1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass turns explicit null checks of the form
//
// test %r10, %r10
// je throw_npe
// movl (%r10), %esi
// ...
//
// to
//
// faulting_load_op("movl (%r10), %esi", throw_npe)
// ...
//
// With the help of a runtime that understands the .fault_maps section,
// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
// a page fault.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
static cl::opt<unsigned> PageSize("imp-null-check-page-size",
cl::desc("The page size of the target in "
"bytes"),
cl::init(4096));
#define DEBUG_TYPE "implicit-null-checks"
STATISTIC(NumImplicitNullChecks,
"Number of explicit null checks made implicit");
namespace {
class ImplicitNullChecks : public MachineFunctionPass {
/// Represents one null check that can be made implicit.
struct NullCheck {
// The memory operation the null check can be folded into.
MachineInstr *MemOperation;
// The instruction actually doing the null check (Ptr != 0).
MachineInstr *CheckOperation;
// The block the check resides in.
MachineBasicBlock *CheckBlock;
// The block branched to if the pointer is non-null.
MachineBasicBlock *NotNullSucc;
// The block branched to if the pointer is null.
MachineBasicBlock *NullSucc;
NullCheck()
: MemOperation(), CheckOperation(), CheckBlock(), NotNullSucc(),
NullSucc() {}
explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
MachineBasicBlock *checkBlock,
MachineBasicBlock *notNullSucc,
MachineBasicBlock *nullSucc)
: MemOperation(memOperation), CheckOperation(checkOperation),
CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc) {
}
};
const TargetInstrInfo *TII = nullptr;
const TargetRegisterInfo *TRI = nullptr;
MachineModuleInfo *MMI = nullptr;
bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
SmallVectorImpl<NullCheck> &NullCheckList);
MachineInstr *insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB,
MCSymbol *HandlerLabel);
void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
public:
static char ID;
ImplicitNullChecks() : MachineFunctionPass(ID) {
initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
};
/// \brief Detect re-ordering hazards and dependencies.
///
/// This class keeps track of defs and uses, and can be queried if a given
/// machine instruction can be re-ordered from after the machine instructions
/// seen so far to before them.
class HazardDetector {
DenseSet<unsigned> RegDefs;
DenseSet<unsigned> RegUses;
const TargetRegisterInfo &TRI;
bool hasSeenClobber;
public:
explicit HazardDetector(const TargetRegisterInfo &TRI) :
TRI(TRI), hasSeenClobber(false) {}
/// \brief Make a note of \p MI for later queries to isSafeToHoist.
///
/// May clobber this HazardDetector instance. \see isClobbered.
void rememberInstruction(MachineInstr *MI);
/// \brief Return true if it is safe to hoist \p MI from after all the
/// instructions seen so far (via rememberInstruction) to before it.
bool isSafeToHoist(MachineInstr *MI);
/// \brief Return true if this instance of HazardDetector has been clobbered
/// (i.e. has no more useful information).
///
/// A HazardDetecter is clobbered when it sees a construct it cannot
/// understand, and it would have to return a conservative answer for all
/// future queries. Having a separate clobbered state lets the client code
/// bail early, without making queries about all of the future instructions
/// (which would have returned the most conservative answer anyway).
///
/// Calling rememberInstruction or isSafeToHoist on a clobbered HazardDetector
/// is an error.
bool isClobbered() { return hasSeenClobber; }
};
}
void HazardDetector::rememberInstruction(MachineInstr *MI) {
assert(!isClobbered() &&
"Don't add instructions to a clobbered hazard detector");
if (MI->mayStore() || MI->hasUnmodeledSideEffects()) {
hasSeenClobber = true;
return;
}
for (auto *MMO : MI->memoperands()) {
// Right now we don't want to worry about LLVM's memory model.
if (!MMO->isUnordered()) {
hasSeenClobber = true;
return;
}
}
for (auto &MO : MI->operands()) {
if (!MO.isReg() || !MO.getReg())
continue;
if (MO.isDef())
RegDefs.insert(MO.getReg());
else
RegUses.insert(MO.getReg());
}
}
bool HazardDetector::isSafeToHoist(MachineInstr *MI) {
assert(!isClobbered() && "isSafeToHoist cannot do anything useful!");
// Right now we don't want to worry about LLVM's memory model. This can be
// made more precise later.
for (auto *MMO : MI->memoperands())
if (!MMO->isUnordered())
return false;
for (auto &MO : MI->operands()) {
if (MO.isReg() && MO.getReg()) {
for (unsigned Reg : RegDefs)
if (TRI.regsOverlap(Reg, MO.getReg()))
return false; // We found a write-after-write or read-after-write
if (MO.isDef())
for (unsigned Reg : RegUses)
if (TRI.regsOverlap(Reg, MO.getReg()))
return false; // We found a write-after-read
}
}
return true;
}
bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getRegInfo().getTargetRegisterInfo();
MMI = &MF.getMMI();
SmallVector<NullCheck, 16> NullCheckList;
for (auto &MBB : MF)
analyzeBlockForNullChecks(MBB, NullCheckList);
if (!NullCheckList.empty())
rewriteNullChecks(NullCheckList);
return !NullCheckList.empty();
}
/// Analyze MBB to check if its terminating branch can be turned into an
/// implicit null check. If yes, append a description of the said null check to
/// NullCheckList and return true, else return false.
bool ImplicitNullChecks::analyzeBlockForNullChecks(
MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
MDNode *BranchMD = nullptr;
if (auto *BB = MBB.getBasicBlock())
BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
if (!BranchMD)
return false;
MachineBranchPredicate MBP;
if (TII->AnalyzeBranchPredicate(MBB, MBP, true))
return false;
// Is the predicate comparing an integer to zero?
if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
(MBP.Predicate == MachineBranchPredicate::PRED_NE ||
MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
return false;
// If we cannot erase the test instruction itself, then making the null check
// implicit does not buy us much.
if (!MBP.SingleUseCondition)
return false;
MachineBasicBlock *NotNullSucc, *NullSucc;
if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
NotNullSucc = MBP.TrueDest;
NullSucc = MBP.FalseDest;
} else {
NotNullSucc = MBP.FalseDest;
NullSucc = MBP.TrueDest;
}
// We handle the simplest case for now. We can potentially do better by using
// the machine dominator tree.
if (NotNullSucc->pred_size() != 1)
return false;
// Starting with a code fragment like:
//
// test %RAX, %RAX
// jne LblNotNull
//
// LblNull:
// callq throw_NullPointerException
//
// LblNotNull:
// Inst0
// Inst1
// ...
// Def = Load (%RAX + <offset>)
// ...
//
//
// we want to end up with
//
// Def = FaultingLoad (%RAX + <offset>), LblNull
// jmp LblNotNull ;; explicit or fallthrough
//
// LblNotNull:
// Inst0
// Inst1
// ...
//
// LblNull:
// callq throw_NullPointerException
//
//
// To see why this is legal, consider the two possibilities:
//
// 1. %RAX is null: since we constrain <offset> to be less than PageSize, the
// load instruction dereferences the null page, causing a segmentation
// fault.
//
// 2. %RAX is not null: in this case we know that the load cannot fault, as
// otherwise the load would've faulted in the original program too and the
// original program would've been undefined.
//
// This reasoning cannot be extended to justify hoisting through arbitrary
// control flow. For instance, in the example below (in pseudo-C)
//
// if (ptr == null) { throw_npe(); unreachable; }
// if (some_cond) { return 42; }
// v = ptr->field; // LD
// ...
//
// we cannot (without code duplication) use the load marked "LD" to null check
// ptr -- clause (2) above does not apply in this case. In the above program
// the safety of ptr->field can be dependent on some_cond; and, for instance,
// ptr could be some non-null invalid reference that never gets loaded from
// because some_cond is always true.
unsigned PointerReg = MBP.LHS.getReg();
HazardDetector HD(*TRI);
for (auto MII = NotNullSucc->begin(), MIE = NotNullSucc->end(); MII != MIE;
++MII) {
MachineInstr *MI = &*MII;
unsigned BaseReg, Offset;
if (TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
if (MI->mayLoad() && !MI->isPredicable() && BaseReg == PointerReg &&
Offset < PageSize && MI->getDesc().getNumDefs() <= 1 &&
HD.isSafeToHoist(MI)) {
NullCheckList.emplace_back(MI, MBP.ConditionDef, &MBB, NotNullSucc,
NullSucc);
return true;
}
HD.rememberInstruction(MI);
if (HD.isClobbered())
return false;
}
return false;
}
/// Wrap a machine load instruction, LoadMI, into a FAULTING_LOAD_OP machine
/// instruction. The FAULTING_LOAD_OP instruction does the same load as LoadMI
/// (defining the same register), and branches to HandlerLabel if the load
/// faults. The FAULTING_LOAD_OP instruction is inserted at the end of MBB.
MachineInstr *ImplicitNullChecks::insertFaultingLoad(MachineInstr *LoadMI,
MachineBasicBlock *MBB,
MCSymbol *HandlerLabel) {
const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
// all targets.
DebugLoc DL;
unsigned NumDefs = LoadMI->getDesc().getNumDefs();
assert(NumDefs <= 1 && "other cases unhandled!");
unsigned DefReg = NoRegister;
if (NumDefs != 0) {
DefReg = LoadMI->defs().begin()->getReg();
assert(std::distance(LoadMI->defs().begin(), LoadMI->defs().end()) == 1 &&
"expected exactly one def!");
}
auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_LOAD_OP), DefReg)
.addSym(HandlerLabel)
.addImm(LoadMI->getOpcode());
for (auto &MO : LoadMI->uses())
MIB.addOperand(MO);
MIB.setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end());
return MIB;
}
/// Rewrite the null checks in NullCheckList into implicit null checks.
void ImplicitNullChecks::rewriteNullChecks(
ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
DebugLoc DL;
for (auto &NC : NullCheckList) {
MCSymbol *HandlerLabel = MMI->getContext().createTempSymbol();
// Remove the conditional branch dependent on the null check.
unsigned BranchesRemoved = TII->RemoveBranch(*NC.CheckBlock);
(void)BranchesRemoved;
assert(BranchesRemoved > 0 && "expected at least one branch!");
// Insert a faulting load where the conditional branch was originally. We
// check earlier ensures that this bit of code motion is legal. We do not
// touch the successors list for any basic block since we haven't changed
// control flow, we've just made it implicit.
insertFaultingLoad(NC.MemOperation, NC.CheckBlock, HandlerLabel);
NC.MemOperation->eraseFromParent();
NC.CheckOperation->eraseFromParent();
// Insert an *unconditional* branch to not-null successor.
TII->InsertBranch(*NC.CheckBlock, NC.NotNullSucc, nullptr, /*Cond=*/None,
DL);
// Emit the HandlerLabel as an EH_LABEL.
BuildMI(*NC.NullSucc, NC.NullSucc->begin(), DL,
TII->get(TargetOpcode::EH_LABEL)).addSym(HandlerLabel);
NumImplicitNullChecks++;
}
}
char ImplicitNullChecks::ID = 0;
char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks",
"Implicit null checks", false, false)
INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks",
"Implicit null checks", false, false)
|