1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
//=----------------------- InterleavedAccessPass.cpp -----------------------==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Interleaved Access pass, which identifies
// interleaved memory accesses and transforms into target specific intrinsics.
//
// An interleaved load reads data from memory into several vectors, with
// DE-interleaving the data on a factor. An interleaved store writes several
// vectors to memory with RE-interleaving the data on a factor.
//
// As interleaved accesses are hard to be identified in CodeGen (mainly because
// the VECTOR_SHUFFLE DAG node is quite different from the shufflevector IR),
// we identify and transform them to intrinsics in this pass. So the intrinsics
// can be easily matched into target specific instructions later in CodeGen.
//
// E.g. An interleaved load (Factor = 2):
// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
//
// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
// intrinsic in ARM backend.
//
// E.g. An interleaved store (Factor = 3):
// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
// store <12 x i32> %i.vec, <12 x i32>* %ptr
//
// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
// intrinsic in ARM backend.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "interleaved-access"
static cl::opt<bool> LowerInterleavedAccesses(
"lower-interleaved-accesses",
cl::desc("Enable lowering interleaved accesses to intrinsics"),
cl::init(true), cl::Hidden);
static unsigned MaxFactor; // The maximum supported interleave factor.
namespace llvm {
static void initializeInterleavedAccessPass(PassRegistry &);
}
namespace {
class InterleavedAccess : public FunctionPass {
public:
static char ID;
InterleavedAccess(const TargetMachine *TM = nullptr)
: FunctionPass(ID), TM(TM), TLI(nullptr) {
initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
}
const char *getPassName() const override { return "Interleaved Access Pass"; }
bool runOnFunction(Function &F) override;
private:
const TargetMachine *TM;
const TargetLowering *TLI;
/// \brief Transform an interleaved load into target specific intrinsics.
bool lowerInterleavedLoad(LoadInst *LI,
SmallVector<Instruction *, 32> &DeadInsts);
/// \brief Transform an interleaved store into target specific intrinsics.
bool lowerInterleavedStore(StoreInst *SI,
SmallVector<Instruction *, 32> &DeadInsts);
};
} // end anonymous namespace.
char InterleavedAccess::ID = 0;
INITIALIZE_TM_PASS(InterleavedAccess, "interleaved-access",
"Lower interleaved memory accesses to target specific intrinsics",
false, false)
FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) {
return new InterleavedAccess(TM);
}
/// \brief Check if the mask is a DE-interleave mask of the given factor
/// \p Factor like:
/// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
unsigned &Index) {
// Check all potential start indices from 0 to (Factor - 1).
for (Index = 0; Index < Factor; Index++) {
unsigned i = 0;
// Check that elements are in ascending order by Factor. Ignore undef
// elements.
for (; i < Mask.size(); i++)
if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
break;
if (i == Mask.size())
return true;
}
return false;
}
/// \brief Check if the mask is a DE-interleave mask for an interleaved load.
///
/// E.g. DE-interleave masks (Factor = 2) could be:
/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
unsigned &Index) {
if (Mask.size() < 2)
return false;
// Check potential Factors.
for (Factor = 2; Factor <= MaxFactor; Factor++)
if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
return true;
return false;
}
/// \brief Check if the mask is RE-interleave mask for an interleaved store.
///
/// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...>
///
/// E.g. The RE-interleave mask (Factor = 2) could be:
/// <0, 4, 1, 5, 2, 6, 3, 7>
static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) {
unsigned NumElts = Mask.size();
if (NumElts < 4)
return false;
// Check potential Factors.
for (Factor = 2; Factor <= MaxFactor; Factor++) {
if (NumElts % Factor)
continue;
unsigned NumSubElts = NumElts / Factor;
if (!isPowerOf2_32(NumSubElts))
continue;
// Check whether each element matchs the RE-interleaved rule. Ignore undef
// elements.
unsigned i = 0;
for (; i < NumElts; i++)
if (Mask[i] >= 0 &&
static_cast<unsigned>(Mask[i]) !=
(i % Factor) * NumSubElts + i / Factor)
break;
// Find a RE-interleaved mask of current factor.
if (i == NumElts)
return true;
}
return false;
}
bool InterleavedAccess::lowerInterleavedLoad(
LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
if (!LI->isSimple())
return false;
SmallVector<ShuffleVectorInst *, 4> Shuffles;
// Check if all users of this load are shufflevectors.
for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
return false;
Shuffles.push_back(SVI);
}
if (Shuffles.empty())
return false;
unsigned Factor, Index;
// Check if the first shufflevector is DE-interleave shuffle.
if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index))
return false;
// Holds the corresponding index for each DE-interleave shuffle.
SmallVector<unsigned, 4> Indices;
Indices.push_back(Index);
Type *VecTy = Shuffles[0]->getType();
// Check if other shufflevectors are also DE-interleaved of the same type
// and factor as the first shufflevector.
for (unsigned i = 1; i < Shuffles.size(); i++) {
if (Shuffles[i]->getType() != VecTy)
return false;
if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
Index))
return false;
Indices.push_back(Index);
}
DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
// Try to create target specific intrinsics to replace the load and shuffles.
if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
return false;
for (auto SVI : Shuffles)
DeadInsts.push_back(SVI);
DeadInsts.push_back(LI);
return true;
}
bool InterleavedAccess::lowerInterleavedStore(
StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
if (!SI->isSimple())
return false;
ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
if (!SVI || !SVI->hasOneUse())
return false;
// Check if the shufflevector is RE-interleave shuffle.
unsigned Factor;
if (!isReInterleaveMask(SVI->getShuffleMask(), Factor))
return false;
DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
// Try to create target specific intrinsics to replace the store and shuffle.
if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
return false;
// Already have a new target specific interleaved store. Erase the old store.
DeadInsts.push_back(SI);
DeadInsts.push_back(SVI);
return true;
}
bool InterleavedAccess::runOnFunction(Function &F) {
if (!TM || !LowerInterleavedAccesses)
return false;
DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
TLI = TM->getSubtargetImpl(F)->getTargetLowering();
MaxFactor = TLI->getMaxSupportedInterleaveFactor();
// Holds dead instructions that will be erased later.
SmallVector<Instruction *, 32> DeadInsts;
bool Changed = false;
for (auto &I : instructions(F)) {
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
Changed |= lowerInterleavedLoad(LI, DeadInsts);
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
Changed |= lowerInterleavedStore(SI, DeadInsts);
}
for (auto I : DeadInsts)
I->eraseFromParent();
return Changed;
}
|