WCC) this node belongs to
*
* coincident contains a boolean for each of the rows of the schedule,
* indicating whether the corresponding scheduling dimension satisfies
* the coincidence constraints in the sense that the corresponding
* dependence distances are zero.
*/
struct isl_sched_node {
isl_space *space;
int compressed;
isl_set *hull;
isl_multi_aff *compress;
isl_multi_aff *decompress;
isl_mat *sched;
isl_map *sched_map;
int rank;
isl_mat *cmap;
isl_mat *cinv;
int start;
int nvar;
int nparam;
int scc;
int *coincident;
};
static int node_has_space(const void *entry, const void *val)
{
struct isl_sched_node *node = (struct isl_sched_node *)entry;
isl_space *dim = (isl_space *)val;
return isl_space_is_equal(node->space, dim);
}
static int node_scc_exactly(struct isl_sched_node *node, int scc)
{
return node->scc == scc;
}
static int node_scc_at_most(struct isl_sched_node *node, int scc)
{
return node->scc <= scc;
}
static int node_scc_at_least(struct isl_sched_node *node, int scc)
{
return node->scc >= scc;
}
/* An edge in the dependence graph. An edge may be used to
* ensure validity of the generated schedule, to minimize the dependence
* distance or both
*
* map is the dependence relation, with i -> j in the map if j depends on i
* tagged_condition and tagged_validity contain the union of all tagged
* condition or conditional validity dependence relations that
* specialize the dependence relation "map"; that is,
* if (i -> a) -> (j -> b) is an element of "tagged_condition"
* or "tagged_validity", then i -> j is an element of "map".
* If these fields are NULL, then they represent the empty relation.
* src is the source node
* dst is the sink node
* validity is set if the edge is used to ensure correctness
* coincidence is used to enforce zero dependence distances
* proximity is set if the edge is used to minimize dependence distances
* condition is set if the edge represents a condition
* for a conditional validity schedule constraint
* local can only be set for condition edges and indicates that
* the dependence distance over the edge should be zero
* conditional_validity is set if the edge is used to conditionally
* ensure correctness
*
* For validity edges, start and end mark the sequence of inequality
* constraints in the LP problem that encode the validity constraint
* corresponding to this edge.
*/
struct isl_sched_edge {
isl_map *map;
isl_union_map *tagged_condition;
isl_union_map *tagged_validity;
struct isl_sched_node *src;
struct isl_sched_node *dst;
unsigned validity : 1;
unsigned coincidence : 1;
unsigned proximity : 1;
unsigned local : 1;
unsigned condition : 1;
unsigned conditional_validity : 1;
int start;
int end;
};
/* Internal information about the dependence graph used during
* the construction of the schedule.
*
* intra_hmap is a cache, mapping dependence relations to their dual,
* for dependences from a node to itself
* inter_hmap is a cache, mapping dependence relations to their dual,
* for dependences between distinct nodes
* if compression is involved then the key for these maps
* it the original, uncompressed dependence relation, while
* the value is the dual of the compressed dependence relation.
*
* n is the number of nodes
* node is the list of nodes
* maxvar is the maximal number of variables over all nodes
* max_row is the allocated number of rows in the schedule
* n_row is the current (maximal) number of linearly independent
* rows in the node schedules
* n_total_row is the current number of rows in the node schedules
* band_start is the starting row in the node schedules of the current band
* root is set if this graph is the original dependence graph,
* without any splitting
*
* sorted contains a list of node indices sorted according to the
* SCC to which a node belongs
*
* n_edge is the number of edges
* edge is the list of edges
* max_edge contains the maximal number of edges of each type;
* in particular, it contains the number of edges in the inital graph.
* edge_table contains pointers into the edge array, hashed on the source
* and sink spaces; there is one such table for each type;
* a given edge may be referenced from more than one table
* if the corresponding relation appears in more than one of the
* sets of dependences
*
* node_table contains pointers into the node array, hashed on the space
*
* region contains a list of variable sequences that should be non-trivial
*
* lp contains the (I)LP problem used to obtain new schedule rows
*
* src_scc and dst_scc are the source and sink SCCs of an edge with
* conflicting constraints
*
* scc represents the number of components
* weak is set if the components are weakly connected
*/
struct isl_sched_graph {
isl_map_to_basic_set *intra_hmap;
isl_map_to_basic_set *inter_hmap;
struct isl_sched_node *node;
int n;
int maxvar;
int max_row;
int n_row;
int *sorted;
int n_total_row;
int band_start;
int root;
struct isl_sched_edge *edge;
int n_edge;
int max_edge[isl_edge_last + 1];
struct isl_hash_table *edge_table[isl_edge_last + 1];
struct isl_hash_table *node_table;
struct isl_region *region;
isl_basic_set *lp;
int src_scc;
int dst_scc;
int scc;
int weak;
};
/* Initialize node_table based on the list of nodes.
*/
static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
graph->node_table = isl_hash_table_alloc(ctx, graph->n);
if (!graph->node_table)
return -1;
for (i = 0; i < graph->n; ++i) {
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_space_get_hash(graph->node[i].space);
entry = isl_hash_table_find(ctx, graph->node_table, hash,
&node_has_space,
graph->node[i].space, 1);
if (!entry)
return -1;
entry->data = &graph->node[i];
}
return 0;
}
/* Return a pointer to the node that lives within the given space,
* or NULL if there is no such node.
*/
static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
struct isl_sched_graph *graph, __isl_keep isl_space *dim)
{
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_space_get_hash(dim);
entry = isl_hash_table_find(ctx, graph->node_table, hash,
&node_has_space, dim, 0);
return entry ? entry->data : NULL;
}
static int edge_has_src_and_dst(const void *entry, const void *val)
{
const struct isl_sched_edge *edge = entry;
const struct isl_sched_edge *temp = val;
return edge->src == temp->src && edge->dst == temp->dst;
}
/* Add the given edge to graph->edge_table[type].
*/
static isl_stat graph_edge_table_add(isl_ctx *ctx,
struct isl_sched_graph *graph, enum isl_edge_type type,
struct isl_sched_edge *edge)
{
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_hash_init();
hash = isl_hash_builtin(hash, edge->src);
hash = isl_hash_builtin(hash, edge->dst);
entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
&edge_has_src_and_dst, edge, 1);
if (!entry)
return isl_stat_error;
entry->data = edge;
return isl_stat_ok;
}
/* Allocate the edge_tables based on the maximal number of edges of
* each type.
*/
static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
for (i = 0; i <= isl_edge_last; ++i) {
graph->edge_table[i] = isl_hash_table_alloc(ctx,
graph->max_edge[i]);
if (!graph->edge_table[i])
return -1;
}
return 0;
}
/* If graph->edge_table[type] contains an edge from the given source
* to the given destination, then return the hash table entry of this edge.
* Otherwise, return NULL.
*/
static struct isl_hash_table_entry *graph_find_edge_entry(
struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
isl_ctx *ctx = isl_space_get_ctx(src->space);
uint32_t hash;
struct isl_sched_edge temp = { .src = src, .dst = dst };
hash = isl_hash_init();
hash = isl_hash_builtin(hash, temp.src);
hash = isl_hash_builtin(hash, temp.dst);
return isl_hash_table_find(ctx, graph->edge_table[type], hash,
&edge_has_src_and_dst, &temp, 0);
}
/* If graph->edge_table[type] contains an edge from the given source
* to the given destination, then return this edge.
* Otherwise, return NULL.
*/
static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
struct isl_hash_table_entry *entry;
entry = graph_find_edge_entry(graph, type, src, dst);
if (!entry)
return NULL;
return entry->data;
}
/* Check whether the dependence graph has an edge of the given type
* between the given two nodes.
*/
static isl_bool graph_has_edge(struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
struct isl_sched_edge *edge;
isl_bool empty;
edge = graph_find_edge(graph, type, src, dst);
if (!edge)
return 0;
empty = isl_map_plain_is_empty(edge->map);
if (empty < 0)
return isl_bool_error;
return !empty;
}
/* Look for any edge with the same src, dst and map fields as "model".
*
* Return the matching edge if one can be found.
* Return "model" if no matching edge is found.
* Return NULL on error.
*/
static struct isl_sched_edge *graph_find_matching_edge(
struct isl_sched_graph *graph, struct isl_sched_edge *model)
{
enum isl_edge_type i;
struct isl_sched_edge *edge;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
int is_equal;
edge = graph_find_edge(graph, i, model->src, model->dst);
if (!edge)
continue;
is_equal = isl_map_plain_is_equal(model->map, edge->map);
if (is_equal < 0)
return NULL;
if (is_equal)
return edge;
}
return model;
}
/* Remove the given edge from all the edge_tables that refer to it.
*/
static void graph_remove_edge(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
isl_ctx *ctx = isl_map_get_ctx(edge->map);
enum isl_edge_type i;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
struct isl_hash_table_entry *entry;
entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
if (!entry)
continue;
if (entry->data != edge)
continue;
isl_hash_table_remove(ctx, graph->edge_table[i], entry);
}
}
/* Check whether the dependence graph has any edge
* between the given two nodes.
*/
static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
enum isl_edge_type i;
isl_bool r;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
r = graph_has_edge(graph, i, src, dst);
if (r < 0 || r)
return r;
}
return r;
}
/* Check whether the dependence graph has a validity edge
* between the given two nodes.
*
* Conditional validity edges are essentially validity edges that
* can be ignored if the corresponding condition edges are iteration private.
* Here, we are only checking for the presence of validity
* edges, so we need to consider the conditional validity edges too.
* In particular, this function is used during the detection
* of strongly connected components and we cannot ignore
* conditional validity edges during this detection.
*/
static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
isl_bool r;
r = graph_has_edge(graph, isl_edge_validity, src, dst);
if (r < 0 || r)
return r;
return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
}
static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
int n_node, int n_edge)
{
int i;
graph->n = n_node;
graph->n_edge = n_edge;
graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
graph->sorted = isl_calloc_array(ctx, int, graph->n);
graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
graph->edge = isl_calloc_array(ctx,
struct isl_sched_edge, graph->n_edge);
graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
!graph->sorted)
return -1;
for(i = 0; i < graph->n; ++i)
graph->sorted[i] = i;
return 0;
}
static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
isl_map_to_basic_set_free(graph->intra_hmap);
isl_map_to_basic_set_free(graph->inter_hmap);
if (graph->node)
for (i = 0; i < graph->n; ++i) {
isl_space_free(graph->node[i].space);
isl_set_free(graph->node[i].hull);
isl_multi_aff_free(graph->node[i].compress);
isl_multi_aff_free(graph->node[i].decompress);
isl_mat_free(graph->node[i].sched);
isl_map_free(graph->node[i].sched_map);
isl_mat_free(graph->node[i].cmap);
isl_mat_free(graph->node[i].cinv);
if (graph->root)
free(graph->node[i].coincident);
}
free(graph->node);
free(graph->sorted);
if (graph->edge)
for (i = 0; i < graph->n_edge; ++i) {
isl_map_free(graph->edge[i].map);
isl_union_map_free(graph->edge[i].tagged_condition);
isl_union_map_free(graph->edge[i].tagged_validity);
}
free(graph->edge);
free(graph->region);
for (i = 0; i <= isl_edge_last; ++i)
isl_hash_table_free(ctx, graph->edge_table[i]);
isl_hash_table_free(ctx, graph->node_table);
isl_basic_set_free(graph->lp);
}
/* For each "set" on which this function is called, increment
* graph->n by one and update graph->maxvar.
*/
static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
{
struct isl_sched_graph *graph = user;
int nvar = isl_set_dim(set, isl_dim_set);
graph->n++;
if (nvar > graph->maxvar)
graph->maxvar = nvar;
isl_set_free(set);
return isl_stat_ok;
}
/* Add the number of basic maps in "map" to *n.
*/
static isl_stat add_n_basic_map(__isl_take isl_map *map, void *user)
{
int *n = user;
*n += isl_map_n_basic_map(map);
isl_map_free(map);
return isl_stat_ok;
}
/* Compute the number of rows that should be allocated for the schedule.
* In particular, we need one row for each variable or one row
* for each basic map in the dependences.
* Note that it is practically impossible to exhaust both
* the number of dependences and the number of variables.
*/
static int compute_max_row(struct isl_sched_graph *graph,
__isl_keep isl_schedule_constraints *sc)
{
enum isl_edge_type i;
int n_edge;
graph->n = 0;
graph->maxvar = 0;
if (isl_union_set_foreach_set(sc->domain, &init_n_maxvar, graph) < 0)
return -1;
n_edge = 0;
for (i = isl_edge_first; i <= isl_edge_last; ++i)
if (isl_union_map_foreach_map(sc->constraint[i],
&add_n_basic_map, &n_edge) < 0)
return -1;
graph->max_row = n_edge + graph->maxvar;
return 0;
}
/* Does "bset" have any defining equalities for its set variables?
*/
static int has_any_defining_equality(__isl_keep isl_basic_set *bset)
{
int i, n;
if (!bset)
return -1;
n = isl_basic_set_dim(bset, isl_dim_set);
for (i = 0; i < n; ++i) {
int has;
has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
NULL);
if (has < 0 || has)
return has;
}
return 0;
}
/* Add a new node to the graph representing the given space.
* "nvar" is the (possibly compressed) number of variables and
* may be smaller than then number of set variables in "space"
* if "compressed" is set.
* If "compressed" is set, then "hull" represents the constraints
* that were used to derive the compression, while "compress" and
* "decompress" map the original space to the compressed space and
* vice versa.
* If "compressed" is not set, then "hull", "compress" and "decompress"
* should be NULL.
*/
static isl_stat add_node(struct isl_sched_graph *graph,
__isl_take isl_space *space, int nvar, int compressed,
__isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
__isl_take isl_multi_aff *decompress)
{
int nparam;
isl_ctx *ctx;
isl_mat *sched;
int *coincident;
if (!space)
return isl_stat_error;
ctx = isl_space_get_ctx(space);
nparam = isl_space_dim(space, isl_dim_param);
if (!ctx->opt->schedule_parametric)
nparam = 0;
sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
graph->node[graph->n].space = space;
graph->node[graph->n].nvar = nvar;
graph->node[graph->n].nparam = nparam;
graph->node[graph->n].sched = sched;
graph->node[graph->n].sched_map = NULL;
coincident = isl_calloc_array(ctx, int, graph->max_row);
graph->node[graph->n].coincident = coincident;
graph->node[graph->n].compressed = compressed;
graph->node[graph->n].hull = hull;
graph->node[graph->n].compress = compress;
graph->node[graph->n].decompress = decompress;
graph->n++;
if (!space || !sched || (graph->max_row && !coincident))
return isl_stat_error;
if (compressed && (!hull || !compress || !decompress))
return isl_stat_error;
return isl_stat_ok;
}
/* Add a new node to the graph representing the given set.
*
* If any of the set variables is defined by an equality, then
* we perform variable compression such that we can perform
* the scheduling on the compressed domain.
*/
static isl_stat extract_node(__isl_take isl_set *set, void *user)
{
int nvar;
int has_equality;
isl_space *space;
isl_basic_set *hull;
isl_set *hull_set;
isl_morph *morph;
isl_multi_aff *compress, *decompress;
struct isl_sched_graph *graph = user;
space = isl_set_get_space(set);
hull = isl_set_affine_hull(set);
hull = isl_basic_set_remove_divs(hull);
nvar = isl_space_dim(space, isl_dim_set);
has_equality = has_any_defining_equality(hull);
if (has_equality < 0)
goto error;
if (!has_equality) {
isl_basic_set_free(hull);
return add_node(graph, space, nvar, 0, NULL, NULL, NULL);
}
morph = isl_basic_set_variable_compression(hull, isl_dim_set);
nvar = isl_morph_ran_dim(morph, isl_dim_set);
compress = isl_morph_get_var_multi_aff(morph);
morph = isl_morph_inverse(morph);
decompress = isl_morph_get_var_multi_aff(morph);
isl_morph_free(morph);
hull_set = isl_set_from_basic_set(hull);
return add_node(graph, space, nvar, 1, hull_set, compress, decompress);
error:
isl_basic_set_free(hull);
isl_space_free(space);
return isl_stat_error;
}
struct isl_extract_edge_data {
enum isl_edge_type type;
struct isl_sched_graph *graph;
};
/* Merge edge2 into edge1, freeing the contents of edge2.
* "type" is the type of the schedule constraint from which edge2 was
* extracted.
* Return 0 on success and -1 on failure.
*
* edge1 and edge2 are assumed to have the same value for the map field.
*/
static int merge_edge(enum isl_edge_type type, struct isl_sched_edge *edge1,
struct isl_sched_edge *edge2)
{
edge1->validity |= edge2->validity;
edge1->coincidence |= edge2->coincidence;
edge1->proximity |= edge2->proximity;
edge1->condition |= edge2->condition;
edge1->conditional_validity |= edge2->conditional_validity;
isl_map_free(edge2->map);
if (type == isl_edge_condition) {
if (!edge1->tagged_condition)
edge1->tagged_condition = edge2->tagged_condition;
else
edge1->tagged_condition =
isl_union_map_union(edge1->tagged_condition,
edge2->tagged_condition);
}
if (type == isl_edge_conditional_validity) {
if (!edge1->tagged_validity)
edge1->tagged_validity = edge2->tagged_validity;
else
edge1->tagged_validity =
isl_union_map_union(edge1->tagged_validity,
edge2->tagged_validity);
}
if (type == isl_edge_condition && !edge1->tagged_condition)
return -1;
if (type == isl_edge_conditional_validity && !edge1->tagged_validity)
return -1;
return 0;
}
/* Insert dummy tags in domain and range of "map".
*
* In particular, if "map" is of the form
*
* A -> B
*
* then return
*
* [A -> dummy_tag] -> [B -> dummy_tag]
*
* where the dummy_tags are identical and equal to any dummy tags
* introduced by any other call to this function.
*/
static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
{
static char dummy;
isl_ctx *ctx;
isl_id *id;
isl_space *space;
isl_set *domain, *range;
ctx = isl_map_get_ctx(map);
id = isl_id_alloc(ctx, NULL, &dummy);
space = isl_space_params(isl_map_get_space(map));
space = isl_space_set_from_params(space);
space = isl_space_set_tuple_id(space, isl_dim_set, id);
space = isl_space_map_from_set(space);
domain = isl_map_wrap(map);
range = isl_map_wrap(isl_map_universe(space));
map = isl_map_from_domain_and_range(domain, range);
map = isl_map_zip(map);
return map;
}
/* Given that at least one of "src" or "dst" is compressed, return
* a map between the spaces of these nodes restricted to the affine
* hull that was used in the compression.
*/
static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
struct isl_sched_node *dst)
{
isl_set *dom, *ran;
if (src->compressed)
dom = isl_set_copy(src->hull);
else
dom = isl_set_universe(isl_space_copy(src->space));
if (dst->compressed)
ran = isl_set_copy(dst->hull);
else
ran = isl_set_universe(isl_space_copy(dst->space));
return isl_map_from_domain_and_range(dom, ran);
}
/* Intersect the domains of the nested relations in domain and range
* of "tagged" with "map".
*/
static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
__isl_keep isl_map *map)
{
isl_set *set;
tagged = isl_map_zip(tagged);
set = isl_map_wrap(isl_map_copy(map));
tagged = isl_map_intersect_domain(tagged, set);
tagged = isl_map_zip(tagged);
return tagged;
}
/* Add a new edge to the graph based on the given map
* and add it to data->graph->edge_table[data->type].
* If a dependence relation of a given type happens to be identical
* to one of the dependence relations of a type that was added before,
* then we don't create a new edge, but instead mark the original edge
* as also representing a dependence of the current type.
*
* Edges of type isl_edge_condition or isl_edge_conditional_validity
* may be specified as "tagged" dependence relations. That is, "map"
* may contain elements (i -> a) -> (j -> b), where i -> j denotes
* the dependence on iterations and a and b are tags.
* edge->map is set to the relation containing the elements i -> j,
* while edge->tagged_condition and edge->tagged_validity contain
* the union of all the "map" relations
* for which extract_edge is called that result in the same edge->map.
*
* If the source or the destination node is compressed, then
* intersect both "map" and "tagged" with the constraints that
* were used to construct the compression.
* This ensures that there are no schedule constraints defined
* outside of these domains, while the scheduler no longer has
* any control over those outside parts.
*/
static isl_stat extract_edge(__isl_take isl_map *map, void *user)
{
isl_ctx *ctx = isl_map_get_ctx(map);
struct isl_extract_edge_data *data = user;
struct isl_sched_graph *graph = data->graph;
struct isl_sched_node *src, *dst;
isl_space *dim;
struct isl_sched_edge *edge;
isl_map *tagged = NULL;
if (data->type == isl_edge_condition ||
data->type == isl_edge_conditional_validity) {
if (isl_map_can_zip(map)) {
tagged = isl_map_copy(map);
map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
} else {
tagged = insert_dummy_tags(isl_map_copy(map));
}
}
dim = isl_space_domain(isl_map_get_space(map));
src = graph_find_node(ctx, graph, dim);
isl_space_free(dim);
dim = isl_space_range(isl_map_get_space(map));
dst = graph_find_node(ctx, graph, dim);
isl_space_free(dim);
if (!src || !dst) {
isl_map_free(map);
isl_map_free(tagged);
return isl_stat_ok;
}
if (src->compressed || dst->compressed) {
isl_map *hull;
hull = extract_hull(src, dst);
if (tagged)
tagged = map_intersect_domains(tagged, hull);
map = isl_map_intersect(map, hull);
}
graph->edge[graph->n_edge].src = src;
graph->edge[graph->n_edge].dst = dst;
graph->edge[graph->n_edge].map = map;
graph->edge[graph->n_edge].validity = 0;
graph->edge[graph->n_edge].coincidence = 0;
graph->edge[graph->n_edge].proximity = 0;
graph->edge[graph->n_edge].condition = 0;
graph->edge[graph->n_edge].local = 0;
graph->edge[graph->n_edge].conditional_validity = 0;
graph->edge[graph->n_edge].tagged_condition = NULL;
graph->edge[graph->n_edge].tagged_validity = NULL;
if (data->type == isl_edge_validity)
graph->edge[graph->n_edge].validity = 1;
if (data->type == isl_edge_coincidence)
graph->edge[graph->n_edge].coincidence = 1;
if (data->type == isl_edge_proximity)
graph->edge[graph->n_edge].proximity = 1;
if (data->type == isl_edge_condition) {
graph->edge[graph->n_edge].condition = 1;
graph->edge[graph->n_edge].tagged_condition =
isl_union_map_from_map(tagged);
}
if (data->type == isl_edge_conditional_validity) {
graph->edge[graph->n_edge].conditional_validity = 1;
graph->edge[graph->n_edge].tagged_validity =
isl_union_map_from_map(tagged);
}
edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
if (!edge) {
graph->n_edge++;
return isl_stat_error;
}
if (edge == &graph->edge[graph->n_edge])
return graph_edge_table_add(ctx, graph, data->type,
&graph->edge[graph->n_edge++]);
if (merge_edge(data->type, edge, &graph->edge[graph->n_edge]) < 0)
return -1;
return graph_edge_table_add(ctx, graph, data->type, edge);
}
/* Check whether there is any dependence from node[j] to node[i]
* or from node[i] to node[j].
*/
static isl_bool node_follows_weak(int i, int j, void *user)
{
isl_bool f;
struct isl_sched_graph *graph = user;
f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
if (f < 0 || f)
return f;
return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
}
/* Check whether there is a (conditional) validity dependence from node[j]
* to node[i], forcing node[i] to follow node[j].
*/
static isl_bool node_follows_strong(int i, int j, void *user)
{
struct isl_sched_graph *graph = user;
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
}
/* Use Tarjan's algorithm for computing the strongly connected components
* in the dependence graph (only validity edges).
* If weak is set, we consider the graph to be undirected and
* we effectively compute the (weakly) connected components.
* Additionally, we also consider other edges when weak is set.
*/
static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
{
int i, n;
struct isl_tarjan_graph *g = NULL;
g = isl_tarjan_graph_init(ctx, graph->n,
weak ? &node_follows_weak : &node_follows_strong, graph);
if (!g)
return -1;
graph->weak = weak;
graph->scc = 0;
i = 0;
n = graph->n;
while (n) {
while (g->order[i] != -1) {
graph->node[g->order[i]].scc = graph->scc;
--n;
++i;
}
++i;
graph->scc++;
}
isl_tarjan_graph_free(g);
return 0;
}
/* Apply Tarjan's algorithm to detect the strongly connected components
* in the dependence graph.
*/
static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
return detect_ccs(ctx, graph, 0);
}
/* Apply Tarjan's algorithm to detect the (weakly) connected components
* in the dependence graph.
*/
static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
return detect_ccs(ctx, graph, 1);
}
static int cmp_scc(const void *a, const void *b, void *data)
{
struct isl_sched_graph *graph = data;
const int *i1 = a;
const int *i2 = b;
return graph->node[*i1].scc - graph->node[*i2].scc;
}
/* Sort the elements of graph->sorted according to the corresponding SCCs.
*/
static int sort_sccs(struct isl_sched_graph *graph)
{
return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
}
/* Given a dependence relation R from "node" to itself,
* construct the set of coefficients of valid constraints for elements
* in that dependence relation.
* In particular, the result contains tuples of coefficients
* c_0, c_n, c_x such that
*
* c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
*
* or, equivalently,
*
* c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
*
* We choose here to compute the dual of delta R.
* Alternatively, we could have computed the dual of R, resulting
* in a set of tuples c_0, c_n, c_x, c_y, and then
* plugged in (c_0, c_n, c_x, -c_x).
*
* If "node" has been compressed, then the dependence relation
* is also compressed before the set of coefficients is computed.
*/
static __isl_give isl_basic_set *intra_coefficients(
struct isl_sched_graph *graph, struct isl_sched_node *node,
__isl_take isl_map *map)
{
isl_set *delta;
isl_map *key;
isl_basic_set *coef;
if (isl_map_to_basic_set_has(graph->intra_hmap, map))
return isl_map_to_basic_set_get(graph->intra_hmap, map);
key = isl_map_copy(map);
if (node->compressed) {
map = isl_map_preimage_domain_multi_aff(map,
isl_multi_aff_copy(node->decompress));
map = isl_map_preimage_range_multi_aff(map,
isl_multi_aff_copy(node->decompress));
}
delta = isl_set_remove_divs(isl_map_deltas(map));
coef = isl_set_coefficients(delta);
graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
isl_basic_set_copy(coef));
return coef;
}
/* Given a dependence relation R, construct the set of coefficients
* of valid constraints for elements in that dependence relation.
* In particular, the result contains tuples of coefficients
* c_0, c_n, c_x, c_y such that
*
* c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
*
* If the source or destination nodes of "edge" have been compressed,
* then the dependence relation is also compressed before
* the set of coefficients is computed.
*/
static __isl_give isl_basic_set *inter_coefficients(
struct isl_sched_graph *graph, struct isl_sched_edge *edge,
__isl_take isl_map *map)
{
isl_set *set;
isl_map *key;
isl_basic_set *coef;
if (isl_map_to_basic_set_has(graph->inter_hmap, map))
return isl_map_to_basic_set_get(graph->inter_hmap, map);
key = isl_map_copy(map);
if (edge->src->compressed)
map = isl_map_preimage_domain_multi_aff(map,
isl_multi_aff_copy(edge->src->decompress));
if (edge->dst->compressed)
map = isl_map_preimage_range_multi_aff(map,
isl_multi_aff_copy(edge->dst->decompress));
set = isl_map_wrap(isl_map_remove_divs(map));
coef = isl_set_coefficients(set);
graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
isl_basic_set_copy(coef));
return coef;
}
/* Add constraints to graph->lp that force validity for the given
* dependence from a node i to itself.
* That is, add constraints that enforce
*
* (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
* = c_i_x (y - x) >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
* where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
* In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
*
* Actually, we do not construct constraints for the c_i_x themselves,
* but for the coefficients of c_i_x written as a linear combination
* of the columns in node->cmap.
*/
static int add_intra_validity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
unsigned total;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, node, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
if (!coef)
goto error;
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, -1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, 1);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add constraints to graph->lp that force validity for the given
* dependence from node i to node j.
* That is, add constraints that enforce
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
* of valid constraints for R and then plug in
* (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
* c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
* where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
* In graph->lp, the c_*^- appear before their c_*^+ counterpart.
*
* Actually, we do not construct constraints for the c_*_x themselves,
* but for the coefficients of c_*_x written as a linear combination
* of the columns in node->cmap.
*/
static int add_inter_validity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
unsigned total;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, edge, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set) + src->nvar,
isl_mat_copy(dst->cmap));
if (!coef)
goto error;
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, -1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, 1);
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, 1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, -1);
edge->start = graph->lp->n_ineq;
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
if (!graph->lp)
goto error;
isl_space_free(dim);
edge->end = graph->lp->n_ineq;
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add constraints to graph->lp that bound the dependence distance for the given
* dependence from a node i to itself.
* If s = 1, we add the constraint
*
* c_i_x (y - x) <= m_0 + m_n n
*
* or
*
* -c_i_x (y - x) + m_0 + m_n n >= 0
*
* for each (x,y) in R.
* If s = -1, we add the constraint
*
* -c_i_x (y - x) <= m_0 + m_n n
*
* or
*
* c_i_x (y - x) + m_0 + m_n n >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
* with each coefficient (except m_0) represented as a pair of non-negative
* coefficients.
*
* Actually, we do not construct constraints for the c_i_x themselves,
* but for the coefficients of c_i_x written as a linear combination
* of the columns in node->cmap.
*
*
* If "local" is set, then we add constraints
*
* c_i_x (y - x) <= 0
*
* or
*
* -c_i_x (y - x) <= 0
*
* instead, forcing the dependence distance to be (less than or) equal to 0.
* That is, we plug in (0, 0, -s * c_i_x),
* Note that dependences marked local are treated as validity constraints
* by add_all_validity_constraints and therefore also have
* their distances bounded by 0 from below.
*/
static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, int s, int local)
{
unsigned total;
unsigned nparam;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, node, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
if (!coef)
goto error;
nparam = isl_space_dim(node->space, isl_dim_param);
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
if (!local) {
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
}
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, s);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, -s);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add constraints to graph->lp that bound the dependence distance for the given
* dependence from node i to node j.
* If s = 1, we add the constraint
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
* <= m_0 + m_n n
*
* or
*
* -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
* m_0 + m_n n >= 0
*
* for each (x,y) in R.
* If s = -1, we add the constraint
*
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
* <= m_0 + m_n n
*
* or
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
* m_0 + m_n n >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
* of valid constraints for R and then plug in
* (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
* -s*c_j_x+s*c_i_x)
* with each coefficient (except m_0, c_j_0 and c_i_0)
* represented as a pair of non-negative coefficients.
*
* Actually, we do not construct constraints for the c_*_x themselves,
* but for the coefficients of c_*_x written as a linear combination
* of the columns in node->cmap.
*
*
* If "local" is set, then we add constraints
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
*
* or
*
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
*
* instead, forcing the dependence distance to be (less than or) equal to 0.
* That is, we plug in
* (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
* Note that dependences marked local are treated as validity constraints
* by add_all_validity_constraints and therefore also have
* their distances bounded by 0 from below.
*/
static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, int s, int local)
{
unsigned total;
unsigned nparam;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, edge, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set) + src->nvar,
isl_mat_copy(dst->cmap));
if (!coef)
goto error;
nparam = isl_space_dim(src->space, isl_dim_param);
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
if (!local) {
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
}
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, s);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, -s);
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, -s);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, s);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add all validity constraints to graph->lp.
*
* An edge that is forced to be local needs to have its dependence
* distances equal to zero. We take care of bounding them by 0 from below
* here. add_all_proximity_constraints takes care of bounding them by 0
* from above.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int add_all_validity_constraints(struct isl_sched_graph *graph,
int use_coincidence)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
int local;
local = edge->local || (edge->coincidence && use_coincidence);
if (!edge->validity && !local)
continue;
if (edge->src != edge->dst)
continue;
if (add_intra_validity_constraints(graph, edge) < 0)
return -1;
}
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
int local;
local = edge->local || (edge->coincidence && use_coincidence);
if (!edge->validity && !local)
continue;
if (edge->src == edge->dst)
continue;
if (add_inter_validity_constraints(graph, edge) < 0)
return -1;
}
return 0;
}
/* Add constraints to graph->lp that bound the dependence distance
* for all dependence relations.
* If a given proximity dependence is identical to a validity
* dependence, then the dependence distance is already bounded
* from below (by zero), so we only need to bound the distance
* from above. (This includes the case of "local" dependences
* which are treated as validity dependence by add_all_validity_constraints.)
* Otherwise, we need to bound the distance both from above and from below.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int add_all_proximity_constraints(struct isl_sched_graph *graph,
int use_coincidence)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
int local;
local = edge->local || (edge->coincidence && use_coincidence);
if (!edge->proximity && !local)
continue;
if (edge->src == edge->dst &&
add_intra_proximity_constraints(graph, edge, 1, local) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_proximity_constraints(graph, edge, 1, local) < 0)
return -1;
if (edge->validity || local)
continue;
if (edge->src == edge->dst &&
add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
return -1;
}
return 0;
}
/* Compute a basis for the rows in the linear part of the schedule
* and extend this basis to a full basis. The remaining rows
* can then be used to force linear independence from the rows
* in the schedule.
*
* In particular, given the schedule rows S, we compute
*
* S = H Q
* S U = H
*
* with H the Hermite normal form of S. That is, all but the
* first rank columns of H are zero and so each row in S is
* a linear combination of the first rank rows of Q.
* The matrix Q is then transposed because we will write the
* coefficients of the next schedule row as a column vector s
* and express this s as a linear combination s = Q c of the
* computed basis.
* Similarly, the matrix U is transposed such that we can
* compute the coefficients c = U s from a schedule row s.
*/
static int node_update_cmap(struct isl_sched_node *node)
{
isl_mat *H, *U, *Q;
int n_row = isl_mat_rows(node->sched);
H = isl_mat_sub_alloc(node->sched, 0, n_row,
1 + node->nparam, node->nvar);
H = isl_mat_left_hermite(H, 0, &U, &Q);
isl_mat_free(node->cmap);
isl_mat_free(node->cinv);
node->cmap = isl_mat_transpose(Q);
node->cinv = isl_mat_transpose(U);
node->rank = isl_mat_initial_non_zero_cols(H);
isl_mat_free(H);
if (!node->cmap || !node->cinv || node->rank < 0)
return -1;
return 0;
}
/* How many times should we count the constraints in "edge"?
*
* If carry is set, then we are counting the number of
* (validity or conditional validity) constraints that will be added
* in setup_carry_lp and we count each edge exactly once.
*
* Otherwise, we count as follows
* validity -> 1 (>= 0)
* validity+proximity -> 2 (>= 0 and upper bound)
* proximity -> 2 (lower and upper bound)
* local(+any) -> 2 (>= 0 and <= 0)
*
* If an edge is only marked conditional_validity then it counts
* as zero since it is only checked afterwards.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
int use_coincidence)
{
if (carry && !edge->validity && !edge->conditional_validity)
return 0;
if (carry)
return 1;
if (edge->proximity || edge->local)
return 2;
if (use_coincidence && edge->coincidence)
return 2;
if (edge->validity)
return 1;
return 0;
}
/* Count the number of equality and inequality constraints
* that will be added for the given map.
*
* "use_coincidence" is set if we should take into account coincidence edges.
*/
static int count_map_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map,
int *n_eq, int *n_ineq, int carry, int use_coincidence)
{
isl_basic_set *coef;
int f = edge_multiplicity(edge, carry, use_coincidence);
if (f == 0) {
isl_map_free(map);
return 0;
}
if (edge->src == edge->dst)
coef = intra_coefficients(graph, edge->src, map);
else
coef = inter_coefficients(graph, edge, map);
if (!coef)
return -1;
*n_eq += f * coef->n_eq;
*n_ineq += f * coef->n_ineq;
isl_basic_set_free(coef);
return 0;
}
/* Count the number of equality and inequality constraints
* that will be added to the main lp problem.
* We count as follows
* validity -> 1 (>= 0)
* validity+proximity -> 2 (>= 0 and upper bound)
* proximity -> 2 (lower and upper bound)
* local(+any) -> 2 (>= 0 and <= 0)
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int count_constraints(struct isl_sched_graph *graph,
int *n_eq, int *n_ineq, int use_coincidence)
{
int i;
*n_eq = *n_ineq = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
isl_map *map = isl_map_copy(edge->map);
if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
0, use_coincidence) < 0)
return -1;
}
return 0;
}
/* Count the number of constraints that will be added by
* add_bound_coefficient_constraints and increment *n_eq and *n_ineq
* accordingly.
*
* In practice, add_bound_coefficient_constraints only adds inequalities.
*/
static int count_bound_coefficient_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
{
int i;
if (ctx->opt->schedule_max_coefficient == -1)
return 0;
for (i = 0; i < graph->n; ++i)
*n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
return 0;
}
/* Add constraints that bound the values of the variable and parameter
* coefficients of the schedule.
*
* The maximal value of the coefficients is defined by the option
* 'schedule_max_coefficient'.
*/
static int add_bound_coefficient_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i, j, k;
int max_coefficient;
int total;
max_coefficient = ctx->opt->schedule_max_coefficient;
if (max_coefficient == -1)
return 0;
total = isl_basic_set_total_dim(graph->lp);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
int dim;
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return -1;
dim = 1 + node->start + 1 + j;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][dim], -1);
isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
}
}
return 0;
}
/* Construct an ILP problem for finding schedule coefficients
* that result in non-negative, but small dependence distances
* over all dependences.
* In particular, the dependence distances over proximity edges
* are bounded by m_0 + m_n n and we compute schedule coefficients
* with small values (preferably zero) of m_n and m_0.
*
* All variables of the ILP are non-negative. The actual coefficients
* may be negative, so each coefficient is represented as the difference
* of two non-negative variables. The negative part always appears
* immediately before the positive part.
* Other than that, the variables have the following order
*
* - sum of positive and negative parts of m_n coefficients
* - m_0
* - sum of positive and negative parts of all c_n coefficients
* (unconstrained when computing non-parametric schedules)
* - sum of positive and negative parts of all c_x coefficients
* - positive and negative parts of m_n coefficients
* - for each node
* - c_i_0
* - positive and negative parts of c_i_n (if parametric)
* - positive and negative parts of c_i_x
*
* The c_i_x are not represented directly, but through the columns of
* node->cmap. That is, the computed values are for variable t_i_x
* such that c_i_x = Q t_i_x with Q equal to node->cmap.
*
* The constraints are those from the edges plus two or three equalities
* to express the sums.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
int use_coincidence)
{
int i, j;
int k;
unsigned nparam;
unsigned total;
isl_space *dim;
int parametric;
int param_pos;
int n_eq, n_ineq;
int max_constant_term;
max_constant_term = ctx->opt->schedule_max_constant_term;
parametric = ctx->opt->schedule_parametric;
nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
param_pos = 4;
total = param_pos + 2 * nparam;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
if (node_update_cmap(node) < 0)
return -1;
node->start = total;
total += 1 + 2 * (node->nparam + node->nvar);
}
if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
return -1;
if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
return -1;
dim = isl_space_set_alloc(ctx, 0, total);
isl_basic_set_free(graph->lp);
n_eq += 2 + parametric;
if (max_constant_term != -1)
n_ineq += graph->n;
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][1], -1);
for (i = 0; i < 2 * nparam; ++i)
isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
if (parametric) {
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][3], -1);
for (i = 0; i < graph->n; ++i) {
int pos = 1 + graph->node[i].start + 1;
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
}
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][4], -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = 1 + node->start + 1 + 2 * node->nparam;
for (j = 0; j < 2 * node->nvar; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
if (max_constant_term != -1)
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
}
if (add_bound_coefficient_constraints(ctx, graph) < 0)
return -1;
if (add_all_validity_constraints(graph, use_coincidence) < 0)
return -1;
if (add_all_proximity_constraints(graph, use_coincidence) < 0)
return -1;
return 0;
}
/* Analyze the conflicting constraint found by
* isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
* constraint of one of the edges between distinct nodes, living, moreover
* in distinct SCCs, then record the source and sink SCC as this may
* be a good place to cut between SCCs.
*/
static int check_conflict(int con, void *user)
{
int i;
struct isl_sched_graph *graph = user;
if (graph->src_scc >= 0)
return 0;
con -= graph->lp->n_eq;
if (con >= graph->lp->n_ineq)
return 0;
for (i = 0; i < graph->n_edge; ++i) {
if (!graph->edge[i].validity)
continue;
if (graph->edge[i].src == graph->edge[i].dst)
continue;
if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
continue;
if (graph->edge[i].start > con)
continue;
if (graph->edge[i].end <= con)
continue;
graph->src_scc = graph->edge[i].src->scc;
graph->dst_scc = graph->edge[i].dst->scc;
}
return 0;
}
/* Check whether the next schedule row of the given node needs to be
* non-trivial. Lower-dimensional domains may have some trivial rows,
* but as soon as the number of remaining required non-trivial rows
* is as large as the number or remaining rows to be computed,
* all remaining rows need to be non-trivial.
*/
static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
{
return node->nvar - node->rank >= graph->maxvar - graph->n_row;
}
/* Solve the ILP problem constructed in setup_lp.
* For each node such that all the remaining rows of its schedule
* need to be non-trivial, we construct a non-triviality region.
* This region imposes that the next row is independent of previous rows.
* In particular the coefficients c_i_x are represented by t_i_x
* variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
* its first columns span the rows of the previously computed part
* of the schedule. The non-triviality region enforces that at least
* one of the remaining components of t_i_x is non-zero, i.e.,
* that the new schedule row depends on at least one of the remaining
* columns of Q.
*/
static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
{
int i;
isl_vec *sol;
isl_basic_set *lp;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int skip = node->rank;
graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
if (needs_row(graph, node))
graph->region[i].len = 2 * (node->nvar - skip);
else
graph->region[i].len = 0;
}
lp = isl_basic_set_copy(graph->lp);
sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
graph->region, &check_conflict, graph);
return sol;
}
/* Update the schedules of all nodes based on the given solution
* of the LP problem.
* The new row is added to the current band.
* All possibly negative coefficients are encoded as a difference
* of two non-negative variables, so we need to perform the subtraction
* here. Moreover, if use_cmap is set, then the solution does
* not refer to the actual coefficients c_i_x, but instead to variables
* t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
* In this case, we then also need to perform this multiplication
* to obtain the values of c_i_x.
*
* If coincident is set, then the caller guarantees that the new
* row satisfies the coincidence constraints.
*/
static int update_schedule(struct isl_sched_graph *graph,
__isl_take isl_vec *sol, int use_cmap, int coincident)
{
int i, j;
isl_vec *csol = NULL;
if (!sol)
goto error;
if (sol->size == 0)
isl_die(sol->ctx, isl_error_internal,
"no solution found", goto error);
if (graph->n_total_row >= graph->max_row)
isl_die(sol->ctx, isl_error_internal,
"too many schedule rows", goto error);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = node->start;
int row = isl_mat_rows(node->sched);
isl_vec_free(csol);
csol = isl_vec_alloc(sol->ctx, node->nvar);
if (!csol)
goto error;
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_rows(node->sched, 1);
if (!node->sched)
goto error;
node->sched = isl_mat_set_element(node->sched, row, 0,
sol->el[1 + pos]);
for (j = 0; j < node->nparam + node->nvar; ++j)
isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
sol->el[1 + pos + 1 + 2 * j + 1],
sol->el[1 + pos + 1 + 2 * j]);
for (j = 0; j < node->nparam; ++j)
node->sched = isl_mat_set_element(node->sched,
row, 1 + j, sol->el[1+pos+1+2*j+1]);
for (j = 0; j < node->nvar; ++j)
isl_int_set(csol->el[j],
sol->el[1+pos+1+2*(node->nparam+j)+1]);
if (use_cmap)
csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
csol);
if (!csol)
goto error;
for (j = 0; j < node->nvar; ++j)
node->sched = isl_mat_set_element(node->sched,
row, 1 + node->nparam + j, csol->el[j]);
node->coincident[graph->n_total_row] = coincident;
}
isl_vec_free(sol);
isl_vec_free(csol);
graph->n_row++;
graph->n_total_row++;
return 0;
error:
isl_vec_free(sol);
isl_vec_free(csol);
return -1;
}
/* Convert row "row" of node->sched into an isl_aff living in "ls"
* and return this isl_aff.
*/
static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
struct isl_sched_node *node, int row)
{
int j;
isl_int v;
isl_aff *aff;
isl_int_init(v);
aff = isl_aff_zero_on_domain(ls);
isl_mat_get_element(node->sched, row, 0, &v);
aff = isl_aff_set_constant(aff, v);
for (j = 0; j < node->nparam; ++j) {
isl_mat_get_element(node->sched, row, 1 + j, &v);
aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
}
for (j = 0; j < node->nvar; ++j) {
isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
}
isl_int_clear(v);
return aff;
}
/* Convert the "n" rows starting at "first" of node->sched into a multi_aff
* and return this multi_aff.
*
* The result is defined over the uncompressed node domain.
*/
static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
struct isl_sched_node *node, int first, int n)
{
int i;
isl_space *space;
isl_local_space *ls;
isl_aff *aff;
isl_multi_aff *ma;
int nrow;
nrow = isl_mat_rows(node->sched);
if (node->compressed)
space = isl_multi_aff_get_domain_space(node->decompress);
else
space = isl_space_copy(node->space);
ls = isl_local_space_from_space(isl_space_copy(space));
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, n);
ma = isl_multi_aff_zero(space);
for (i = first; i < first + n; ++i) {
aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
ma = isl_multi_aff_set_aff(ma, i - first, aff);
}
isl_local_space_free(ls);
if (node->compressed)
ma = isl_multi_aff_pullback_multi_aff(ma,
isl_multi_aff_copy(node->compress));
return ma;
}
/* Convert node->sched into a multi_aff and return this multi_aff.
*
* The result is defined over the uncompressed node domain.
*/
static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
struct isl_sched_node *node)
{
int nrow;
nrow = isl_mat_rows(node->sched);
return node_extract_partial_schedule_multi_aff(node, 0, nrow);
}
/* Convert node->sched into a map and return this map.
*
* The result is cached in node->sched_map, which needs to be released
* whenever node->sched is updated.
* It is defined over the uncompressed node domain.
*/
static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
{
if (!node->sched_map) {
isl_multi_aff *ma;
ma = node_extract_schedule_multi_aff(node);
node->sched_map = isl_map_from_multi_aff(ma);
}
return isl_map_copy(node->sched_map);
}
/* Construct a map that can be used to update a dependence relation
* based on the current schedule.
* That is, construct a map expressing that source and sink
* are executed within the same iteration of the current schedule.
* This map can then be intersected with the dependence relation.
* This is not the most efficient way, but this shouldn't be a critical
* operation.
*/
static __isl_give isl_map *specializer(struct isl_sched_node *src,
struct isl_sched_node *dst)
{
isl_map *src_sched, *dst_sched;
src_sched = node_extract_schedule(src);
dst_sched = node_extract_schedule(dst);
return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
}
/* Intersect the domains of the nested relations in domain and range
* of "umap" with "map".
*/
static __isl_give isl_union_map *intersect_domains(
__isl_take isl_union_map *umap, __isl_keep isl_map *map)
{
isl_union_set *uset;
umap = isl_union_map_zip(umap);
uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
umap = isl_union_map_intersect_domain(umap, uset);
umap = isl_union_map_zip(umap);
return umap;
}
/* Update the dependence relation of the given edge based
* on the current schedule.
* If the dependence is carried completely by the current schedule, then
* it is removed from the edge_tables. It is kept in the list of edges
* as otherwise all edge_tables would have to be recomputed.
*/
static int update_edge(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
int empty;
isl_map *id;
id = specializer(edge->src, edge->dst);
edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
if (!edge->map)
goto error;
if (edge->tagged_condition) {
edge->tagged_condition =
intersect_domains(edge->tagged_condition, id);
if (!edge->tagged_condition)
goto error;
}
if (edge->tagged_validity) {
edge->tagged_validity =
intersect_domains(edge->tagged_validity, id);
if (!edge->tagged_validity)
goto error;
}
empty = isl_map_plain_is_empty(edge->map);
if (empty < 0)
goto error;
if (empty)
graph_remove_edge(graph, edge);
isl_map_free(id);
return 0;
error:
isl_map_free(id);
return -1;
}
/* Does the domain of "umap" intersect "uset"?
*/
static int domain_intersects(__isl_keep isl_union_map *umap,
__isl_keep isl_union_set *uset)
{
int empty;
umap = isl_union_map_copy(umap);
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
empty = isl_union_map_is_empty(umap);
isl_union_map_free(umap);
return empty < 0 ? -1 : !empty;
}
/* Does the range of "umap" intersect "uset"?
*/
static int range_intersects(__isl_keep isl_union_map *umap,
__isl_keep isl_union_set *uset)
{
int empty;
umap = isl_union_map_copy(umap);
umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
empty = isl_union_map_is_empty(umap);
isl_union_map_free(umap);
return empty < 0 ? -1 : !empty;
}
/* Are the condition dependences of "edge" local with respect to
* the current schedule?
*
* That is, are domain and range of the condition dependences mapped
* to the same point?
*
* In other words, is the condition false?
*/
static int is_condition_false(struct isl_sched_edge *edge)
{
isl_union_map *umap;
isl_map *map, *sched, *test;
int empty, local;
empty = isl_union_map_is_empty(edge->tagged_condition);
if (empty < 0 || empty)
return empty;
umap = isl_union_map_copy(edge->tagged_condition);
umap = isl_union_map_zip(umap);
umap = isl_union_set_unwrap(isl_union_map_domain(umap));
map = isl_map_from_union_map(umap);
sched = node_extract_schedule(edge->src);
map = isl_map_apply_domain(map, sched);
sched = node_extract_schedule(edge->dst);
map = isl_map_apply_range(map, sched);
test = isl_map_identity(isl_map_get_space(map));
local = isl_map_is_subset(map, test);
isl_map_free(map);
isl_map_free(test);
return local;
}
/* For each conditional validity constraint that is adjacent
* to a condition with domain in condition_source or range in condition_sink,
* turn it into an unconditional validity constraint.
*/
static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
__isl_take isl_union_set *condition_source,
__isl_take isl_union_set *condition_sink)
{
int i;
condition_source = isl_union_set_coalesce(condition_source);
condition_sink = isl_union_set_coalesce(condition_sink);
for (i = 0; i < graph->n_edge; ++i) {
int adjacent;
isl_union_map *validity;
if (!graph->edge[i].conditional_validity)
continue;
if (graph->edge[i].validity)
continue;
validity = graph->edge[i].tagged_validity;
adjacent = domain_intersects(validity, condition_sink);
if (adjacent >= 0 && !adjacent)
adjacent = range_intersects(validity, condition_source);
if (adjacent < 0)
goto error;
if (!adjacent)
continue;
graph->edge[i].validity = 1;
}
isl_union_set_free(condition_source);
isl_union_set_free(condition_sink);
return 0;
error:
isl_union_set_free(condition_source);
isl_union_set_free(condition_sink);
return -1;
}
/* Update the dependence relations of all edges based on the current schedule
* and enforce conditional validity constraints that are adjacent
* to satisfied condition constraints.
*
* First check if any of the condition constraints are satisfied
* (i.e., not local to the outer schedule) and keep track of
* their domain and range.
* Then update all dependence relations (which removes the non-local
* constraints).
* Finally, if any condition constraints turned out to be satisfied,
* then turn all adjacent conditional validity constraints into
* unconditional validity constraints.
*/
static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
int any = 0;
isl_union_set *source, *sink;
source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
for (i = 0; i < graph->n_edge; ++i) {
int local;
isl_union_set *uset;
isl_union_map *umap;
if (!graph->edge[i].condition)
continue;
if (graph->edge[i].local)
continue;
local = is_condition_false(&graph->edge[i]);
if (local < 0)
goto error;
if (local)
continue;
any = 1;
umap = isl_union_map_copy(graph->edge[i].tagged_condition);
uset = isl_union_map_domain(umap);
source = isl_union_set_union(source, uset);
umap = isl_union_map_copy(graph->edge[i].tagged_condition);
uset = isl_union_map_range(umap);
sink = isl_union_set_union(sink, uset);
}
for (i = graph->n_edge - 1; i >= 0; --i) {
if (update_edge(graph, &graph->edge[i]) < 0)
goto error;
}
if (any)
return unconditionalize_adjacent_validity(graph, source, sink);
isl_union_set_free(source);
isl_union_set_free(sink);
return 0;
error:
isl_union_set_free(source);
isl_union_set_free(sink);
return -1;
}
static void next_band(struct isl_sched_graph *graph)
{
graph->band_start = graph->n_total_row;
}
/* Return the union of the universe domains of the nodes in "graph"
* that satisfy "pred".
*/
static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
struct isl_sched_graph *graph,
int (*pred)(struct isl_sched_node *node, int data), int data)
{
int i;
isl_set *set;
isl_union_set *dom;
for (i = 0; i < graph->n; ++i)
if (pred(&graph->node[i], data))
break;
if (i >= graph->n)
isl_die(ctx, isl_error_internal,
"empty component", return NULL);
set = isl_set_universe(isl_space_copy(graph->node[i].space));
dom = isl_union_set_from_set(set);
for (i = i + 1; i < graph->n; ++i) {
if (!pred(&graph->node[i], data))
continue;
set = isl_set_universe(isl_space_copy(graph->node[i].space));
dom = isl_union_set_union(dom, isl_union_set_from_set(set));
}
return dom;
}
/* Return a list of unions of universe domains, where each element
* in the list corresponds to an SCC (or WCC) indexed by node->scc.
*/
static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i;
isl_union_set_list *filters;
filters = isl_union_set_list_alloc(ctx, graph->scc);
for (i = 0; i < graph->scc; ++i) {
isl_union_set *dom;
dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
filters = isl_union_set_list_add(filters, dom);
}
return filters;
}
/* Return a list of two unions of universe domains, one for the SCCs up
* to and including graph->src_scc and another for the other SCCS.
*/
static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
isl_union_set *dom;
isl_union_set_list *filters;
filters = isl_union_set_list_alloc(ctx, 2);
dom = isl_sched_graph_domain(ctx, graph,
&node_scc_at_most, graph->src_scc);
filters = isl_union_set_list_add(filters, dom);
dom = isl_sched_graph_domain(ctx, graph,
&node_scc_at_least, graph->src_scc + 1);
filters = isl_union_set_list_add(filters, dom);
return filters;
}
/* Copy nodes that satisfy node_pred from the src dependence graph
* to the dst dependence graph.
*/
static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
int (*node_pred)(struct isl_sched_node *node, int data), int data)
{
int i;
dst->n = 0;
for (i = 0; i < src->n; ++i) {
int j;
if (!node_pred(&src->node[i], data))
continue;
j = dst->n;
dst->node[j].space = isl_space_copy(src->node[i].space);
dst->node[j].compressed = src->node[i].compressed;
dst->node[j].hull = isl_set_copy(src->node[i].hull);
dst->node[j].compress =
isl_multi_aff_copy(src->node[i].compress);
dst->node[j].decompress =
isl_multi_aff_copy(src->node[i].decompress);
dst->node[j].nvar = src->node[i].nvar;
dst->node[j].nparam = src->node[i].nparam;
dst->node[j].sched = isl_mat_copy(src->node[i].sched);
dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
dst->node[j].coincident = src->node[i].coincident;
dst->n++;
if (!dst->node[j].space || !dst->node[j].sched)
return -1;
if (dst->node[j].compressed &&
(!dst->node[j].hull || !dst->node[j].compress ||
!dst->node[j].decompress))
return -1;
}
return 0;
}
/* Copy non-empty edges that satisfy edge_pred from the src dependence graph
* to the dst dependence graph.
* If the source or destination node of the edge is not in the destination
* graph, then it must be a backward proximity edge and it should simply
* be ignored.
*/
static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
struct isl_sched_graph *src,
int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
{
int i;
enum isl_edge_type t;
dst->n_edge = 0;
for (i = 0; i < src->n_edge; ++i) {
struct isl_sched_edge *edge = &src->edge[i];
isl_map *map;
isl_union_map *tagged_condition;
isl_union_map *tagged_validity;
struct isl_sched_node *dst_src, *dst_dst;
if (!edge_pred(edge, data))
continue;
if (isl_map_plain_is_empty(edge->map))
continue;
dst_src = graph_find_node(ctx, dst, edge->src->space);
dst_dst = graph_find_node(ctx, dst, edge->dst->space);
if (!dst_src || !dst_dst) {
if (edge->validity || edge->conditional_validity)
isl_die(ctx, isl_error_internal,
"backward (conditional) validity edge",
return -1);
continue;
}
map = isl_map_copy(edge->map);
tagged_condition = isl_union_map_copy(edge->tagged_condition);
tagged_validity = isl_union_map_copy(edge->tagged_validity);
dst->edge[dst->n_edge].src = dst_src;
dst->edge[dst->n_edge].dst = dst_dst;
dst->edge[dst->n_edge].map = map;
dst->edge[dst->n_edge].tagged_condition = tagged_condition;
dst->edge[dst->n_edge].tagged_validity = tagged_validity;
dst->edge[dst->n_edge].validity = edge->validity;
dst->edge[dst->n_edge].proximity = edge->proximity;
dst->edge[dst->n_edge].coincidence = edge->coincidence;
dst->edge[dst->n_edge].condition = edge->condition;
dst->edge[dst->n_edge].conditional_validity =
edge->conditional_validity;
dst->n_edge++;
if (edge->tagged_condition && !tagged_condition)
return -1;
if (edge->tagged_validity && !tagged_validity)
return -1;
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
if (edge !=
graph_find_edge(src, t, edge->src, edge->dst))
continue;
if (graph_edge_table_add(ctx, dst, t,
&dst->edge[dst->n_edge - 1]) < 0)
return -1;
}
}
return 0;
}
/* Compute the maximal number of variables over all nodes.
* This is the maximal number of linearly independent schedule
* rows that we need to compute.
* Just in case we end up in a part of the dependence graph
* with only lower-dimensional domains, we make sure we will
* compute the required amount of extra linearly independent rows.
*/
static int compute_maxvar(struct isl_sched_graph *graph)
{
int i;
graph->maxvar = 0;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int nvar;
if (node_update_cmap(node) < 0)
return -1;
nvar = node->nvar + graph->n_row - node->rank;
if (nvar > graph->maxvar)
graph->maxvar = nvar;
}
return 0;
}
static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
struct isl_sched_graph *graph);
static __isl_give isl_schedule_node *compute_schedule_wcc(
isl_schedule_node *node, struct isl_sched_graph *graph);
/* Compute a schedule for a subgraph of "graph". In particular, for
* the graph composed of nodes that satisfy node_pred and edges that
* that satisfy edge_pred. The caller should precompute the number
* of nodes and edges that satisfy these predicates and pass them along
* as "n" and "n_edge".
* If the subgraph is known to consist of a single component, then wcc should
* be set and then we call compute_schedule_wcc on the constructed subgraph.
* Otherwise, we call compute_schedule, which will check whether the subgraph
* is connected.
*
* The schedule is inserted at "node" and the updated schedule node
* is returned.
*/
static __isl_give isl_schedule_node *compute_sub_schedule(
__isl_take isl_schedule_node *node, isl_ctx *ctx,
struct isl_sched_graph *graph, int n, int n_edge,
int (*node_pred)(struct isl_sched_node *node, int data),
int (*edge_pred)(struct isl_sched_edge *edge, int data),
int data, int wcc)
{
struct isl_sched_graph split = { 0 };
int t;
if (graph_alloc(ctx, &split, n, n_edge) < 0)
goto error;
if (copy_nodes(&split, graph, node_pred, data) < 0)
goto error;
if (graph_init_table(ctx, &split) < 0)
goto error;
for (t = 0; t <= isl_edge_last; ++t)
split.max_edge[t] = graph->max_edge[t];
if (graph_init_edge_tables(ctx, &split) < 0)
goto error;
if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
goto error;
split.n_row = graph->n_row;
split.max_row = graph->max_row;
split.n_total_row = graph->n_total_row;
split.band_start = graph->band_start;
if (wcc)
node = compute_schedule_wcc(node, &split);
else
node = compute_schedule(node, &split);
graph_free(ctx, &split);
return node;
error:
graph_free(ctx, &split);
return isl_schedule_node_free(node);
}
static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
{
return edge->src->scc == scc && edge->dst->scc == scc;
}
static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
{
return edge->dst->scc <= scc;
}
static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
{
return edge->src->scc >= scc;
}
/* Reset the current band by dropping all its schedule rows.
*/
static int reset_band(struct isl_sched_graph *graph)
{
int i;
int drop;
drop = graph->n_total_row - graph->band_start;
graph->n_total_row -= drop;
graph->n_row -= drop;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_drop_rows(node->sched,
graph->band_start, drop);
if (!node->sched)
return -1;
}
return 0;
}
/* Split the current graph into two parts and compute a schedule for each
* part individually. In particular, one part consists of all SCCs up
* to and including graph->src_scc, while the other part contains the other
* SCCS. The split is enforced by a sequence node inserted at position "node"
* in the schedule tree. Return the updated schedule node.
*
* The current band is reset. It would be possible to reuse
* the previously computed rows as the first rows in the next
* band, but recomputing them may result in better rows as we are looking
* at a smaller part of the dependence graph.
*/
static __isl_give isl_schedule_node *compute_split_schedule(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
int i, n, e1, e2;
isl_ctx *ctx;
isl_union_set_list *filters;
if (!node)
return NULL;
if (reset_band(graph) < 0)
return isl_schedule_node_free(node);
n = 0;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int before = node->scc <= graph->src_scc;
if (before)
n++;
}
e1 = e2 = 0;
for (i = 0; i < graph->n_edge; ++i) {
if (graph->edge[i].dst->scc <= graph->src_scc)
e1++;
if (graph->edge[i].src->scc > graph->src_scc)
e2++;
}
next_band(graph);
ctx = isl_schedule_node_get_ctx(node);
filters = extract_split(ctx, graph);
node = isl_schedule_node_insert_sequence(node, filters);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_child(node, 0);
node = compute_sub_schedule(node, ctx, graph, n, e1,
&node_scc_at_most, &edge_dst_scc_at_most,
graph->src_scc, 0);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_next_sibling(node);
node = isl_schedule_node_child(node, 0);
node = compute_sub_schedule(node, ctx, graph, graph->n - n, e2,
&node_scc_at_least, &edge_src_scc_at_least,
graph->src_scc + 1, 0);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
return node;
}
/* Insert a band node at position "node" in the schedule tree corresponding
* to the current band in "graph". Mark the band node permutable
* if "permutable" is set.
* The partial schedules and the coincidence property are extracted
* from the graph nodes.
* Return the updated schedule node.
*/
static __isl_give isl_schedule_node *insert_current_band(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
int permutable)
{
int i;
int start, end, n;
isl_multi_aff *ma;
isl_multi_pw_aff *mpa;
isl_multi_union_pw_aff *mupa;
if (!node)
return NULL;
if (graph->n < 1)
isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
"graph should have at least one node",
return isl_schedule_node_free(node));
start = graph->band_start;
end = graph->n_total_row;
n = end - start;
ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
mpa = isl_multi_pw_aff_from_multi_aff(ma);
mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
for (i = 1; i < graph->n; ++i) {
isl_multi_union_pw_aff *mupa_i;
ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
start, n);
mpa = isl_multi_pw_aff_from_multi_aff(ma);
mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
}
node = isl_schedule_node_insert_partial_schedule(node, mupa);
for (i = 0; i < n; ++i)
node = isl_schedule_node_band_member_set_coincident(node, i,
graph->node[0].coincident[start + i]);
node = isl_schedule_node_band_set_permutable(node, permutable);
return node;
}
/* Update the dependence relations based on the current schedule,
* add the current band to "node" and then continue with the computation
* of the next band.
* Return the updated schedule node.
*/
static __isl_give isl_schedule_node *compute_next_band(
__isl_take isl_schedule_node *node,
struct isl_sched_graph *graph, int permutable)
{
isl_ctx *ctx;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (update_edges(ctx, graph) < 0)
return isl_schedule_node_free(node);
node = insert_current_band(node, graph, permutable);
next_band(graph);
node = isl_schedule_node_child(node, 0);
node = compute_schedule(node, graph);
node = isl_schedule_node_parent(node);
return node;
}
/* Add constraints to graph->lp that force the dependence "map" (which
* is part of the dependence relation of "edge")
* to be respected and attempt to carry it, where the edge is one from
* a node j to itself. "pos" is the sequence number of the given map.
* That is, add constraints that enforce
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
* = c_j_x (y - x) >= e_i
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
* with each coefficient in c_j_x represented as a pair of non-negative
* coefficients.
*/
static int add_intra_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
{
unsigned total;
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, node, map);
if (!coef)
return -1;
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, -1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, 1);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
}
/* Add constraints to graph->lp that force the dependence "map" (which
* is part of the dependence relation of "edge")
* to be respected and attempt to carry it, where the edge is one from
* node j to node k. "pos" is the sequence number of the given map.
* That is, add constraints that enforce
*
* (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for R and then plug in
* (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
* with each coefficient (except e_i, c_k_0 and c_j_0)
* represented as a pair of non-negative coefficients.
*/
static int add_inter_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
{
unsigned total;
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, edge, map);
if (!coef)
return -1;
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, -1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, 1);
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, 1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, -1);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
}
/* Add constraints to graph->lp that force all (conditional) validity
* dependences to be respected and attempt to carry them.
*/
static int add_all_constraints(struct isl_sched_graph *graph)
{
int i, j;
int pos;
pos = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
if (!edge->validity && !edge->conditional_validity)
continue;
for (j = 0; j < edge->map->n; ++j) {
isl_basic_map *bmap;
isl_map *map;
bmap = isl_basic_map_copy(edge->map->p[j]);
map = isl_map_from_basic_map(bmap);
if (edge->src == edge->dst &&
add_intra_constraints(graph, edge, map, pos) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_constraints(graph, edge, map, pos) < 0)
return -1;
++pos;
}
}
return 0;
}
/* Count the number of equality and inequality constraints
* that will be added to the carry_lp problem.
* We count each edge exactly once.
*/
static int count_all_constraints(struct isl_sched_graph *graph,
int *n_eq, int *n_ineq)
{
int i, j;
*n_eq = *n_ineq = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
for (j = 0; j < edge->map->n; ++j) {
isl_basic_map *bmap;
isl_map *map;
bmap = isl_basic_map_copy(edge->map->p[j]);
map = isl_map_from_basic_map(bmap);
if (count_map_constraints(graph, edge, map,
n_eq, n_ineq, 1, 0) < 0)
return -1;
}
}
return 0;
}
/* Construct an LP problem for finding schedule coefficients
* such that the schedule carries as many dependences as possible.
* In particular, for each dependence i, we bound the dependence distance
* from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
* of all e_i's. Dependences with e_i = 0 in the solution are simply
* respected, while those with e_i > 0 (in practice e_i = 1) are carried.
* Note that if the dependence relation is a union of basic maps,
* then we have to consider each basic map individually as it may only
* be possible to carry the dependences expressed by some of those
* basic maps and not all of them.
* Below, we consider each of those basic maps as a separate "edge".
*
* All variables of the LP are non-negative. The actual coefficients
* may be negative, so each coefficient is represented as the difference
* of two non-negative variables. The negative part always appears
* immediately before the positive part.
* Other than that, the variables have the following order
*
* - sum of (1 - e_i) over all edges
* - sum of positive and negative parts of all c_n coefficients
* (unconstrained when computing non-parametric schedules)
* - sum of positive and negative parts of all c_x coefficients
* - for each edge
* - e_i
* - for each node
* - c_i_0
* - positive and negative parts of c_i_n (if parametric)
* - positive and negative parts of c_i_x
*
* The constraints are those from the (validity) edges plus three equalities
* to express the sums and n_edge inequalities to express e_i <= 1.
*/
static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i, j;
int k;
isl_space *dim;
unsigned total;
int n_eq, n_ineq;
int n_edge;
n_edge = 0;
for (i = 0; i < graph->n_edge; ++i)
n_edge += graph->edge[i].map->n;
total = 3 + n_edge;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
node->start = total;
total += 1 + 2 * (node->nparam + node->nvar);
}
if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
return -1;
dim = isl_space_set_alloc(ctx, 0, total);
isl_basic_set_free(graph->lp);
n_eq += 3;
n_ineq += n_edge;
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
graph->lp = isl_basic_set_set_rational(graph->lp);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][0], -n_edge);
isl_int_set_si(graph->lp->eq[k][1], 1);
for (i = 0; i < n_edge; ++i)
isl_int_set_si(graph->lp->eq[k][4 + i], 1);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][2], -1);
for (i = 0; i < graph->n; ++i) {
int pos = 1 + graph->node[i].start + 1;
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][3], -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = 1 + node->start + 1 + 2 * node->nparam;
for (j = 0; j < 2 * node->nvar; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
for (i = 0; i < n_edge; ++i) {
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
isl_int_set_si(graph->lp->ineq[k][0], 1);
}
if (add_all_constraints(graph) < 0)
return -1;
return 0;
}
static __isl_give isl_schedule_node *compute_component_schedule(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
int wcc);
/* Comparison function for sorting the statements based on
* the corresponding value in "r".
*/
static int smaller_value(const void *a, const void *b, void *data)
{
isl_vec *r = data;
const int *i1 = a;
const int *i2 = b;
return isl_int_cmp(r->el[*i1], r->el[*i2]);
}
/* If the schedule_split_scaled option is set and if the linear
* parts of the scheduling rows for all nodes in the graphs have
* a non-trivial common divisor, then split off the remainder of the
* constant term modulo this common divisor from the linear part.
* Otherwise, insert a band node directly and continue with
* the construction of the schedule.
*
* If a non-trivial common divisor is found, then
* the linear part is reduced and the remainder is enforced
* by a sequence node with the children placed in the order
* of this remainder.
* In particular, we assign an scc index based on the remainder and
* then rely on compute_component_schedule to insert the sequence and
* to continue the schedule construction on each part.
*/
static __isl_give isl_schedule_node *split_scaled(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
int i;
int row;
int scc;
isl_ctx *ctx;
isl_int gcd, gcd_i;
isl_vec *r;
int *order;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (!ctx->opt->schedule_split_scaled)
return compute_next_band(node, graph, 0);
if (graph->n <= 1)
return compute_next_band(node, graph, 0);
isl_int_init(gcd);
isl_int_init(gcd_i);
isl_int_set_si(gcd, 0);
row = isl_mat_rows(graph->node[0].sched) - 1;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int cols = isl_mat_cols(node->sched);
isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
isl_int_gcd(gcd, gcd, gcd_i);
}
isl_int_clear(gcd_i);
if (isl_int_cmp_si(gcd, 1) <= 0) {
isl_int_clear(gcd);
return compute_next_band(node, graph, 0);
}
r = isl_vec_alloc(ctx, graph->n);
order = isl_calloc_array(ctx, int, graph->n);
if (!r || !order)
goto error;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
order[i] = i;
isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
isl_int_fdiv_q(node->sched->row[row][0],
node->sched->row[row][0], gcd);
isl_int_mul(node->sched->row[row][0],
node->sched->row[row][0], gcd);
node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
if (!node->sched)
goto error;
}
if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
goto error;
scc = 0;
for (i = 0; i < graph->n; ++i) {
if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
++scc;
graph->node[order[i]].scc = scc;
}
graph->scc = ++scc;
graph->weak = 0;
isl_int_clear(gcd);
isl_vec_free(r);
free(order);
if (update_edges(ctx, graph) < 0)
return isl_schedule_node_free(node);
node = insert_current_band(node, graph, 0);
next_band(graph);
node = isl_schedule_node_child(node, 0);
node = compute_component_schedule(node, graph, 0);
node = isl_schedule_node_parent(node);
return node;
error:
isl_vec_free(r);
free(order);
isl_int_clear(gcd);
return isl_schedule_node_free(node);
}
/* Is the schedule row "sol" trivial on node "node"?
* That is, is the solution zero on the dimensions orthogonal to
* the previously found solutions?
* Return 1 if the solution is trivial, 0 if it is not and -1 on error.
*
* Each coefficient is represented as the difference between
* two non-negative values in "sol". "sol" has been computed
* in terms of the original iterators (i.e., without use of cmap).
* We construct the schedule row s and write it as a linear
* combination of (linear combinations of) previously computed schedule rows.
* s = Q c or c = U s.
* If the final entries of c are all zero, then the solution is trivial.
*/
static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
{
int i;
int pos;
int trivial;
isl_ctx *ctx;
isl_vec *node_sol;
if (!sol)
return -1;
if (node->nvar == node->rank)
return 0;
ctx = isl_vec_get_ctx(sol);
node_sol = isl_vec_alloc(ctx, node->nvar);
if (!node_sol)
return -1;
pos = 1 + node->start + 1 + 2 * node->nparam;
for (i = 0; i < node->nvar; ++i)
isl_int_sub(node_sol->el[i],
sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
if (!node_sol)
return -1;
trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
node->nvar - node->rank) == -1;
isl_vec_free(node_sol);
return trivial;
}
/* Is the schedule row "sol" trivial on any node where it should
* not be trivial?
* "sol" has been computed in terms of the original iterators
* (i.e., without use of cmap).
* Return 1 if any solution is trivial, 0 if they are not and -1 on error.
*/
static int is_any_trivial(struct isl_sched_graph *graph,
__isl_keep isl_vec *sol)
{
int i;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int trivial;
if (!needs_row(graph, node))
continue;
trivial = is_trivial(node, sol);
if (trivial < 0 || trivial)
return trivial;
}
return 0;
}
/* Construct a schedule row for each node such that as many dependences
* as possible are carried and then continue with the next band.
*
* If the computed schedule row turns out to be trivial on one or
* more nodes where it should not be trivial, then we throw it away
* and try again on each component separately.
*
* If there is only one component, then we accept the schedule row anyway,
* but we do not consider it as a complete row and therefore do not
* increment graph->n_row. Note that the ranks of the nodes that
* do get a non-trivial schedule part will get updated regardless and
* graph->maxvar is computed based on these ranks. The test for
* whether more schedule rows are required in compute_schedule_wcc
* is therefore not affected.
*
* Insert a band corresponding to the schedule row at position "node"
* of the schedule tree and continue with the construction of the schedule.
* This insertion and the continued construction is performed by split_scaled
* after optionally checking for non-trivial common divisors.
*/
static __isl_give isl_schedule_node *carry_dependences(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
int i;
int n_edge;
int trivial;
isl_ctx *ctx;
isl_vec *sol;
isl_basic_set *lp;
if (!node)
return NULL;
n_edge = 0;
for (i = 0; i < graph->n_edge; ++i)
n_edge += graph->edge[i].map->n;
ctx = isl_schedule_node_get_ctx(node);
if (setup_carry_lp(ctx, graph) < 0)
return isl_schedule_node_free(node);
lp = isl_basic_set_copy(graph->lp);
sol = isl_tab_basic_set_non_neg_lexmin(lp);
if (!sol)
return isl_schedule_node_free(node);
if (sol->size == 0) {
isl_vec_free(sol);
isl_die(ctx, isl_error_internal,
"error in schedule construction",
return isl_schedule_node_free(node));
}
isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
isl_vec_free(sol);
isl_die(ctx, isl_error_unknown,
"unable to carry dependences",
return isl_schedule_node_free(node));
}
trivial = is_any_trivial(graph, sol);
if (trivial < 0) {
sol = isl_vec_free(sol);
} else if (trivial && graph->scc > 1) {
isl_vec_free(sol);
return compute_component_schedule(node, graph, 1);
}
if (update_schedule(graph, sol, 0, 0) < 0)
return isl_schedule_node_free(node);
if (trivial)
graph->n_row--;
return split_scaled(node, graph);
}
/* Topologically sort statements mapped to the same schedule iteration
* and add insert a sequence node in front of "node"
* corresponding to this order.
*
* If it turns out to be impossible to sort the statements apart,
* because different dependences impose different orderings
* on the statements, then we extend the schedule such that
* it carries at least one more dependence.
*/
static __isl_give isl_schedule_node *sort_statements(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
isl_ctx *ctx;
isl_union_set_list *filters;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (graph->n < 1)
isl_die(ctx, isl_error_internal,
"graph should have at least one node",
return isl_schedule_node_free(node));
if (graph->n == 1)
return node;
if (update_edges(ctx, graph) < 0)
return isl_schedule_node_free(node);
if (graph->n_edge == 0)
return node;
if (detect_sccs(ctx, graph) < 0)
return isl_schedule_node_free(node);
next_band(graph);
if (graph->scc < graph->n)
return carry_dependences(node, graph);
filters = extract_sccs(ctx, graph);
node = isl_schedule_node_insert_sequence(node, filters);
return node;
}
/* Are there any (non-empty) (conditional) validity edges in the graph?
*/
static int has_validity_edges(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
int empty;
empty = isl_map_plain_is_empty(graph->edge[i].map);
if (empty < 0)
return -1;
if (empty)
continue;
if (graph->edge[i].validity ||
graph->edge[i].conditional_validity)
return 1;
}
return 0;
}
/* Should we apply a Feautrier step?
* That is, did the user request the Feautrier algorithm and are
* there any validity dependences (left)?
*/
static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
{
if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
return 0;
return has_validity_edges(graph);
}
/* Compute a schedule for a connected dependence graph using Feautrier's
* multi-dimensional scheduling algorithm and return the updated schedule node.
*
* The original algorithm is described in [1].
* The main idea is to minimize the number of scheduling dimensions, by
* trying to satisfy as many dependences as possible per scheduling dimension.
*
* [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
* Problem, Part II: Multi-Dimensional Time.
* In Intl. Journal of Parallel Programming, 1992.
*/
static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
isl_schedule_node *node, struct isl_sched_graph *graph)
{
return carry_dependences(node, graph);
}
/* Turn off the "local" bit on all (condition) edges.
*/
static void clear_local_edges(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i)
if (graph->edge[i].condition)
graph->edge[i].local = 0;
}
/* Does "graph" have both condition and conditional validity edges?
*/
static int need_condition_check(struct isl_sched_graph *graph)
{
int i;
int any_condition = 0;
int any_conditional_validity = 0;
for (i = 0; i < graph->n_edge; ++i) {
if (graph->edge[i].condition)
any_condition = 1;
if (graph->edge[i].conditional_validity)
any_conditional_validity = 1;
}
return any_condition && any_conditional_validity;
}
/* Does "graph" contain any coincidence edge?
*/
static int has_any_coincidence(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i)
if (graph->edge[i].coincidence)
return 1;
return 0;
}
/* Extract the final schedule row as a map with the iteration domain
* of "node" as domain.
*/
static __isl_give isl_map *final_row(struct isl_sched_node *node)
{
isl_local_space *ls;
isl_aff *aff;
int row;
row = isl_mat_rows(node->sched) - 1;
ls = isl_local_space_from_space(isl_space_copy(node->space));
aff = extract_schedule_row(ls, node, row);
return isl_map_from_aff(aff);
}
/* Is the conditional validity dependence in the edge with index "edge_index"
* violated by the latest (i.e., final) row of the schedule?
* That is, is i scheduled after j
* for any conditional validity dependence i -> j?
*/
static int is_violated(struct isl_sched_graph *graph, int edge_index)
{
isl_map *src_sched, *dst_sched, *map;
struct isl_sched_edge *edge = &graph->edge[edge_index];
int empty;
src_sched = final_row(edge->src);
dst_sched = final_row(edge->dst);
map = isl_map_copy(edge->map);
map = isl_map_apply_domain(map, src_sched);
map = isl_map_apply_range(map, dst_sched);
map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
empty = isl_map_is_empty(map);
isl_map_free(map);
if (empty < 0)
return -1;
return !empty;
}
/* Does "graph" have any satisfied condition edges that
* are adjacent to the conditional validity constraint with
* domain "conditional_source" and range "conditional_sink"?
*
* A satisfied condition is one that is not local.
* If a condition was forced to be local already (i.e., marked as local)
* then there is no need to check if it is in fact local.
*
* Additionally, mark all adjacent condition edges found as local.
*/
static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
__isl_keep isl_union_set *conditional_source,
__isl_keep isl_union_set *conditional_sink)
{
int i;
int any = 0;
for (i = 0; i < graph->n_edge; ++i) {
int adjacent, local;
isl_union_map *condition;
if (!graph->edge[i].condition)
continue;
if (graph->edge[i].local)
continue;
condition = graph->edge[i].tagged_condition;
adjacent = domain_intersects(condition, conditional_sink);
if (adjacent >= 0 && !adjacent)
adjacent = range_intersects(condition,
conditional_source);
if (adjacent < 0)
return -1;
if (!adjacent)
continue;
graph->edge[i].local = 1;
local = is_condition_false(&graph->edge[i]);
if (local < 0)
return -1;
if (!local)
any = 1;
}
return any;
}
/* Are there any violated conditional validity dependences with
* adjacent condition dependences that are not local with respect
* to the current schedule?
* That is, is the conditional validity constraint violated?
*
* Additionally, mark all those adjacent condition dependences as local.
* We also mark those adjacent condition dependences that were not marked
* as local before, but just happened to be local already. This ensures
* that they remain local if the schedule is recomputed.
*
* We first collect domain and range of all violated conditional validity
* dependences and then check if there are any adjacent non-local
* condition dependences.
*/
static int has_violated_conditional_constraint(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i;
int any = 0;
isl_union_set *source, *sink;
source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
for (i = 0; i < graph->n_edge; ++i) {
isl_union_set *uset;
isl_union_map *umap;
int violated;
if (!graph->edge[i].conditional_validity)
continue;
violated = is_violated(graph, i);
if (violated < 0)
goto error;
if (!violated)
continue;
any = 1;
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
uset = isl_union_map_domain(umap);
source = isl_union_set_union(source, uset);
source = isl_union_set_coalesce(source);
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
uset = isl_union_map_range(umap);
sink = isl_union_set_union(sink, uset);
sink = isl_union_set_coalesce(sink);
}
if (any)
any = has_adjacent_true_conditions(graph, source, sink);
isl_union_set_free(source);
isl_union_set_free(sink);
return any;
error:
isl_union_set_free(source);
isl_union_set_free(sink);
return -1;
}
/* Compute a schedule for a connected dependence graph and return
* the updated schedule node.
*
* We try to find a sequence of as many schedule rows as possible that result
* in non-negative dependence distances (independent of the previous rows
* in the sequence, i.e., such that the sequence is tilable), with as
* many of the initial rows as possible satisfying the coincidence constraints.
* If we can't find any more rows we either
* - split between SCCs and start over (assuming we found an interesting
* pair of SCCs between which to split)
* - continue with the next band (assuming the current band has at least
* one row)
* - try to carry as many dependences as possible and continue with the next
* band
* In each case, we first insert a band node in the schedule tree
* if any rows have been computed.
*
* If Feautrier's algorithm is selected, we first recursively try to satisfy
* as many validity dependences as possible. When all validity dependences
* are satisfied we extend the schedule to a full-dimensional schedule.
*
* If we manage to complete the schedule, we insert a band node
* (if any schedule rows were computed) and we finish off by topologically
* sorting the statements based on the remaining dependences.
*
* If ctx->opt->schedule_outer_coincidence is set, then we force the
* outermost dimension to satisfy the coincidence constraints. If this
* turns out to be impossible, we fall back on the general scheme above
* and try to carry as many dependences as possible.
*
* If "graph" contains both condition and conditional validity dependences,
* then we need to check that that the conditional schedule constraint
* is satisfied, i.e., there are no violated conditional validity dependences
* that are adjacent to any non-local condition dependences.
* If there are, then we mark all those adjacent condition dependences
* as local and recompute the current band. Those dependences that
* are marked local will then be forced to be local.
* The initial computation is performed with no dependences marked as local.
* If we are lucky, then there will be no violated conditional validity
* dependences adjacent to any non-local condition dependences.
* Otherwise, we mark some additional condition dependences as local and
* recompute. We continue this process until there are no violations left or
* until we are no longer able to compute a schedule.
* Since there are only a finite number of dependences,
* there will only be a finite number of iterations.
*/
static __isl_give isl_schedule_node *compute_schedule_wcc(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
int has_coincidence;
int use_coincidence;
int force_coincidence = 0;
int check_conditional;
int insert;
isl_ctx *ctx;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (detect_sccs(ctx, graph) < 0)
return isl_schedule_node_free(node);
if (sort_sccs(graph) < 0)
return isl_schedule_node_free(node);
if (compute_maxvar(graph) < 0)
return isl_schedule_node_free(node);
if (need_feautrier_step(ctx, graph))
return compute_schedule_wcc_feautrier(node, graph);
clear_local_edges(graph);
check_conditional = need_condition_check(graph);
has_coincidence = has_any_coincidence(graph);
if (ctx->opt->schedule_outer_coincidence)
force_coincidence = 1;
use_coincidence = has_coincidence;
while (graph->n_row < graph->maxvar) {
isl_vec *sol;
int violated;
int coincident;
graph->src_scc = -1;
graph->dst_scc = -1;
if (setup_lp(ctx, graph, use_coincidence) < 0)
return isl_schedule_node_free(node);
sol = solve_lp(graph);
if (!sol)
return isl_schedule_node_free(node);
if (sol->size == 0) {
int empty = graph->n_total_row == graph->band_start;
isl_vec_free(sol);
if (use_coincidence && (!force_coincidence || !empty)) {
use_coincidence = 0;
continue;
}
if (!ctx->opt->schedule_maximize_band_depth && !empty)
return compute_next_band(node, graph, 1);
if (graph->src_scc >= 0)
return compute_split_schedule(node, graph);
if (!empty)
return compute_next_band(node, graph, 1);
return carry_dependences(node, graph);
}
coincident = !has_coincidence || use_coincidence;
if (update_schedule(graph, sol, 1, coincident) < 0)
return isl_schedule_node_free(node);
if (!check_conditional)
continue;
violated = has_violated_conditional_constraint(ctx, graph);
if (violated < 0)
return isl_schedule_node_free(node);
if (!violated)
continue;
if (reset_band(graph) < 0)
return isl_schedule_node_free(node);
use_coincidence = has_coincidence;
}
insert = graph->n_total_row > graph->band_start;
if (insert) {
node = insert_current_band(node, graph, 1);
node = isl_schedule_node_child(node, 0);
}
node = sort_statements(node, graph);
if (insert)
node = isl_schedule_node_parent(node);
return node;
}
/* Compute a schedule for each group of nodes identified by node->scc
* separately and then combine them in a sequence node (or as set node
* if graph->weak is set) inserted at position "node" of the schedule tree.
* Return the updated schedule node.
*
* If "wcc" is set then each of the groups belongs to a single
* weakly connected component in the dependence graph so that
* there is no need for compute_sub_schedule to look for weakly
* connected components.
*/
static __isl_give isl_schedule_node *compute_component_schedule(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
int wcc)
{
int component, i;
int n, n_edge;
isl_ctx *ctx;
isl_union_set_list *filters;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
filters = extract_sccs(ctx, graph);
if (graph->weak)
node = isl_schedule_node_insert_set(node, filters);
else
node = isl_schedule_node_insert_sequence(node, filters);
for (component = 0; component < graph->scc; ++component) {
n = 0;
for (i = 0; i < graph->n; ++i)
if (graph->node[i].scc == component)
n++;
n_edge = 0;
for (i = 0; i < graph->n_edge; ++i)
if (graph->edge[i].src->scc == component &&
graph->edge[i].dst->scc == component)
n_edge++;
node = isl_schedule_node_child(node, component);
node = isl_schedule_node_child(node, 0);
node = compute_sub_schedule(node, ctx, graph, n, n_edge,
&node_scc_exactly,
&edge_scc_exactly, component, wcc);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
}
return node;
}
/* Compute a schedule for the given dependence graph and insert it at "node".
* Return the updated schedule node.
*
* We first check if the graph is connected (through validity and conditional
* validity dependences) and, if not, compute a schedule
* for each component separately.
* If the schedule_serialize_sccs option is set, then we check for strongly
* connected components instead and compute a separate schedule for
* each such strongly connected component.
*/
static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
struct isl_sched_graph *graph)
{
isl_ctx *ctx;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (isl_options_get_schedule_serialize_sccs(ctx)) {
if (detect_sccs(ctx, graph) < 0)
return isl_schedule_node_free(node);
} else {
if (detect_wccs(ctx, graph) < 0)
return isl_schedule_node_free(node);
}
if (graph->scc > 1)
return compute_component_schedule(node, graph, 1);
return compute_schedule_wcc(node, graph);
}
/* Compute a schedule on sc->domain that respects the given schedule
* constraints.
*
* In particular, the schedule respects all the validity dependences.
* If the default isl scheduling algorithm is used, it tries to minimize
* the dependence distances over the proximity dependences.
* If Feautrier's scheduling algorithm is used, the proximity dependence
* distances are only minimized during the extension to a full-dimensional
* schedule.
*
* If there are any condition and conditional validity dependences,
* then the conditional validity dependences may be violated inside
* a tilable band, provided they have no adjacent non-local
* condition dependences.
*
* The context is included in the domain before the nodes of
* the graphs are extracted in order to be able to exploit
* any possible additional equalities.
* However, the returned schedule contains the original domain
* (before this intersection).
*/
__isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
__isl_take isl_schedule_constraints *sc)
{
isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
struct isl_sched_graph graph = { 0 };
isl_schedule *sched;
isl_schedule_node *node;
isl_union_set *domain;
struct isl_extract_edge_data data;
enum isl_edge_type i;
int r;
sc = isl_schedule_constraints_align_params(sc);
if (!sc)
return NULL;
graph.n = isl_union_set_n_set(sc->domain);
if (graph.n == 0) {
isl_union_set *domain = isl_union_set_copy(sc->domain);
sched = isl_schedule_from_domain(domain);
goto done;
}
if (graph_alloc(ctx, &graph, graph.n,
isl_schedule_constraints_n_map(sc)) < 0)
goto error;
if (compute_max_row(&graph, sc) < 0)
goto error;
graph.root = 1;
graph.n = 0;
domain = isl_union_set_copy(sc->domain);
domain = isl_union_set_intersect_params(domain,
isl_set_copy(sc->context));
r = isl_union_set_foreach_set(domain, &extract_node, &graph);
isl_union_set_free(domain);
if (r < 0)
goto error;
if (graph_init_table(ctx, &graph) < 0)
goto error;
for (i = isl_edge_first; i <= isl_edge_last; ++i)
graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
if (graph_init_edge_tables(ctx, &graph) < 0)
goto error;
graph.n_edge = 0;
data.graph = &graph;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
data.type = i;
if (isl_union_map_foreach_map(sc->constraint[i],
&extract_edge, &data) < 0)
goto error;
}
node = isl_schedule_node_from_domain(isl_union_set_copy(sc->domain));
node = isl_schedule_node_child(node, 0);
if (graph.n > 0)
node = compute_schedule(node, &graph);
sched = isl_schedule_node_get_schedule(node);
isl_schedule_node_free(node);
done:
graph_free(ctx, &graph);
isl_schedule_constraints_free(sc);
return sched;
error:
graph_free(ctx, &graph);
isl_schedule_constraints_free(sc);
return NULL;
}
/* Compute a schedule for the given union of domains that respects
* all the validity dependences and minimizes
* the dependence distances over the proximity dependences.
*
* This function is kept for backward compatibility.
*/
__isl_give isl_schedule *isl_union_set_compute_schedule(
__isl_take isl_union_set *domain,
__isl_take isl_union_map *validity,
__isl_take isl_union_map *proximity)
{
isl_schedule_constraints *sc;
sc = isl_schedule_constraints_on_domain(domain);
sc = isl_schedule_constraints_set_validity(sc, validity);
sc = isl_schedule_constraints_set_proximity(sc, proximity);
return isl_schedule_constraints_compute_schedule(sc);
}
|