1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  
     | 
    
      //=- llvm/CodeGen/ScheduleHazardRecognizer.h - Scheduling Support -*- C++ -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ScheduleHazardRecognizer class, which implements
// hazard-avoidance heuristics for scheduling.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SCHEDULEHAZARDRECOGNIZER_H
#define LLVM_CODEGEN_SCHEDULEHAZARDRECOGNIZER_H
namespace llvm {
class SUnit;
/// HazardRecognizer - This determines whether or not an instruction can be
/// issued this cycle, and whether or not a noop needs to be inserted to handle
/// the hazard.
class ScheduleHazardRecognizer {
protected:
  /// MaxLookAhead - Indicate the number of cycles in the scoreboard
  /// state. Important to restore the state after backtracking. Additionally,
  /// MaxLookAhead=0 identifies a fake recognizer, allowing the client to
  /// bypass virtual calls. Currently the PostRA scheduler ignores it.
  unsigned MaxLookAhead;
public:
  ScheduleHazardRecognizer(): MaxLookAhead(0) {}
  virtual ~ScheduleHazardRecognizer();
  enum HazardType {
    NoHazard,      // This instruction can be emitted at this cycle.
    Hazard,        // This instruction can't be emitted at this cycle.
    NoopHazard     // This instruction can't be emitted, and needs noops.
  };
  unsigned getMaxLookAhead() const { return MaxLookAhead; }
  bool isEnabled() const { return MaxLookAhead != 0; }
  /// atIssueLimit - Return true if no more instructions may be issued in this
  /// cycle.
  ///
  /// FIXME: remove this once MachineScheduler is the only client.
  virtual bool atIssueLimit() const { return false; }
  /// getHazardType - Return the hazard type of emitting this node.  There are
  /// three possible results.  Either:
  ///  * NoHazard: it is legal to issue this instruction on this cycle.
  ///  * Hazard: issuing this instruction would stall the machine.  If some
  ///     other instruction is available, issue it first.
  ///  * NoopHazard: issuing this instruction would break the program.  If
  ///     some other instruction can be issued, do so, otherwise issue a noop.
  virtual HazardType getHazardType(SUnit *m, int Stalls = 0) {
    return NoHazard;
  }
  /// Reset - This callback is invoked when a new block of
  /// instructions is about to be schedule. The hazard state should be
  /// set to an initialized state.
  virtual void Reset() {}
  /// EmitInstruction - This callback is invoked when an instruction is
  /// emitted, to advance the hazard state.
  virtual void EmitInstruction(SUnit *) {}
  /// PreEmitNoops - This callback is invoked prior to emitting an instruction.
  /// It should return the number of noops to emit prior to the provided
  /// instruction.
  /// Note: This is only used during PostRA scheduling. EmitNoop is not called
  /// for these noops.
  virtual unsigned PreEmitNoops(SUnit *) {
    return 0;
  }
  /// ShouldPreferAnother - This callback may be invoked if getHazardType
  /// returns NoHazard. If, even though there is no hazard, it would be better to
  /// schedule another available instruction, this callback should return true.
  virtual bool ShouldPreferAnother(SUnit *) {
    return false;
  }
  /// AdvanceCycle - This callback is invoked whenever the next top-down
  /// instruction to be scheduled cannot issue in the current cycle, either
  /// because of latency or resource conflicts.  This should increment the
  /// internal state of the hazard recognizer so that previously "Hazard"
  /// instructions will now not be hazards.
  virtual void AdvanceCycle() {}
  /// RecedeCycle - This callback is invoked whenever the next bottom-up
  /// instruction to be scheduled cannot issue in the current cycle, either
  /// because of latency or resource conflicts.
  virtual void RecedeCycle() {}
  /// EmitNoop - This callback is invoked when a noop was added to the
  /// instruction stream.
  virtual void EmitNoop() {
    // Default implementation: count it as a cycle.
    AdvanceCycle();
  }
};
}
#endif
 
     |