1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
  
     | 
    
      //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion on machine instructions. We
// attempt to remove as much code from the body of a loop as possible.
//
// This pass is not intended to be a replacement or a complete alternative
// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "machine-licm"
static cl::opt<bool>
AvoidSpeculation("avoid-speculation",
                 cl::desc("MachineLICM should avoid speculation"),
                 cl::init(true), cl::Hidden);
static cl::opt<bool>
HoistCheapInsts("hoist-cheap-insts",
                cl::desc("MachineLICM should hoist even cheap instructions"),
                cl::init(false), cl::Hidden);
static cl::opt<bool>
SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
                       cl::desc("MachineLICM should sink instructions into "
                                "loops to avoid register spills"),
                       cl::init(false), cl::Hidden);
STATISTIC(NumHoisted,
          "Number of machine instructions hoisted out of loops");
STATISTIC(NumLowRP,
          "Number of instructions hoisted in low reg pressure situation");
STATISTIC(NumHighLatency,
          "Number of high latency instructions hoisted");
STATISTIC(NumCSEed,
          "Number of hoisted machine instructions CSEed");
STATISTIC(NumPostRAHoisted,
          "Number of machine instructions hoisted out of loops post regalloc");
namespace {
  class MachineLICM : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetLoweringBase *TLI;
    const TargetRegisterInfo *TRI;
    const MachineFrameInfo *MFI;
    MachineRegisterInfo *MRI;
    TargetSchedModel SchedModel;
    bool PreRegAlloc;
    // Various analyses that we use...
    AliasAnalysis        *AA;      // Alias analysis info.
    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
    // State that is updated as we process loops
    bool         Changed;          // True if a loop is changed.
    bool         FirstInLoop;      // True if it's the first LICM in the loop.
    MachineLoop *CurLoop;          // The current loop we are working on.
    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
    // Exit blocks for CurLoop.
    SmallVector<MachineBasicBlock*, 8> ExitBlocks;
    bool isExitBlock(const MachineBasicBlock *MBB) const {
      return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
        ExitBlocks.end();
    }
    // Track 'estimated' register pressure.
    SmallSet<unsigned, 32> RegSeen;
    SmallVector<unsigned, 8> RegPressure;
    // Register pressure "limit" per register pressure set. If the pressure
    // is higher than the limit, then it's considered high.
    SmallVector<unsigned, 8> RegLimit;
    // Register pressure on path leading from loop preheader to current BB.
    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
    // For each opcode, keep a list of potential CSE instructions.
    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
    enum {
      SpeculateFalse   = 0,
      SpeculateTrue    = 1,
      SpeculateUnknown = 2
    };
    // If a MBB does not dominate loop exiting blocks then it may not safe
    // to hoist loads from this block.
    // Tri-state: 0 - false, 1 - true, 2 - unknown
    unsigned SpeculationState;
  public:
    static char ID; // Pass identification, replacement for typeid
    MachineLICM() :
      MachineFunctionPass(ID), PreRegAlloc(true) {
        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
      }
    explicit MachineLICM(bool PreRA) :
      MachineFunctionPass(ID), PreRegAlloc(PreRA) {
        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
      }
    bool runOnMachineFunction(MachineFunction &MF) override;
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineLoopInfo>();
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addPreserved<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    void releaseMemory() override {
      RegSeen.clear();
      RegPressure.clear();
      RegLimit.clear();
      BackTrace.clear();
      CSEMap.clear();
    }
  private:
    /// Keep track of information about hoisting candidates.
    struct CandidateInfo {
      MachineInstr *MI;
      unsigned      Def;
      int           FI;
      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
        : MI(mi), Def(def), FI(fi) {}
    };
    void HoistRegionPostRA();
    void HoistPostRA(MachineInstr *MI, unsigned Def);
    void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
                   BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
                   SmallVectorImpl<CandidateInfo> &Candidates);
    void AddToLiveIns(unsigned Reg);
    bool IsLICMCandidate(MachineInstr &I);
    bool IsLoopInvariantInst(MachineInstr &I);
    bool HasLoopPHIUse(const MachineInstr *MI) const;
    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
                               unsigned Reg) const;
    bool IsCheapInstruction(MachineInstr &MI) const;
    bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
                                 bool Cheap);
    void UpdateBackTraceRegPressure(const MachineInstr *MI);
    bool IsProfitableToHoist(MachineInstr &MI);
    bool IsGuaranteedToExecute(MachineBasicBlock *BB);
    void EnterScope(MachineBasicBlock *MBB);
    void ExitScope(MachineBasicBlock *MBB);
    void ExitScopeIfDone(
        MachineDomTreeNode *Node,
        DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
        DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
    void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
    void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
    void SinkIntoLoop();
    void InitRegPressure(MachineBasicBlock *BB);
    DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
                                             bool ConsiderSeen,
                                             bool ConsiderUnseenAsDef);
    void UpdateRegPressure(const MachineInstr *MI,
                           bool ConsiderUnseenAsDef = false);
    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
    const MachineInstr *
    LookForDuplicate(const MachineInstr *MI,
                     std::vector<const MachineInstr *> &PrevMIs);
    bool EliminateCSE(
        MachineInstr *MI,
        DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
    bool MayCSE(MachineInstr *MI);
    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
    void InitCSEMap(MachineBasicBlock *BB);
    MachineBasicBlock *getCurPreheader();
  };
} // end anonymous namespace
char MachineLICM::ID = 0;
char &llvm::MachineLICMID = MachineLICM::ID;
INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
                "Machine Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(MachineLICM, "machinelicm",
                "Machine Loop Invariant Code Motion", false, false)
/// Test if the given loop is the outer-most loop that has a unique predecessor.
static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
  // Check whether this loop even has a unique predecessor.
  if (!CurLoop->getLoopPredecessor())
    return false;
  // Ok, now check to see if any of its outer loops do.
  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
    if (L->getLoopPredecessor())
      return false;
  // None of them did, so this is the outermost with a unique predecessor.
  return true;
}
bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
  if (skipOptnoneFunction(*MF.getFunction()))
    return false;
  Changed = FirstInLoop = false;
  const TargetSubtargetInfo &ST = MF.getSubtarget();
  TII = ST.getInstrInfo();
  TLI = ST.getTargetLowering();
  TRI = ST.getRegisterInfo();
  MFI = MF.getFrameInfo();
  MRI = &MF.getRegInfo();
  SchedModel.init(ST.getSchedModel(), &ST, TII);
  PreRegAlloc = MRI->isSSA();
  if (PreRegAlloc)
    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
  else
    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
  DEBUG(dbgs() << MF.getName() << " ********\n");
  if (PreRegAlloc) {
    // Estimate register pressure during pre-regalloc pass.
    unsigned NumRPS = TRI->getNumRegPressureSets();
    RegPressure.resize(NumRPS);
    std::fill(RegPressure.begin(), RegPressure.end(), 0);
    RegLimit.resize(NumRPS);
    for (unsigned i = 0, e = NumRPS; i != e; ++i)
      RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
  }
  // Get our Loop information...
  MLI = &getAnalysis<MachineLoopInfo>();
  DT  = &getAnalysis<MachineDominatorTree>();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
  while (!Worklist.empty()) {
    CurLoop = Worklist.pop_back_val();
    CurPreheader = nullptr;
    ExitBlocks.clear();
    // If this is done before regalloc, only visit outer-most preheader-sporting
    // loops.
    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
      Worklist.append(CurLoop->begin(), CurLoop->end());
      continue;
    }
    CurLoop->getExitBlocks(ExitBlocks);
    if (!PreRegAlloc)
      HoistRegionPostRA();
    else {
      // CSEMap is initialized for loop header when the first instruction is
      // being hoisted.
      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
      FirstInLoop = true;
      HoistOutOfLoop(N);
      CSEMap.clear();
      if (SinkInstsToAvoidSpills)
        SinkIntoLoop();
    }
  }
  return Changed;
}
/// Return true if instruction stores to the specified frame.
static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
  // If we lost memory operands, conservatively assume that the instruction
  // writes to all slots. 
  if (MI->memoperands_empty())
    return true;
  for (const MachineMemOperand *MemOp : MI->memoperands()) {
    if (!MemOp->isStore() || !MemOp->getPseudoValue())
      continue;
    if (const FixedStackPseudoSourceValue *Value =
        dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
      if (Value->getFrameIndex() == FI)
        return true;
    }
  }
  return false;
}
/// Examine the instruction for potentai LICM candidate. Also
/// gather register def and frame object update information.
void MachineLICM::ProcessMI(MachineInstr *MI,
                            BitVector &PhysRegDefs,
                            BitVector &PhysRegClobbers,
                            SmallSet<int, 32> &StoredFIs,
                            SmallVectorImpl<CandidateInfo> &Candidates) {
  bool RuledOut = false;
  bool HasNonInvariantUse = false;
  unsigned Def = 0;
  for (const MachineOperand &MO : MI->operands()) {
    if (MO.isFI()) {
      // Remember if the instruction stores to the frame index.
      int FI = MO.getIndex();
      if (!StoredFIs.count(FI) &&
          MFI->isSpillSlotObjectIndex(FI) &&
          InstructionStoresToFI(MI, FI))
        StoredFIs.insert(FI);
      HasNonInvariantUse = true;
      continue;
    }
    // We can't hoist an instruction defining a physreg that is clobbered in
    // the loop.
    if (MO.isRegMask()) {
      PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
      continue;
    }
    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;
    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
           "Not expecting virtual register!");
    if (!MO.isDef()) {
      if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
        // If it's using a non-loop-invariant register, then it's obviously not
        // safe to hoist.
        HasNonInvariantUse = true;
      continue;
    }
    if (MO.isImplicit()) {
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
        PhysRegClobbers.set(*AI);
      if (!MO.isDead())
        // Non-dead implicit def? This cannot be hoisted.
        RuledOut = true;
      // No need to check if a dead implicit def is also defined by
      // another instruction.
      continue;
    }
    // FIXME: For now, avoid instructions with multiple defs, unless
    // it's a dead implicit def.
    if (Def)
      RuledOut = true;
    else
      Def = Reg;
    // If we have already seen another instruction that defines the same
    // register, then this is not safe.  Two defs is indicated by setting a
    // PhysRegClobbers bit.
    for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
      if (PhysRegDefs.test(*AS))
        PhysRegClobbers.set(*AS);
      PhysRegDefs.set(*AS);
    }
    if (PhysRegClobbers.test(Reg))
      // MI defined register is seen defined by another instruction in
      // the loop, it cannot be a LICM candidate.
      RuledOut = true;
  }
  // Only consider reloads for now and remats which do not have register
  // operands. FIXME: Consider unfold load folding instructions.
  if (Def && !RuledOut) {
    int FI = INT_MIN;
    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
      Candidates.push_back(CandidateInfo(MI, Def, FI));
  }
}
/// Walk the specified region of the CFG and hoist loop invariants out to the
/// preheader.
void MachineLICM::HoistRegionPostRA() {
  MachineBasicBlock *Preheader = getCurPreheader();
  if (!Preheader)
    return;
  unsigned NumRegs = TRI->getNumRegs();
  BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
  BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
  SmallVector<CandidateInfo, 32> Candidates;
  SmallSet<int, 32> StoredFIs;
  // Walk the entire region, count number of defs for each register, and
  // collect potential LICM candidates.
  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
  for (MachineBasicBlock *BB : Blocks) {
    // If the header of the loop containing this basic block is a landing pad,
    // then don't try to hoist instructions out of this loop.
    const MachineLoop *ML = MLI->getLoopFor(BB);
    if (ML && ML->getHeader()->isEHPad()) continue;
    // Conservatively treat live-in's as an external def.
    // FIXME: That means a reload that're reused in successor block(s) will not
    // be LICM'ed.
    for (const auto &LI : BB->liveins()) {
      for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
        PhysRegDefs.set(*AI);
    }
    SpeculationState = SpeculateUnknown;
    for (MachineInstr &MI : *BB)
      ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
  }
  // Gather the registers read / clobbered by the terminator.
  BitVector TermRegs(NumRegs);
  MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
  if (TI != Preheader->end()) {
    for (const MachineOperand &MO : TI->operands()) {
      if (!MO.isReg())
        continue;
      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
        TermRegs.set(*AI);
    }
  }
  // Now evaluate whether the potential candidates qualify.
  // 1. Check if the candidate defined register is defined by another
  //    instruction in the loop.
  // 2. If the candidate is a load from stack slot (always true for now),
  //    check if the slot is stored anywhere in the loop.
  // 3. Make sure candidate def should not clobber
  //    registers read by the terminator. Similarly its def should not be
  //    clobbered by the terminator.
  for (CandidateInfo &Candidate : Candidates) {
    if (Candidate.FI != INT_MIN &&
        StoredFIs.count(Candidate.FI))
      continue;
    unsigned Def = Candidate.Def;
    if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
      bool Safe = true;
      MachineInstr *MI = Candidate.MI;
      for (const MachineOperand &MO : MI->operands()) {
        if (!MO.isReg() || MO.isDef() || !MO.getReg())
          continue;
        unsigned Reg = MO.getReg();
        if (PhysRegDefs.test(Reg) ||
            PhysRegClobbers.test(Reg)) {
          // If it's using a non-loop-invariant register, then it's obviously
          // not safe to hoist.
          Safe = false;
          break;
        }
      }
      if (Safe)
        HoistPostRA(MI, Candidate.Def);
    }
  }
}
/// Add register 'Reg' to the livein sets of BBs in the current loop, and make
/// sure it is not killed by any instructions in the loop.
void MachineLICM::AddToLiveIns(unsigned Reg) {
  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
  for (MachineBasicBlock *BB : Blocks) {
    if (!BB->isLiveIn(Reg))
      BB->addLiveIn(Reg);
    for (MachineInstr &MI : *BB) {
      for (MachineOperand &MO : MI.operands()) {
        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
          MO.setIsKill(false);
      }
    }
  }
}
/// When an instruction is found to only use loop invariant operands that is
/// safe to hoist, this instruction is called to do the dirty work.
void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
  MachineBasicBlock *Preheader = getCurPreheader();
  // Now move the instructions to the predecessor, inserting it before any
  // terminator instructions.
  DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
               << MI->getParent()->getNumber() << ": " << *MI);
  // Splice the instruction to the preheader.
  MachineBasicBlock *MBB = MI->getParent();
  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
  // Add register to livein list to all the BBs in the current loop since a
  // loop invariant must be kept live throughout the whole loop. This is
  // important to ensure later passes do not scavenge the def register.
  AddToLiveIns(Def);
  ++NumPostRAHoisted;
  Changed = true;
}
/// Check if this mbb is guaranteed to execute. If not then a load from this mbb
/// may not be safe to hoist.
bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
  if (SpeculationState != SpeculateUnknown)
    return SpeculationState == SpeculateFalse;
  if (BB != CurLoop->getHeader()) {
    // Check loop exiting blocks.
    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
    for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
      if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
        SpeculationState = SpeculateTrue;
        return false;
      }
  }
  SpeculationState = SpeculateFalse;
  return true;
}
void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
  // Remember livein register pressure.
  BackTrace.push_back(RegPressure);
}
void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
  BackTrace.pop_back();
}
/// Destroy scope for the MBB that corresponds to the given dominator tree node
/// if its a leaf or all of its children are done. Walk up the dominator tree to
/// destroy ancestors which are now done.
void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
  if (OpenChildren[Node])
    return;
  // Pop scope.
  ExitScope(Node->getBlock());
  // Now traverse upwards to pop ancestors whose offsprings are all done.
  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
    unsigned Left = --OpenChildren[Parent];
    if (Left != 0)
      break;
    ExitScope(Parent->getBlock());
    Node = Parent;
  }
}
/// Walk the specified loop in the CFG (defined by all blocks dominated by the
/// specified header block, and that are in the current loop) in depth first
/// order w.r.t the DominatorTree. This allows us to visit definitions before
/// uses, allowing us to hoist a loop body in one pass without iteration.
///
void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
  MachineBasicBlock *Preheader = getCurPreheader();
  if (!Preheader)
    return;
  SmallVector<MachineDomTreeNode*, 32> Scopes;
  SmallVector<MachineDomTreeNode*, 8> WorkList;
  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
  // Perform a DFS walk to determine the order of visit.
  WorkList.push_back(HeaderN);
  while (!WorkList.empty()) {
    MachineDomTreeNode *Node = WorkList.pop_back_val();
    assert(Node && "Null dominator tree node?");
    MachineBasicBlock *BB = Node->getBlock();
    // If the header of the loop containing this basic block is a landing pad,
    // then don't try to hoist instructions out of this loop.
    const MachineLoop *ML = MLI->getLoopFor(BB);
    if (ML && ML->getHeader()->isEHPad())
      continue;
    // If this subregion is not in the top level loop at all, exit.
    if (!CurLoop->contains(BB))
      continue;
    Scopes.push_back(Node);
    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    unsigned NumChildren = Children.size();
    // Don't hoist things out of a large switch statement.  This often causes
    // code to be hoisted that wasn't going to be executed, and increases
    // register pressure in a situation where it's likely to matter.
    if (BB->succ_size() >= 25)
      NumChildren = 0;
    OpenChildren[Node] = NumChildren;
    // Add children in reverse order as then the next popped worklist node is
    // the first child of this node.  This means we ultimately traverse the
    // DOM tree in exactly the same order as if we'd recursed.
    for (int i = (int)NumChildren-1; i >= 0; --i) {
      MachineDomTreeNode *Child = Children[i];
      ParentMap[Child] = Node;
      WorkList.push_back(Child);
    }
  }
  if (Scopes.size() == 0)
    return;
  // Compute registers which are livein into the loop headers.
  RegSeen.clear();
  BackTrace.clear();
  InitRegPressure(Preheader);
  // Now perform LICM.
  for (MachineDomTreeNode *Node : Scopes) {
    MachineBasicBlock *MBB = Node->getBlock();
    EnterScope(MBB);
    // Process the block
    SpeculationState = SpeculateUnknown;
    for (MachineBasicBlock::iterator
         MII = MBB->begin(), E = MBB->end(); MII != E; ) {
      MachineBasicBlock::iterator NextMII = MII; ++NextMII;
      MachineInstr *MI = &*MII;
      if (!Hoist(MI, Preheader))
        UpdateRegPressure(MI);
      MII = NextMII;
    }
    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    ExitScopeIfDone(Node, OpenChildren, ParentMap);
  }
}
/// Sink instructions into loops if profitable. This especially tries to prevent
/// register spills caused by register pressure if there is little to no
/// overhead moving instructions into loops.
void MachineLICM::SinkIntoLoop() {
  MachineBasicBlock *Preheader = getCurPreheader();
  if (!Preheader)
    return;
  SmallVector<MachineInstr *, 8> Candidates;
  for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
       I != Preheader->instr_end(); ++I) {
    // We need to ensure that we can safely move this instruction into the loop.
    // As such, it must not have side-effects, e.g. such as a call has.  
    if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
      Candidates.push_back(&*I);
  }
  for (MachineInstr *I : Candidates) {
    const MachineOperand &MO = I->getOperand(0);
    if (!MO.isDef() || !MO.isReg() || !MO.getReg())
      continue;
    if (!MRI->hasOneDef(MO.getReg()))
      continue;
    bool CanSink = true;
    MachineBasicBlock *B = nullptr;
    for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
      // FIXME: Come up with a proper cost model that estimates whether sinking
      // the instruction (and thus possibly executing it on every loop
      // iteration) is more expensive than a register.
      // For now assumes that copies are cheap and thus almost always worth it.
      if (!MI.isCopy()) {
        CanSink = false;
        break;
      }
      if (!B) {
        B = MI.getParent();
        continue;
      }
      B = DT->findNearestCommonDominator(B, MI.getParent());
      if (!B) {
        CanSink = false;
        break;
      }
    }
    if (!CanSink || !B || B == Preheader)
      continue;
    B->splice(B->getFirstNonPHI(), Preheader, I);
  }
}
static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
}
/// Find all virtual register references that are liveout of the preheader to
/// initialize the starting "register pressure". Note this does not count live
/// through (livein but not used) registers.
void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
  std::fill(RegPressure.begin(), RegPressure.end(), 0);
  // If the preheader has only a single predecessor and it ends with a
  // fallthrough or an unconditional branch, then scan its predecessor for live
  // defs as well. This happens whenever the preheader is created by splitting
  // the critical edge from the loop predecessor to the loop header.
  if (BB->pred_size() == 1) {
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    SmallVector<MachineOperand, 4> Cond;
    if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
      InitRegPressure(*BB->pred_begin());
  }
  for (const MachineInstr &MI : *BB)
    UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
}
/// Update estimate of register pressure after the specified instruction.
void MachineLICM::UpdateRegPressure(const MachineInstr *MI,
                                    bool ConsiderUnseenAsDef) {
  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
  for (const auto &RPIdAndCost : Cost) {
    unsigned Class = RPIdAndCost.first;
    if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
      RegPressure[Class] = 0;
    else
      RegPressure[Class] += RPIdAndCost.second;
  }
}
/// Calculate the additional register pressure that the registers used in MI
/// cause.
///
/// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
/// figure out which usages are live-ins.
/// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
DenseMap<unsigned, int>
MachineLICM::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
                              bool ConsiderUnseenAsDef) {
  DenseMap<unsigned, int> Cost;
  if (MI->isImplicitDef())
    return Cost;
  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || MO.isImplicit())
      continue;
    unsigned Reg = MO.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
      continue;
    // FIXME: It seems bad to use RegSeen only for some of these calculations.
    bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
    const TargetRegisterClass *RC = MRI->getRegClass(Reg);
    RegClassWeight W = TRI->getRegClassWeight(RC);
    int RCCost = 0;
    if (MO.isDef())
      RCCost = W.RegWeight;
    else {
      bool isKill = isOperandKill(MO, MRI);
      if (isNew && !isKill && ConsiderUnseenAsDef)
        // Haven't seen this, it must be a livein.
        RCCost = W.RegWeight;
      else if (!isNew && isKill)
        RCCost = -W.RegWeight;
    }
    if (RCCost == 0)
      continue;
    const int *PS = TRI->getRegClassPressureSets(RC);
    for (; *PS != -1; ++PS) {
      if (Cost.find(*PS) == Cost.end())
        Cost[*PS] = RCCost;
      else
        Cost[*PS] += RCCost;
    }
  }
  return Cost;
}
/// Return true if this machine instruction loads from global offset table or
/// constant pool.
static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
  assert (MI.mayLoad() && "Expected MI that loads!");
  
  // If we lost memory operands, conservatively assume that the instruction
  // reads from everything.. 
  if (MI.memoperands_empty())
    return true;
  for (MachineMemOperand *MemOp : MI.memoperands())
    if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
      if (PSV->isGOT() || PSV->isConstantPool())
        return true;
  return false;
}
/// Returns true if the instruction may be a suitable candidate for LICM.
/// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
  // Check if it's safe to move the instruction.
  bool DontMoveAcrossStore = true;
  if (!I.isSafeToMove(AA, DontMoveAcrossStore))
    return false;
  // If it is load then check if it is guaranteed to execute by making sure that
  // it dominates all exiting blocks. If it doesn't, then there is a path out of
  // the loop which does not execute this load, so we can't hoist it. Loads
  // from constant memory are not safe to speculate all the time, for example
  // indexed load from a jump table.
  // Stores and side effects are already checked by isSafeToMove.
  if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
      !IsGuaranteedToExecute(I.getParent()))
    return false;
  return true;
}
/// Returns true if the instruction is loop invariant.
/// I.e., all virtual register operands are defined outside of the loop,
/// physical registers aren't accessed explicitly, and there are no side
/// effects that aren't captured by the operands or other flags.
///
bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
  if (!IsLICMCandidate(I))
    return false;
  // The instruction is loop invariant if all of its operands are.
  for (const MachineOperand &MO : I.operands()) {
    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;
    // Don't hoist an instruction that uses or defines a physical register.
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
          return false;
        // Otherwise it's safe to move.
        continue;
      } else if (!MO.isDead()) {
        // A def that isn't dead. We can't move it.
        return false;
      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
        // If the reg is live into the loop, we can't hoist an instruction
        // which would clobber it.
        return false;
      }
    }
    if (!MO.isUse())
      continue;
    assert(MRI->getVRegDef(Reg) &&
           "Machine instr not mapped for this vreg?!");
    // If the loop contains the definition of an operand, then the instruction
    // isn't loop invariant.
    if (CurLoop->contains(MRI->getVRegDef(Reg)))
      return false;
  }
  // If we got this far, the instruction is loop invariant!
  return true;
}
/// Return true if the specified instruction is used by a phi node and hoisting
/// it could cause a copy to be inserted.
bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
  SmallVector<const MachineInstr*, 8> Work(1, MI);
  do {
    MI = Work.pop_back_val();
    for (const MachineOperand &MO : MI->operands()) {
      if (!MO.isReg() || !MO.isDef())
        continue;
      unsigned Reg = MO.getReg();
      if (!TargetRegisterInfo::isVirtualRegister(Reg))
        continue;
      for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
        // A PHI may cause a copy to be inserted.
        if (UseMI.isPHI()) {
          // A PHI inside the loop causes a copy because the live range of Reg is
          // extended across the PHI.
          if (CurLoop->contains(&UseMI))
            return true;
          // A PHI in an exit block can cause a copy to be inserted if the PHI
          // has multiple predecessors in the loop with different values.
          // For now, approximate by rejecting all exit blocks.
          if (isExitBlock(UseMI.getParent()))
            return true;
          continue;
        }
        // Look past copies as well.
        if (UseMI.isCopy() && CurLoop->contains(&UseMI))
          Work.push_back(&UseMI);
      }
    }
  } while (!Work.empty());
  return false;
}
/// Compute operand latency between a def of 'Reg' and an use in the current
/// loop, return true if the target considered it high.
bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
                                        unsigned DefIdx, unsigned Reg) const {
  if (MRI->use_nodbg_empty(Reg))
    return false;
  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
    if (UseMI.isCopyLike())
      continue;
    if (!CurLoop->contains(UseMI.getParent()))
      continue;
    for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = UseMI.getOperand(i);
      if (!MO.isReg() || !MO.isUse())
        continue;
      unsigned MOReg = MO.getReg();
      if (MOReg != Reg)
        continue;
      if (TII->hasHighOperandLatency(SchedModel, MRI, &MI, DefIdx, &UseMI, i))
        return true;
    }
    // Only look at the first in loop use.
    break;
  }
  return false;
}
/// Return true if the instruction is marked "cheap" or the operand latency
/// between its def and a use is one or less.
bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
  if (TII->isAsCheapAsAMove(&MI) || MI.isCopyLike())
    return true;
  bool isCheap = false;
  unsigned NumDefs = MI.getDesc().getNumDefs();
  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
    MachineOperand &DefMO = MI.getOperand(i);
    if (!DefMO.isReg() || !DefMO.isDef())
      continue;
    --NumDefs;
    unsigned Reg = DefMO.getReg();
    if (TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;
    if (!TII->hasLowDefLatency(SchedModel, &MI, i))
      return false;
    isCheap = true;
  }
  return isCheap;
}
/// Visit BBs from header to current BB, check if hoisting an instruction of the
/// given cost matrix can cause high register pressure.
bool MachineLICM::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
                                          bool CheapInstr) {
  for (const auto &RPIdAndCost : Cost) {
    if (RPIdAndCost.second <= 0)
      continue;
    unsigned Class = RPIdAndCost.first;
    int Limit = RegLimit[Class];
    // Don't hoist cheap instructions if they would increase register pressure,
    // even if we're under the limit.
    if (CheapInstr && !HoistCheapInsts)
      return true;
    for (const auto &RP : BackTrace)
      if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
        return true;
  }
  return false;
}
/// Traverse the back trace from header to the current block and update their
/// register pressures to reflect the effect of hoisting MI from the current
/// block to the preheader.
void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
  // First compute the 'cost' of the instruction, i.e. its contribution
  // to register pressure.
  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
                               /*ConsiderUnseenAsDef=*/false);
  // Update register pressure of blocks from loop header to current block.
  for (auto &RP : BackTrace)
    for (const auto &RPIdAndCost : Cost)
      RP[RPIdAndCost.first] += RPIdAndCost.second;
}
/// Return true if it is potentially profitable to hoist the given loop
/// invariant.
bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
  if (MI.isImplicitDef())
    return true;
  // Besides removing computation from the loop, hoisting an instruction has
  // these effects:
  //
  // - The value defined by the instruction becomes live across the entire
  //   loop. This increases register pressure in the loop.
  //
  // - If the value is used by a PHI in the loop, a copy will be required for
  //   lowering the PHI after extending the live range.
  //
  // - When hoisting the last use of a value in the loop, that value no longer
  //   needs to be live in the loop. This lowers register pressure in the loop.
  bool CheapInstr = IsCheapInstruction(MI);
  bool CreatesCopy = HasLoopPHIUse(&MI);
  // Don't hoist a cheap instruction if it would create a copy in the loop.
  if (CheapInstr && CreatesCopy) {
    DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
    return false;
  }
  // Rematerializable instructions should always be hoisted since the register
  // allocator can just pull them down again when needed.
  if (TII->isTriviallyReMaterializable(&MI, AA))
    return true;
  // FIXME: If there are long latency loop-invariant instructions inside the
  // loop at this point, why didn't the optimizer's LICM hoist them?
  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || MO.isImplicit())
      continue;
    unsigned Reg = MO.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
      continue;
    if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
      DEBUG(dbgs() << "Hoist High Latency: " << MI);
      ++NumHighLatency;
      return true;
    }
  }
  // Estimate register pressure to determine whether to LICM the instruction.
  // In low register pressure situation, we can be more aggressive about
  // hoisting. Also, favors hoisting long latency instructions even in
  // moderately high pressure situation.
  // Cheap instructions will only be hoisted if they don't increase register
  // pressure at all.
  auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
                               /*ConsiderUnseenAsDef=*/false);
  // Visit BBs from header to current BB, if hoisting this doesn't cause
  // high register pressure, then it's safe to proceed.
  if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
    DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
    ++NumLowRP;
    return true;
  }
  // Don't risk increasing register pressure if it would create copies.
  if (CreatesCopy) {
    DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
    return false;
  }
  // Do not "speculate" in high register pressure situation. If an
  // instruction is not guaranteed to be executed in the loop, it's best to be
  // conservative.
  if (AvoidSpeculation &&
      (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
    DEBUG(dbgs() << "Won't speculate: " << MI);
    return false;
  }
  // High register pressure situation, only hoist if the instruction is going
  // to be remat'ed.
  if (!TII->isTriviallyReMaterializable(&MI, AA) &&
      !MI.isInvariantLoad(AA)) {
    DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
    return false;
  }
  return true;
}
/// Unfold a load from the given machineinstr if the load itself could be
/// hoisted. Return the unfolded and hoistable load, or null if the load
/// couldn't be unfolded or if it wouldn't be hoistable.
MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
  // Don't unfold simple loads.
  if (MI->canFoldAsLoad())
    return nullptr;
  // If not, we may be able to unfold a load and hoist that.
  // First test whether the instruction is loading from an amenable
  // memory location.
  if (!MI->isInvariantLoad(AA))
    return nullptr;
  // Next determine the register class for a temporary register.
  unsigned LoadRegIndex;
  unsigned NewOpc =
    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
                                    /*UnfoldLoad=*/true,
                                    /*UnfoldStore=*/false,
                                    &LoadRegIndex);
  if (NewOpc == 0) return nullptr;
  const MCInstrDesc &MID = TII->get(NewOpc);
  if (MID.getNumDefs() != 1) return nullptr;
  MachineFunction &MF = *MI->getParent()->getParent();
  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
  // Ok, we're unfolding. Create a temporary register and do the unfold.
  unsigned Reg = MRI->createVirtualRegister(RC);
  SmallVector<MachineInstr *, 2> NewMIs;
  bool Success =
    TII->unfoldMemoryOperand(MF, MI, Reg,
                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
                             NewMIs);
  (void)Success;
  assert(Success &&
         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
         "succeeded!");
  assert(NewMIs.size() == 2 &&
         "Unfolded a load into multiple instructions!");
  MachineBasicBlock *MBB = MI->getParent();
  MachineBasicBlock::iterator Pos = MI;
  MBB->insert(Pos, NewMIs[0]);
  MBB->insert(Pos, NewMIs[1]);
  // If unfolding produced a load that wasn't loop-invariant or profitable to
  // hoist, discard the new instructions and bail.
  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
    NewMIs[0]->eraseFromParent();
    NewMIs[1]->eraseFromParent();
    return nullptr;
  }
  // Update register pressure for the unfolded instruction.
  UpdateRegPressure(NewMIs[1]);
  // Otherwise we successfully unfolded a load that we can hoist.
  MI->eraseFromParent();
  return NewMIs[0];
}
/// Initialize the CSE map with instructions that are in the current loop
/// preheader that may become duplicates of instructions that are hoisted
/// out of the loop.
void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
  for (MachineInstr &MI : *BB)
    CSEMap[MI.getOpcode()].push_back(&MI);
}
/// Find an instruction amount PrevMIs that is a duplicate of MI.
/// Return this instruction if it's found.
const MachineInstr*
MachineLICM::LookForDuplicate(const MachineInstr *MI,
                              std::vector<const MachineInstr*> &PrevMIs) {
  for (const MachineInstr *PrevMI : PrevMIs)
    if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr)))
      return PrevMI;
  return nullptr;
}
/// Given a LICM'ed instruction, look for an instruction on the preheader that
/// computes the same value. If it's found, do a RAU on with the definition of
/// the existing instruction rather than hoisting the instruction to the
/// preheader.
bool MachineLICM::EliminateCSE(MachineInstr *MI,
          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
  // the undef property onto uses.
  if (CI == CSEMap.end() || MI->isImplicitDef())
    return false;
  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
    // Replace virtual registers defined by MI by their counterparts defined
    // by Dup.
    SmallVector<unsigned, 2> Defs;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);
      // Physical registers may not differ here.
      assert((!MO.isReg() || MO.getReg() == 0 ||
              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
              MO.getReg() == Dup->getOperand(i).getReg()) &&
             "Instructions with different phys regs are not identical!");
      if (MO.isReg() && MO.isDef() &&
          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
        Defs.push_back(i);
    }
    SmallVector<const TargetRegisterClass*, 2> OrigRCs;
    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
      unsigned Idx = Defs[i];
      unsigned Reg = MI->getOperand(Idx).getReg();
      unsigned DupReg = Dup->getOperand(Idx).getReg();
      OrigRCs.push_back(MRI->getRegClass(DupReg));
      if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
        // Restore old RCs if more than one defs.
        for (unsigned j = 0; j != i; ++j)
          MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
        return false;
      }
    }
    for (unsigned Idx : Defs) {
      unsigned Reg = MI->getOperand(Idx).getReg();
      unsigned DupReg = Dup->getOperand(Idx).getReg();
      MRI->replaceRegWith(Reg, DupReg);
      MRI->clearKillFlags(DupReg);
    }
    MI->eraseFromParent();
    ++NumCSEed;
    return true;
  }
  return false;
}
/// Return true if the given instruction will be CSE'd if it's hoisted out of
/// the loop.
bool MachineLICM::MayCSE(MachineInstr *MI) {
  unsigned Opcode = MI->getOpcode();
  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
    CI = CSEMap.find(Opcode);
  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
  // the undef property onto uses.
  if (CI == CSEMap.end() || MI->isImplicitDef())
    return false;
  return LookForDuplicate(MI, CI->second) != nullptr;
}
/// When an instruction is found to use only loop invariant operands
/// that are safe to hoist, this instruction is called to do the dirty work.
/// It returns true if the instruction is hoisted.
bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
  // First check whether we should hoist this instruction.
  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
    // If not, try unfolding a hoistable load.
    MI = ExtractHoistableLoad(MI);
    if (!MI) return false;
  }
  // Now move the instructions to the predecessor, inserting it before any
  // terminator instructions.
  DEBUG({
      dbgs() << "Hoisting " << *MI;
      if (Preheader->getBasicBlock())
        dbgs() << " to MachineBasicBlock "
               << Preheader->getName();
      if (MI->getParent()->getBasicBlock())
        dbgs() << " from MachineBasicBlock "
               << MI->getParent()->getName();
      dbgs() << "\n";
    });
  // If this is the first instruction being hoisted to the preheader,
  // initialize the CSE map with potential common expressions.
  if (FirstInLoop) {
    InitCSEMap(Preheader);
    FirstInLoop = false;
  }
  // Look for opportunity to CSE the hoisted instruction.
  unsigned Opcode = MI->getOpcode();
  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
    CI = CSEMap.find(Opcode);
  if (!EliminateCSE(MI, CI)) {
    // Otherwise, splice the instruction to the preheader.
    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
    // Update register pressure for BBs from header to this block.
    UpdateBackTraceRegPressure(MI);
    // Clear the kill flags of any register this instruction defines,
    // since they may need to be live throughout the entire loop
    // rather than just live for part of it.
    for (MachineOperand &MO : MI->operands())
      if (MO.isReg() && MO.isDef() && !MO.isDead())
        MRI->clearKillFlags(MO.getReg());
    // Add to the CSE map.
    if (CI != CSEMap.end())
      CI->second.push_back(MI);
    else
      CSEMap[Opcode].push_back(MI);
  }
  ++NumHoisted;
  Changed = true;
  return true;
}
/// Get the preheader for the current loop, splitting a critical edge if needed.
MachineBasicBlock *MachineLICM::getCurPreheader() {
  // Determine the block to which to hoist instructions. If we can't find a
  // suitable loop predecessor, we can't do any hoisting.
  // If we've tried to get a preheader and failed, don't try again.
  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
    return nullptr;
  if (!CurPreheader) {
    CurPreheader = CurLoop->getLoopPreheader();
    if (!CurPreheader) {
      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
      if (!Pred) {
        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
        return nullptr;
      }
      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
      if (!CurPreheader) {
        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
        return nullptr;
      }
    }
  }
  return CurPreheader;
}
 
     |