1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
  
     | 
    
      //===- InstCombineSelect.cpp ----------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitSelect function.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
static SelectPatternFlavor
getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
  switch (SPF) {
  default:
    llvm_unreachable("unhandled!");
  case SPF_SMIN:
    return SPF_SMAX;
  case SPF_UMIN:
    return SPF_UMAX;
  case SPF_SMAX:
    return SPF_SMIN;
  case SPF_UMAX:
    return SPF_UMIN;
  }
}
static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
                                                   bool Ordered=false) {
  switch (SPF) {
  default:
    llvm_unreachable("unhandled!");
  case SPF_SMIN:
    return ICmpInst::ICMP_SLT;
  case SPF_UMIN:
    return ICmpInst::ICMP_ULT;
  case SPF_SMAX:
    return ICmpInst::ICMP_SGT;
  case SPF_UMAX:
    return ICmpInst::ICMP_UGT;
  case SPF_FMINNUM:
    return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
  case SPF_FMAXNUM:
    return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
  }
}
static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
                                          SelectPatternFlavor SPF, Value *A,
                                          Value *B) {
  CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
  assert(CmpInst::isIntPredicate(Pred));
  return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
}
/// We want to turn code that looks like this:
///   %C = or %A, %B
///   %D = select %cond, %C, %A
/// into:
///   %C = select %cond, %B, 0
///   %D = or %A, %C
///
/// Assuming that the specified instruction is an operand to the select, return
/// a bitmask indicating which operands of this instruction are foldable if they
/// equal the other incoming value of the select.
///
static unsigned GetSelectFoldableOperands(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    return 3;              // Can fold through either operand.
  case Instruction::Sub:   // Can only fold on the amount subtracted.
  case Instruction::Shl:   // Can only fold on the shift amount.
  case Instruction::LShr:
  case Instruction::AShr:
    return 1;
  default:
    return 0;              // Cannot fold
  }
}
/// For the same transformation as the previous function, return the identity
/// constant that goes into the select.
static Constant *GetSelectFoldableConstant(Instruction *I) {
  switch (I->getOpcode()) {
  default: llvm_unreachable("This cannot happen!");
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    return Constant::getNullValue(I->getType());
  case Instruction::And:
    return Constant::getAllOnesValue(I->getType());
  case Instruction::Mul:
    return ConstantInt::get(I->getType(), 1);
  }
}
/// Here we have (select c, TI, FI), and we know that TI and FI
/// have the same opcode and only one use each.  Try to simplify this.
Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
                                          Instruction *FI) {
  if (TI->getNumOperands() == 1) {
    // If this is a non-volatile load or a cast from the same type,
    // merge.
    if (TI->isCast()) {
      Type *FIOpndTy = FI->getOperand(0)->getType();
      if (TI->getOperand(0)->getType() != FIOpndTy)
        return nullptr;
      // The select condition may be a vector. We may only change the operand
      // type if the vector width remains the same (and matches the condition).
      Type *CondTy = SI.getCondition()->getType();
      if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
          CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
        return nullptr;
    } else {
      return nullptr;  // unknown unary op.
    }
    // Fold this by inserting a select from the input values.
    Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
                                         FI->getOperand(0), SI.getName()+".v");
    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
                            TI->getType());
  }
  // Only handle binary operators here.
  if (!isa<BinaryOperator>(TI))
    return nullptr;
  // Figure out if the operations have any operands in common.
  Value *MatchOp, *OtherOpT, *OtherOpF;
  bool MatchIsOpZero;
  if (TI->getOperand(0) == FI->getOperand(0)) {
    MatchOp  = TI->getOperand(0);
    OtherOpT = TI->getOperand(1);
    OtherOpF = FI->getOperand(1);
    MatchIsOpZero = true;
  } else if (TI->getOperand(1) == FI->getOperand(1)) {
    MatchOp  = TI->getOperand(1);
    OtherOpT = TI->getOperand(0);
    OtherOpF = FI->getOperand(0);
    MatchIsOpZero = false;
  } else if (!TI->isCommutative()) {
    return nullptr;
  } else if (TI->getOperand(0) == FI->getOperand(1)) {
    MatchOp  = TI->getOperand(0);
    OtherOpT = TI->getOperand(1);
    OtherOpF = FI->getOperand(0);
    MatchIsOpZero = true;
  } else if (TI->getOperand(1) == FI->getOperand(0)) {
    MatchOp  = TI->getOperand(1);
    OtherOpT = TI->getOperand(0);
    OtherOpF = FI->getOperand(1);
    MatchIsOpZero = true;
  } else {
    return nullptr;
  }
  // If we reach here, they do have operations in common.
  Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
                                       OtherOpF, SI.getName()+".v");
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    if (MatchIsOpZero)
      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
    else
      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
  }
  llvm_unreachable("Shouldn't get here");
}
static bool isSelect01(Constant *C1, Constant *C2) {
  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
  if (!C1I)
    return false;
  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
  if (!C2I)
    return false;
  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
    return false;
  return C1I->isOne() || C1I->isAllOnesValue() ||
         C2I->isOne() || C2I->isAllOnesValue();
}
/// Try to fold the select into one of the operands to allow further
/// optimization.
Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
                                            Value *FalseVal) {
  // See the comment above GetSelectFoldableOperands for a description of the
  // transformation we are doing here.
  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
        !isa<Constant>(FalseVal)) {
      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
        unsigned OpToFold = 0;
        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
          OpToFold = 1;
        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
          OpToFold = 2;
        }
        if (OpToFold) {
          Constant *C = GetSelectFoldableConstant(TVI);
          Value *OOp = TVI->getOperand(2-OpToFold);
          // Avoid creating select between 2 constants unless it's selecting
          // between 0, 1 and -1.
          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
            Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
            NewSel->takeName(TVI);
            BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
            BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
                                                        FalseVal, NewSel);
            if (isa<PossiblyExactOperator>(BO))
              BO->setIsExact(TVI_BO->isExact());
            if (isa<OverflowingBinaryOperator>(BO)) {
              BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
              BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
            }
            return BO;
          }
        }
      }
    }
  }
  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
        !isa<Constant>(TrueVal)) {
      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
        unsigned OpToFold = 0;
        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
          OpToFold = 1;
        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
          OpToFold = 2;
        }
        if (OpToFold) {
          Constant *C = GetSelectFoldableConstant(FVI);
          Value *OOp = FVI->getOperand(2-OpToFold);
          // Avoid creating select between 2 constants unless it's selecting
          // between 0, 1 and -1.
          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
            Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
            NewSel->takeName(FVI);
            BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
            BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
                                                        TrueVal, NewSel);
            if (isa<PossiblyExactOperator>(BO))
              BO->setIsExact(FVI_BO->isExact());
            if (isa<OverflowingBinaryOperator>(BO)) {
              BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
              BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
            }
            return BO;
          }
        }
      }
    }
  }
  return nullptr;
}
/// We want to turn:
///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
/// into:
///   (or (shl (and X, C1), C3), y)
/// iff:
///   C1 and C2 are both powers of 2
/// where:
///   C3 = Log(C2) - Log(C1)
///
/// This transform handles cases where:
/// 1. The icmp predicate is inverted
/// 2. The select operands are reversed
/// 3. The magnitude of C2 and C1 are flipped
static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
                                  Value *FalseVal,
                                  InstCombiner::BuilderTy *Builder) {
  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
  if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
    return nullptr;
  Value *CmpLHS = IC->getOperand(0);
  Value *CmpRHS = IC->getOperand(1);
  if (!match(CmpRHS, m_Zero()))
    return nullptr;
  Value *X;
  const APInt *C1;
  if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
    return nullptr;
  const APInt *C2;
  bool OrOnTrueVal = false;
  bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
  if (!OrOnFalseVal)
    OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
  if (!OrOnFalseVal && !OrOnTrueVal)
    return nullptr;
  Value *V = CmpLHS;
  Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
  unsigned C1Log = C1->logBase2();
  unsigned C2Log = C2->logBase2();
  if (C2Log > C1Log) {
    V = Builder->CreateZExtOrTrunc(V, Y->getType());
    V = Builder->CreateShl(V, C2Log - C1Log);
  } else if (C1Log > C2Log) {
    V = Builder->CreateLShr(V, C1Log - C2Log);
    V = Builder->CreateZExtOrTrunc(V, Y->getType());
  } else
    V = Builder->CreateZExtOrTrunc(V, Y->getType());
  ICmpInst::Predicate Pred = IC->getPredicate();
  if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
      (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
    V = Builder->CreateXor(V, *C2);
  return Builder->CreateOr(V, Y);
}
/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
/// call to cttz/ctlz with flag 'is_zero_undef' cleared.
///
/// For example, we can fold the following code sequence:
/// \code
///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
///   %1 = icmp ne i32 %x, 0
///   %2 = select i1 %1, i32 %0, i32 32
/// \code
/// 
/// into:
///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
                                  InstCombiner::BuilderTy *Builder) {
  ICmpInst::Predicate Pred = ICI->getPredicate();
  Value *CmpLHS = ICI->getOperand(0);
  Value *CmpRHS = ICI->getOperand(1);
  // Check if the condition value compares a value for equality against zero.
  if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
    return nullptr;
  Value *Count = FalseVal;
  Value *ValueOnZero = TrueVal;
  if (Pred == ICmpInst::ICMP_NE)
    std::swap(Count, ValueOnZero);
  // Skip zero extend/truncate.
  Value *V = nullptr;
  if (match(Count, m_ZExt(m_Value(V))) ||
      match(Count, m_Trunc(m_Value(V))))
    Count = V;
  // Check if the value propagated on zero is a constant number equal to the
  // sizeof in bits of 'Count'.
  unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
  if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
    return nullptr;
  // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
  // input to the cttz/ctlz is used as LHS for the compare instruction.
  if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
      match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
    IntrinsicInst *II = cast<IntrinsicInst>(Count);
    IRBuilder<> Builder(II);
    // Explicitly clear the 'undef_on_zero' flag.
    IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
    Type *Ty = NewI->getArgOperand(1)->getType();
    NewI->setArgOperand(1, Constant::getNullValue(Ty));
    Builder.Insert(NewI);
    return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
  }
  return nullptr;
}
/// Visit a SelectInst that has an ICmpInst as its first operand.
Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
                                                   ICmpInst *ICI) {
  bool Changed = false;
  ICmpInst::Predicate Pred = ICI->getPredicate();
  Value *CmpLHS = ICI->getOperand(0);
  Value *CmpRHS = ICI->getOperand(1);
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();
  // Check cases where the comparison is with a constant that
  // can be adjusted to fit the min/max idiom. We may move or edit ICI
  // here, so make sure the select is the only user.
  if (ICI->hasOneUse())
    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
      switch (Pred) {
      default: break;
      case ICmpInst::ICMP_ULT:
      case ICmpInst::ICMP_SLT:
      case ICmpInst::ICMP_UGT:
      case ICmpInst::ICMP_SGT: {
        // These transformations only work for selects over integers.
        IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
        if (!SelectTy)
          break;
        Constant *AdjustedRHS;
        if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
        else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
            (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
          ; // Nothing to do here. Values match without any sign/zero extension.
        // Types do not match. Instead of calculating this with mixed types
        // promote all to the larger type. This enables scalar evolution to
        // analyze this expression.
        else if (CmpRHS->getType()->getScalarSizeInBits()
                 < SelectTy->getBitWidth()) {
          Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
          // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
          // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
          // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
          // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
          if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
                sextRHS == FalseVal) {
            CmpLHS = TrueVal;
            AdjustedRHS = sextRHS;
          } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
                     sextRHS == TrueVal) {
            CmpLHS = FalseVal;
            AdjustedRHS = sextRHS;
          } else if (ICI->isUnsigned()) {
            Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
            // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
            // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
            // zext + signed compare cannot be changed:
            //    0xff <s 0x00, but 0x00ff >s 0x0000
            if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
                zextRHS == FalseVal) {
              CmpLHS = TrueVal;
              AdjustedRHS = zextRHS;
            } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
                       zextRHS == TrueVal) {
              CmpLHS = FalseVal;
              AdjustedRHS = zextRHS;
            } else
              break;
          } else
            break;
        } else
          break;
        Pred = ICmpInst::getSwappedPredicate(Pred);
        CmpRHS = AdjustedRHS;
        std::swap(FalseVal, TrueVal);
        ICI->setPredicate(Pred);
        ICI->setOperand(0, CmpLHS);
        ICI->setOperand(1, CmpRHS);
        SI.setOperand(1, TrueVal);
        SI.setOperand(2, FalseVal);
        // Move ICI instruction right before the select instruction. Otherwise
        // the sext/zext value may be defined after the ICI instruction uses it.
        ICI->moveBefore(&SI);
        Changed = true;
        break;
      }
      }
    }
  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
  // FIXME: Type and constness constraints could be lifted, but we have to
  //        watch code size carefully. We should consider xor instead of
  //        sub/add when we decide to do that.
  if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
    if (TrueVal->getType() == Ty) {
      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
        ConstantInt *C1 = nullptr, *C2 = nullptr;
        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
          C1 = dyn_cast<ConstantInt>(TrueVal);
          C2 = dyn_cast<ConstantInt>(FalseVal);
        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
          C1 = dyn_cast<ConstantInt>(FalseVal);
          C2 = dyn_cast<ConstantInt>(TrueVal);
        }
        if (C1 && C2) {
          // This shift results in either -1 or 0.
          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
          // Check if we can express the operation with a single or.
          if (C2->isAllOnesValue())
            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
        }
      }
    }
  }
  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
      SI.setOperand(1, CmpRHS);
      Changed = true;
    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
      SI.setOperand(2, CmpRHS);
      Changed = true;
    }
  }
  {
    unsigned BitWidth = DL.getTypeSizeInBits(TrueVal->getType());
    APInt MinSignedValue = APInt::getSignBit(BitWidth);
    Value *X;
    const APInt *Y, *C;
    bool TrueWhenUnset;
    bool IsBitTest = false;
    if (ICmpInst::isEquality(Pred) &&
        match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
        match(CmpRHS, m_Zero())) {
      IsBitTest = true;
      TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
    } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
      X = CmpLHS;
      Y = &MinSignedValue;
      IsBitTest = true;
      TrueWhenUnset = false;
    } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
      X = CmpLHS;
      Y = &MinSignedValue;
      IsBitTest = true;
      TrueWhenUnset = true;
    }
    if (IsBitTest) {
      Value *V = nullptr;
      // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
      if (TrueWhenUnset && TrueVal == X &&
          match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
        V = Builder->CreateAnd(X, ~(*Y));
      // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
      else if (!TrueWhenUnset && FalseVal == X &&
               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
        V = Builder->CreateAnd(X, ~(*Y));
      // (X & Y) == 0 ? X ^ Y : X  --> X | Y
      else if (TrueWhenUnset && FalseVal == X &&
               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
        V = Builder->CreateOr(X, *Y);
      // (X & Y) != 0 ? X : X ^ Y  --> X | Y
      else if (!TrueWhenUnset && TrueVal == X &&
               match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
        V = Builder->CreateOr(X, *Y);
      if (V)
        return ReplaceInstUsesWith(SI, V);
    }
  }
  if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
    return ReplaceInstUsesWith(SI, V);
  if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
    return ReplaceInstUsesWith(SI, V);
  return Changed ? &SI : nullptr;
}
/// SI is a select whose condition is a PHI node (but the two may be in
/// different blocks). See if the true/false values (V) are live in all of the
/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
///
///   X = phi [ C1, BB1], [C2, BB2]
///   Y = add
///   Z = select X, Y, 0
///
/// because Y is not live in BB1/BB2.
///
static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
                                                   const SelectInst &SI) {
  // If the value is a non-instruction value like a constant or argument, it
  // can always be mapped.
  const Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return true;
  // If V is a PHI node defined in the same block as the condition PHI, we can
  // map the arguments.
  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
  if (const PHINode *VP = dyn_cast<PHINode>(I))
    if (VP->getParent() == CondPHI->getParent())
      return true;
  // Otherwise, if the PHI and select are defined in the same block and if V is
  // defined in a different block, then we can transform it.
  if (SI.getParent() == CondPHI->getParent() &&
      I->getParent() != CondPHI->getParent())
    return true;
  // Otherwise we have a 'hard' case and we can't tell without doing more
  // detailed dominator based analysis, punt.
  return false;
}
/// We have an SPF (e.g. a min or max) of an SPF of the form:
///   SPF2(SPF1(A, B), C)
Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
                                        SelectPatternFlavor SPF1,
                                        Value *A, Value *B,
                                        Instruction &Outer,
                                        SelectPatternFlavor SPF2, Value *C) {
  if (C == A || C == B) {
    // MAX(MAX(A, B), B) -> MAX(A, B)
    // MIN(MIN(a, b), a) -> MIN(a, b)
    if (SPF1 == SPF2)
      return ReplaceInstUsesWith(Outer, Inner);
    // MAX(MIN(a, b), a) -> a
    // MIN(MAX(a, b), a) -> a
    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
      return ReplaceInstUsesWith(Outer, C);
  }
  if (SPF1 == SPF2) {
    if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) {
      if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) {
        APInt ACB = CB->getValue();
        APInt ACC = CC->getValue();
        // MIN(MIN(A, 23), 97) -> MIN(A, 23)
        // MAX(MAX(A, 97), 23) -> MAX(A, 97)
        if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) ||
            (SPF1 == SPF_SMIN && ACB.sle(ACC)) ||
            (SPF1 == SPF_UMAX && ACB.uge(ACC)) ||
            (SPF1 == SPF_SMAX && ACB.sge(ACC)))
          return ReplaceInstUsesWith(Outer, Inner);
        // MIN(MIN(A, 97), 23) -> MIN(A, 23)
        // MAX(MAX(A, 23), 97) -> MAX(A, 97)
        if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) ||
            (SPF1 == SPF_SMIN && ACB.sgt(ACC)) ||
            (SPF1 == SPF_UMAX && ACB.ult(ACC)) ||
            (SPF1 == SPF_SMAX && ACB.slt(ACC))) {
          Outer.replaceUsesOfWith(Inner, A);
          return &Outer;
        }
      }
    }
  }
  // ABS(ABS(X)) -> ABS(X)
  // NABS(NABS(X)) -> NABS(X)
  if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
    return ReplaceInstUsesWith(Outer, Inner);
  }
  // ABS(NABS(X)) -> ABS(X)
  // NABS(ABS(X)) -> NABS(X)
  if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
      (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
    SelectInst *SI = cast<SelectInst>(Inner);
    Value *NewSI = Builder->CreateSelect(
        SI->getCondition(), SI->getFalseValue(), SI->getTrueValue());
    return ReplaceInstUsesWith(Outer, NewSI);
  }
  auto IsFreeOrProfitableToInvert =
      [&](Value *V, Value *&NotV, bool &ElidesXor) {
    if (match(V, m_Not(m_Value(NotV)))) {
      // If V has at most 2 uses then we can get rid of the xor operation
      // entirely.
      ElidesXor |= !V->hasNUsesOrMore(3);
      return true;
    }
    if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
      NotV = nullptr;
      return true;
    }
    return false;
  };
  Value *NotA, *NotB, *NotC;
  bool ElidesXor = false;
  // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
  // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
  // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
  // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
  //
  // This transform is performance neutral if we can elide at least one xor from
  // the set of three operands, since we'll be tacking on an xor at the very
  // end.
  if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
      IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
      IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
    if (!NotA)
      NotA = Builder->CreateNot(A);
    if (!NotB)
      NotB = Builder->CreateNot(B);
    if (!NotC)
      NotC = Builder->CreateNot(C);
    Value *NewInner = generateMinMaxSelectPattern(
        Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
    Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
        Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
    return ReplaceInstUsesWith(Outer, NewOuter);
  }
  return nullptr;
}
/// If one of the constants is zero (we know they can't both be) and we have an
/// icmp instruction with zero, and we have an 'and' with the non-constant value
/// and a power of two we can turn the select into a shift on the result of the
/// 'and'.
static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
                                ConstantInt *FalseVal,
                                InstCombiner::BuilderTy *Builder) {
  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
  if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
    return nullptr;
  if (!match(IC->getOperand(1), m_Zero()))
    return nullptr;
  ConstantInt *AndRHS;
  Value *LHS = IC->getOperand(0);
  if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
    return nullptr;
  // If both select arms are non-zero see if we have a select of the form
  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
  // for 'x ? 2^n : 0' and fix the thing up at the end.
  ConstantInt *Offset = nullptr;
  if (!TrueVal->isZero() && !FalseVal->isZero()) {
    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
      Offset = FalseVal;
    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
      Offset = TrueVal;
    else
      return nullptr;
    // Adjust TrueVal and FalseVal to the offset.
    TrueVal = ConstantInt::get(Builder->getContext(),
                               TrueVal->getValue() - Offset->getValue());
    FalseVal = ConstantInt::get(Builder->getContext(),
                                FalseVal->getValue() - Offset->getValue());
  }
  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
  if (!AndRHS->getValue().isPowerOf2() ||
      (!TrueVal->getValue().isPowerOf2() &&
       !FalseVal->getValue().isPowerOf2()))
    return nullptr;
  // Determine which shift is needed to transform result of the 'and' into the
  // desired result.
  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
  unsigned ValZeros = ValC->getValue().logBase2();
  unsigned AndZeros = AndRHS->getValue().logBase2();
  // If types don't match we can still convert the select by introducing a zext
  // or a trunc of the 'and'. The trunc case requires that all of the truncated
  // bits are zero, we can figure that out by looking at the 'and' mask.
  if (AndZeros >= ValC->getBitWidth())
    return nullptr;
  Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
  if (ValZeros > AndZeros)
    V = Builder->CreateShl(V, ValZeros - AndZeros);
  else if (ValZeros < AndZeros)
    V = Builder->CreateLShr(V, AndZeros - ValZeros);
  // Okay, now we know that everything is set up, we just don't know whether we
  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
  bool ShouldNotVal = !TrueVal->isZero();
  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
  if (ShouldNotVal)
    V = Builder->CreateXor(V, ValC);
  // Apply an offset if needed.
  if (Offset)
    V = Builder->CreateAdd(V, Offset);
  return V;
}
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
  Value *CondVal = SI.getCondition();
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();
  if (Value *V =
          SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC))
    return ReplaceInstUsesWith(SI, V);
  if (SI.getType()->isIntegerTy(1)) {
    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
      if (C->getZExtValue()) {
        // Change: A = select B, true, C --> A = or B, C
        return BinaryOperator::CreateOr(CondVal, FalseVal);
      }
      // Change: A = select B, false, C --> A = and !B, C
      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
      return BinaryOperator::CreateAnd(NotCond, FalseVal);
    }
    if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
      if (!C->getZExtValue()) {
        // Change: A = select B, C, false --> A = and B, C
        return BinaryOperator::CreateAnd(CondVal, TrueVal);
      }
      // Change: A = select B, C, true --> A = or !B, C
      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
      return BinaryOperator::CreateOr(NotCond, TrueVal);
    }
    // select a, b, a  -> a&b
    // select a, a, b  -> a|b
    if (CondVal == TrueVal)
      return BinaryOperator::CreateOr(CondVal, FalseVal);
    if (CondVal == FalseVal)
      return BinaryOperator::CreateAnd(CondVal, TrueVal);
    // select a, ~a, b -> (~a)&b
    // select a, b, ~a -> (~a)|b
    if (match(TrueVal, m_Not(m_Specific(CondVal))))
      return BinaryOperator::CreateAnd(TrueVal, FalseVal);
    if (match(FalseVal, m_Not(m_Specific(CondVal))))
      return BinaryOperator::CreateOr(TrueVal, FalseVal);
  }
  // Selecting between two integer constants?
  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
      // select C, 1, 0 -> zext C to int
      if (FalseValC->isZero() && TrueValC->getValue() == 1)
        return new ZExtInst(CondVal, SI.getType());
      // select C, -1, 0 -> sext C to int
      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
        return new SExtInst(CondVal, SI.getType());
      // select C, 0, 1 -> zext !C to int
      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
        return new ZExtInst(NotCond, SI.getType());
      }
      // select C, 0, -1 -> sext !C to int
      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
        return new SExtInst(NotCond, SI.getType());
      }
      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
        return ReplaceInstUsesWith(SI, V);
    }
  // See if we are selecting two values based on a comparison of the two values.
  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
      // Transform (X == Y) ? X : Y  -> Y
      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
        // This is not safe in general for floating point:
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
        return ReplaceInstUsesWith(SI, FalseVal);
      }
      // Transform (X une Y) ? X : Y  -> X
      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
        // This is not safe in general for floating point:
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
        return ReplaceInstUsesWith(SI, TrueVal);
      }
      // Canonicalize to use ordered comparisons by swapping the select
      // operands.
      //
      // e.g.
      // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
      if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
        FCmpInst::Predicate InvPred = FCI->getInversePredicate();
        IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
        Builder->setFastMathFlags(FCI->getFastMathFlags());
        Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
                                             FCI->getName() + ".inv");
        return SelectInst::Create(NewCond, FalseVal, TrueVal,
                                  SI.getName() + ".p");
      }
      // NOTE: if we wanted to, this is where to detect MIN/MAX
    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
      // Transform (X == Y) ? Y : X  -> X
      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
        // This is not safe in general for floating point:
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
          return ReplaceInstUsesWith(SI, FalseVal);
      }
      // Transform (X une Y) ? Y : X  -> Y
      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
        // This is not safe in general for floating point:
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
          return ReplaceInstUsesWith(SI, TrueVal);
      }
      // Canonicalize to use ordered comparisons by swapping the select
      // operands.
      //
      // e.g.
      // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
      if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
        FCmpInst::Predicate InvPred = FCI->getInversePredicate();
        IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
        Builder->setFastMathFlags(FCI->getFastMathFlags());
        Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
                                             FCI->getName() + ".inv");
        return SelectInst::Create(NewCond, FalseVal, TrueVal,
                                  SI.getName() + ".p");
      }
      // NOTE: if we wanted to, this is where to detect MIN/MAX
    }
    // NOTE: if we wanted to, this is where to detect ABS
  }
  // See if we are selecting two values based on a comparison of the two values.
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
      return Result;
  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
      if (TI->hasOneUse() && FI->hasOneUse()) {
        Instruction *AddOp = nullptr, *SubOp = nullptr;
        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
        if (TI->getOpcode() == FI->getOpcode())
          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
            return IV;
        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
        // even legal for FP.
        if ((TI->getOpcode() == Instruction::Sub &&
             FI->getOpcode() == Instruction::Add) ||
            (TI->getOpcode() == Instruction::FSub &&
             FI->getOpcode() == Instruction::FAdd)) {
          AddOp = FI; SubOp = TI;
        } else if ((FI->getOpcode() == Instruction::Sub &&
                    TI->getOpcode() == Instruction::Add) ||
                   (FI->getOpcode() == Instruction::FSub &&
                    TI->getOpcode() == Instruction::FAdd)) {
          AddOp = TI; SubOp = FI;
        }
        if (AddOp) {
          Value *OtherAddOp = nullptr;
          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
            OtherAddOp = AddOp->getOperand(1);
          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
            OtherAddOp = AddOp->getOperand(0);
          }
          if (OtherAddOp) {
            // So at this point we know we have (Y -> OtherAddOp):
            //        select C, (add X, Y), (sub X, Z)
            Value *NegVal;  // Compute -Z
            if (SI.getType()->isFPOrFPVectorTy()) {
              NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
              if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
                FastMathFlags Flags = AddOp->getFastMathFlags();
                Flags &= SubOp->getFastMathFlags();
                NegInst->setFastMathFlags(Flags);
              }
            } else {
              NegVal = Builder->CreateNeg(SubOp->getOperand(1));
            }
            Value *NewTrueOp = OtherAddOp;
            Value *NewFalseOp = NegVal;
            if (AddOp != TI)
              std::swap(NewTrueOp, NewFalseOp);
            Value *NewSel =
              Builder->CreateSelect(CondVal, NewTrueOp,
                                    NewFalseOp, SI.getName() + ".p");
            if (SI.getType()->isFPOrFPVectorTy()) {
              Instruction *RI =
                BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
              FastMathFlags Flags = AddOp->getFastMathFlags();
              Flags &= SubOp->getFastMathFlags();
              RI->setFastMathFlags(Flags);
              return RI;
            } else
              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
          }
        }
      }
  // See if we can fold the select into one of our operands.
  if (SI.getType()->isIntOrIntVectorTy() || SI.getType()->isFPOrFPVectorTy()) {
    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
      return FoldI;
    Value *LHS, *RHS, *LHS2, *RHS2;
    Instruction::CastOps CastOp;
    SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
    auto SPF = SPR.Flavor;
    if (SelectPatternResult::isMinOrMax(SPF)) {
      // Canonicalize so that type casts are outside select patterns.
      if (LHS->getType()->getPrimitiveSizeInBits() !=
          SI.getType()->getPrimitiveSizeInBits()) {
        CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
        Value *Cmp;
        if (CmpInst::isIntPredicate(Pred)) {
          Cmp = Builder->CreateICmp(Pred, LHS, RHS);
        } else {
          IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
          auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
          Builder->setFastMathFlags(FMF);
          Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
        }
        Value *NewSI = Builder->CreateCast(CastOp,
                                           Builder->CreateSelect(Cmp, LHS, RHS),
                                           SI.getType());
        return ReplaceInstUsesWith(SI, NewSI);
      }
    }
    if (SPF) {
      // MAX(MAX(a, b), a) -> MAX(a, b)
      // MIN(MIN(a, b), a) -> MIN(a, b)
      // MAX(MIN(a, b), a) -> a
      // MIN(MAX(a, b), a) -> a
      // ABS(ABS(a)) -> ABS(a)
      // NABS(NABS(a)) -> NABS(a)
      if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
                                          SI, SPF, RHS))
          return R;
      if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
                                          SI, SPF, LHS))
          return R;
    }
    // MAX(~a, ~b) -> ~MIN(a, b)
    if (SPF == SPF_SMAX || SPF == SPF_UMAX) {
      if (IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
          IsFreeToInvert(RHS, RHS->hasNUses(2))) {
        // This transform adds a xor operation and that extra cost needs to be
        // justified.  We look for simplifications that will result from
        // applying this rule:
        bool Profitable =
            (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) ||
            (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) ||
            (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
        if (Profitable) {
          Value *NewLHS = Builder->CreateNot(LHS);
          Value *NewRHS = Builder->CreateNot(RHS);
          Value *NewCmp = SPF == SPF_SMAX
                              ? Builder->CreateICmpSLT(NewLHS, NewRHS)
                              : Builder->CreateICmpULT(NewLHS, NewRHS);
          Value *NewSI =
              Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
          return ReplaceInstUsesWith(SI, NewSI);
        }
      }
    }
    // TODO.
    // ABS(-X) -> ABS(X)
  }
  // See if we can fold the select into a phi node if the condition is a select.
  if (isa<PHINode>(SI.getCondition()))
    // The true/false values have to be live in the PHI predecessor's blocks.
    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
      if (Instruction *NV = FoldOpIntoPhi(SI))
        return NV;
  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
    if (TrueSI->getCondition()->getType() == CondVal->getType()) {
      // select(C, select(C, a, b), c) -> select(C, a, c)
      if (TrueSI->getCondition() == CondVal) {
        if (SI.getTrueValue() == TrueSI->getTrueValue())
          return nullptr;
        SI.setOperand(1, TrueSI->getTrueValue());
        return &SI;
      }
      // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
      // We choose this as normal form to enable folding on the And and shortening
      // paths for the values (this helps GetUnderlyingObjects() for example).
      if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
        Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
        SI.setOperand(0, And);
        SI.setOperand(1, TrueSI->getTrueValue());
        return &SI;
      }
    }
  }
  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
    if (FalseSI->getCondition()->getType() == CondVal->getType()) {
      // select(C, a, select(C, b, c)) -> select(C, a, c)
      if (FalseSI->getCondition() == CondVal) {
        if (SI.getFalseValue() == FalseSI->getFalseValue())
          return nullptr;
        SI.setOperand(2, FalseSI->getFalseValue());
        return &SI;
      }
      // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
      if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
        Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
        SI.setOperand(0, Or);
        SI.setOperand(2, FalseSI->getFalseValue());
        return &SI;
      }
    }
  }
  if (BinaryOperator::isNot(CondVal)) {
    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
    SI.setOperand(1, FalseVal);
    SI.setOperand(2, TrueVal);
    return &SI;
  }
  if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
    unsigned VWidth = VecTy->getNumElements();
    APInt UndefElts(VWidth, 0);
    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
    if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
      if (V != &SI)
        return ReplaceInstUsesWith(SI, V);
      return &SI;
    }
    if (isa<ConstantAggregateZero>(CondVal)) {
      return ReplaceInstUsesWith(SI, FalseVal);
    }
  }
  return nullptr;
}
 
     |