1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
|
//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips64 instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Unsigned Operand
def uimm16_64 : Operand<i64> {
let PrintMethod = "printUnsignedImm";
}
// Signed Operand
def simm10_64 : Operand<i64>;
// Transformation Function - get Imm - 32.
def Subtract32 : SDNodeXForm<imm, [{
return getImm(N, (unsigned)N->getZExtValue() - 32);
}]>;
// shamt must fit in 6 bits.
def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>;
// Node immediate fits as 10-bit sign extended on target immediate.
// e.g. seqi, snei
def immSExt10_64 : PatLeaf<(i64 imm),
[{ return isInt<10>(N->getSExtValue()); }]>;
def immZExt16_64 : PatLeaf<(i64 imm),
[{ return isInt<16>(N->getZExtValue()); }]>;
def immZExt5_64 : ImmLeaf<i64, [{ return Imm == (Imm & 0x1f); }]>;
// Transformation function: get log2 of low 32 bits of immediate
def Log2LO : SDNodeXForm<imm, [{
return getImm(N, Log2_64((unsigned) N->getZExtValue()));
}]>;
// Transformation function: get log2 of high 32 bits of immediate
def Log2HI : SDNodeXForm<imm, [{
return getImm(N, Log2_64((unsigned) (N->getZExtValue() >> 32)));
}]>;
// Predicate: True if immediate is a power of 2 and fits 32 bits
def PowerOf2LO : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i64) {
uint64_t Imm = N->getZExtValue();
return isPowerOf2_64(Imm) && (Imm & 0xffffffff) == Imm;
}
else
return false;
}]>;
// Predicate: True if immediate is a power of 2 and exceeds 32 bits
def PowerOf2HI : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i64) {
uint64_t Imm = N->getZExtValue();
return isPowerOf2_64(Imm) && (Imm & 0xffffffff00000000) == Imm;
}
else
return false;
}]>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
let usesCustomInserter = 1 in {
def ATOMIC_LOAD_ADD_I64 : Atomic2Ops<atomic_load_add_64, GPR64>;
def ATOMIC_LOAD_SUB_I64 : Atomic2Ops<atomic_load_sub_64, GPR64>;
def ATOMIC_LOAD_AND_I64 : Atomic2Ops<atomic_load_and_64, GPR64>;
def ATOMIC_LOAD_OR_I64 : Atomic2Ops<atomic_load_or_64, GPR64>;
def ATOMIC_LOAD_XOR_I64 : Atomic2Ops<atomic_load_xor_64, GPR64>;
def ATOMIC_LOAD_NAND_I64 : Atomic2Ops<atomic_load_nand_64, GPR64>;
def ATOMIC_SWAP_I64 : Atomic2Ops<atomic_swap_64, GPR64>;
def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap<atomic_cmp_swap_64, GPR64>;
}
/// Pseudo instructions for loading and storing accumulator registers.
let isPseudo = 1, isCodeGenOnly = 1 in {
def LOAD_ACC128 : Load<"", ACC128>;
def STORE_ACC128 : Store<"", ACC128>;
}
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
let DecoderNamespace = "Mips64" in {
/// Arithmetic Instructions (ALU Immediate)
def DADDi : ArithLogicI<"daddi", simm16_64, GPR64Opnd>, ADDI_FM<0x18>,
ISA_MIPS3_NOT_32R6_64R6;
def DADDiu : ArithLogicI<"daddiu", simm16_64, GPR64Opnd, II_DADDIU,
immSExt16, add>,
ADDI_FM<0x19>, IsAsCheapAsAMove, ISA_MIPS3;
let isCodeGenOnly = 1 in {
def SLTi64 : SetCC_I<"slti", setlt, simm16_64, immSExt16, GPR64Opnd>,
SLTI_FM<0xa>;
def SLTiu64 : SetCC_I<"sltiu", setult, simm16_64, immSExt16, GPR64Opnd>,
SLTI_FM<0xb>;
def ANDi64 : ArithLogicI<"andi", uimm16_64, GPR64Opnd, II_AND, immZExt16, and>,
ADDI_FM<0xc>;
def ORi64 : ArithLogicI<"ori", uimm16_64, GPR64Opnd, II_OR, immZExt16, or>,
ADDI_FM<0xd>;
def XORi64 : ArithLogicI<"xori", uimm16_64, GPR64Opnd, II_XOR, immZExt16, xor>,
ADDI_FM<0xe>;
def LUi64 : LoadUpper<"lui", GPR64Opnd, uimm16_64>, LUI_FM;
}
/// Arithmetic Instructions (3-Operand, R-Type)
def DADD : ArithLogicR<"dadd", GPR64Opnd, 1, II_DADD>, ADD_FM<0, 0x2c>,
ISA_MIPS3;
def DADDu : ArithLogicR<"daddu", GPR64Opnd, 1, II_DADDU, add>, ADD_FM<0, 0x2d>,
ISA_MIPS3;
def DSUBu : ArithLogicR<"dsubu", GPR64Opnd, 0, II_DSUBU, sub>, ADD_FM<0, 0x2f>,
ISA_MIPS3;
def DSUB : ArithLogicR<"dsub", GPR64Opnd, 0, II_DSUB>, ADD_FM<0, 0x2e>,
ISA_MIPS3;
let isCodeGenOnly = 1 in {
def SLT64 : SetCC_R<"slt", setlt, GPR64Opnd>, ADD_FM<0, 0x2a>;
def SLTu64 : SetCC_R<"sltu", setult, GPR64Opnd>, ADD_FM<0, 0x2b>;
def AND64 : ArithLogicR<"and", GPR64Opnd, 1, II_AND, and>, ADD_FM<0, 0x24>;
def OR64 : ArithLogicR<"or", GPR64Opnd, 1, II_OR, or>, ADD_FM<0, 0x25>;
def XOR64 : ArithLogicR<"xor", GPR64Opnd, 1, II_XOR, xor>, ADD_FM<0, 0x26>;
def NOR64 : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>;
}
/// Shift Instructions
def DSLL : shift_rotate_imm<"dsll", uimm6, GPR64Opnd, II_DSLL, shl, immZExt6>,
SRA_FM<0x38, 0>, ISA_MIPS3;
def DSRL : shift_rotate_imm<"dsrl", uimm6, GPR64Opnd, II_DSRL, srl, immZExt6>,
SRA_FM<0x3a, 0>, ISA_MIPS3;
def DSRA : shift_rotate_imm<"dsra", uimm6, GPR64Opnd, II_DSRA, sra, immZExt6>,
SRA_FM<0x3b, 0>, ISA_MIPS3;
def DSLLV : shift_rotate_reg<"dsllv", GPR64Opnd, II_DSLLV, shl>,
SRLV_FM<0x14, 0>, ISA_MIPS3;
def DSRLV : shift_rotate_reg<"dsrlv", GPR64Opnd, II_DSRLV, srl>,
SRLV_FM<0x16, 0>, ISA_MIPS3;
def DSRAV : shift_rotate_reg<"dsrav", GPR64Opnd, II_DSRAV, sra>,
SRLV_FM<0x17, 0>, ISA_MIPS3;
def DSLL32 : shift_rotate_imm<"dsll32", uimm5, GPR64Opnd, II_DSLL32>,
SRA_FM<0x3c, 0>, ISA_MIPS3;
def DSRL32 : shift_rotate_imm<"dsrl32", uimm5, GPR64Opnd, II_DSRL32>,
SRA_FM<0x3e, 0>, ISA_MIPS3;
def DSRA32 : shift_rotate_imm<"dsra32", uimm5, GPR64Opnd, II_DSRA32>,
SRA_FM<0x3f, 0>, ISA_MIPS3;
// Rotate Instructions
def DROTR : shift_rotate_imm<"drotr", uimm6, GPR64Opnd, II_DROTR, rotr,
immZExt6>,
SRA_FM<0x3a, 1>, ISA_MIPS64R2;
def DROTRV : shift_rotate_reg<"drotrv", GPR64Opnd, II_DROTRV, rotr>,
SRLV_FM<0x16, 1>, ISA_MIPS64R2;
def DROTR32 : shift_rotate_imm<"drotr32", uimm5, GPR64Opnd, II_DROTR32>,
SRA_FM<0x3e, 1>, ISA_MIPS64R2;
/// Load and Store Instructions
/// aligned
let isCodeGenOnly = 1 in {
def LB64 : Load<"lb", GPR64Opnd, sextloadi8, II_LB>, LW_FM<0x20>;
def LBu64 : Load<"lbu", GPR64Opnd, zextloadi8, II_LBU>, LW_FM<0x24>;
def LH64 : Load<"lh", GPR64Opnd, sextloadi16, II_LH>, LW_FM<0x21>;
def LHu64 : Load<"lhu", GPR64Opnd, zextloadi16, II_LHU>, LW_FM<0x25>;
def LW64 : Load<"lw", GPR64Opnd, sextloadi32, II_LW>, LW_FM<0x23>;
def SB64 : Store<"sb", GPR64Opnd, truncstorei8, II_SB>, LW_FM<0x28>;
def SH64 : Store<"sh", GPR64Opnd, truncstorei16, II_SH>, LW_FM<0x29>;
def SW64 : Store<"sw", GPR64Opnd, truncstorei32, II_SW>, LW_FM<0x2b>;
}
def LWu : Load<"lwu", GPR64Opnd, zextloadi32, II_LWU>, LW_FM<0x27>, ISA_MIPS3;
def LD : Load<"ld", GPR64Opnd, load, II_LD>, LW_FM<0x37>, ISA_MIPS3;
def SD : Store<"sd", GPR64Opnd, store, II_SD>, LW_FM<0x3f>, ISA_MIPS3;
/// load/store left/right
let isCodeGenOnly = 1 in {
def LWL64 : LoadLeftRight<"lwl", MipsLWL, GPR64Opnd, II_LWL>, LW_FM<0x22>;
def LWR64 : LoadLeftRight<"lwr", MipsLWR, GPR64Opnd, II_LWR>, LW_FM<0x26>;
def SWL64 : StoreLeftRight<"swl", MipsSWL, GPR64Opnd, II_SWL>, LW_FM<0x2a>;
def SWR64 : StoreLeftRight<"swr", MipsSWR, GPR64Opnd, II_SWR>, LW_FM<0x2e>;
}
def LDL : LoadLeftRight<"ldl", MipsLDL, GPR64Opnd, II_LDL>, LW_FM<0x1a>,
ISA_MIPS3_NOT_32R6_64R6;
def LDR : LoadLeftRight<"ldr", MipsLDR, GPR64Opnd, II_LDR>, LW_FM<0x1b>,
ISA_MIPS3_NOT_32R6_64R6;
def SDL : StoreLeftRight<"sdl", MipsSDL, GPR64Opnd, II_SDL>, LW_FM<0x2c>,
ISA_MIPS3_NOT_32R6_64R6;
def SDR : StoreLeftRight<"sdr", MipsSDR, GPR64Opnd, II_SDR>, LW_FM<0x2d>,
ISA_MIPS3_NOT_32R6_64R6;
/// Load-linked, Store-conditional
def LLD : LLBase<"lld", GPR64Opnd>, LW_FM<0x34>, ISA_MIPS3_NOT_32R6_64R6;
def SCD : SCBase<"scd", GPR64Opnd>, LW_FM<0x3c>, ISA_MIPS3_NOT_32R6_64R6;
/// Jump and Branch Instructions
let isCodeGenOnly = 1 in {
def JR64 : IndirectBranch<"jr", GPR64Opnd>, MTLO_FM<8>;
def BEQ64 : CBranch<"beq", brtarget, seteq, GPR64Opnd>, BEQ_FM<4>;
def BNE64 : CBranch<"bne", brtarget, setne, GPR64Opnd>, BEQ_FM<5>;
def BGEZ64 : CBranchZero<"bgez", brtarget, setge, GPR64Opnd>, BGEZ_FM<1, 1>;
def BGTZ64 : CBranchZero<"bgtz", brtarget, setgt, GPR64Opnd>, BGEZ_FM<7, 0>;
def BLEZ64 : CBranchZero<"blez", brtarget, setle, GPR64Opnd>, BGEZ_FM<6, 0>;
def BLTZ64 : CBranchZero<"bltz", brtarget, setlt, GPR64Opnd>, BGEZ_FM<1, 0>;
def JALR64 : JumpLinkReg<"jalr", GPR64Opnd>, JALR_FM;
def JALR64Pseudo : JumpLinkRegPseudo<GPR64Opnd, JALR, RA, GPR32Opnd>;
def TAILCALL64_R : TailCallReg<GPR64Opnd, JR, GPR32Opnd>;
}
def PseudoReturn64 : PseudoReturnBase<GPR64Opnd>;
def PseudoIndirectBranch64 : PseudoIndirectBranchBase<GPR64Opnd>;
/// Multiply and Divide Instructions.
def DMULT : Mult<"dmult", II_DMULT, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1c>, ISA_MIPS3_NOT_32R6_64R6;
def DMULTu : Mult<"dmultu", II_DMULTU, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1d>, ISA_MIPS3_NOT_32R6_64R6;
def PseudoDMULT : MultDivPseudo<DMULT, ACC128, GPR64Opnd, MipsMult,
II_DMULT>, ISA_MIPS3_NOT_32R6_64R6;
def PseudoDMULTu : MultDivPseudo<DMULTu, ACC128, GPR64Opnd, MipsMultu,
II_DMULTU>, ISA_MIPS3_NOT_32R6_64R6;
def DSDIV : Div<"ddiv", II_DDIV, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1e>, ISA_MIPS3_NOT_32R6_64R6;
def DUDIV : Div<"ddivu", II_DDIVU, GPR64Opnd, [HI0_64, LO0_64]>,
MULT_FM<0, 0x1f>, ISA_MIPS3_NOT_32R6_64R6;
def PseudoDSDIV : MultDivPseudo<DSDIV, ACC128, GPR64Opnd, MipsDivRem,
II_DDIV, 0, 1, 1>, ISA_MIPS3_NOT_32R6_64R6;
def PseudoDUDIV : MultDivPseudo<DUDIV, ACC128, GPR64Opnd, MipsDivRemU,
II_DDIVU, 0, 1, 1>, ISA_MIPS3_NOT_32R6_64R6;
let isCodeGenOnly = 1 in {
def MTHI64 : MoveToLOHI<"mthi", GPR64Opnd, [HI0_64]>, MTLO_FM<0x11>,
ISA_MIPS3_NOT_32R6_64R6;
def MTLO64 : MoveToLOHI<"mtlo", GPR64Opnd, [LO0_64]>, MTLO_FM<0x13>,
ISA_MIPS3_NOT_32R6_64R6;
def MFHI64 : MoveFromLOHI<"mfhi", GPR64Opnd, AC0_64>, MFLO_FM<0x10>,
ISA_MIPS3_NOT_32R6_64R6;
def MFLO64 : MoveFromLOHI<"mflo", GPR64Opnd, AC0_64>, MFLO_FM<0x12>,
ISA_MIPS3_NOT_32R6_64R6;
def PseudoMFHI64 : PseudoMFLOHI<GPR64, ACC128, MipsMFHI>,
ISA_MIPS3_NOT_32R6_64R6;
def PseudoMFLO64 : PseudoMFLOHI<GPR64, ACC128, MipsMFLO>,
ISA_MIPS3_NOT_32R6_64R6;
def PseudoMTLOHI64 : PseudoMTLOHI<ACC128, GPR64>, ISA_MIPS3_NOT_32R6_64R6;
/// Sign Ext In Register Instructions.
def SEB64 : SignExtInReg<"seb", i8, GPR64Opnd, II_SEB>, SEB_FM<0x10, 0x20>,
ISA_MIPS32R2;
def SEH64 : SignExtInReg<"seh", i16, GPR64Opnd, II_SEH>, SEB_FM<0x18, 0x20>,
ISA_MIPS32R2;
}
/// Count Leading
def DCLZ : CountLeading0<"dclz", GPR64Opnd>, CLO_FM<0x24>, ISA_MIPS64_NOT_64R6;
def DCLO : CountLeading1<"dclo", GPR64Opnd>, CLO_FM<0x25>, ISA_MIPS64_NOT_64R6;
/// Double Word Swap Bytes/HalfWords
def DSBH : SubwordSwap<"dsbh", GPR64Opnd>, SEB_FM<2, 0x24>, ISA_MIPS64R2;
def DSHD : SubwordSwap<"dshd", GPR64Opnd>, SEB_FM<5, 0x24>, ISA_MIPS64R2;
def LEA_ADDiu64 : EffectiveAddress<"daddiu", GPR64Opnd>, LW_FM<0x19>;
let isCodeGenOnly = 1 in
def RDHWR64 : ReadHardware<GPR64Opnd, HWRegsOpnd>, RDHWR_FM;
let AdditionalPredicates = [NotInMicroMips] in {
// TODO: Add 'pos + size' constraint check to dext* instructions
// DEXT: 0 < pos + size <= 63
// DEXTM, DEXTU: 32 < pos + size <= 64
def DEXT : ExtBase<"dext", GPR64Opnd, uimm5, uimm5_plus1, MipsExt>,
EXT_FM<3>;
def DEXTM : ExtBase<"dextm", GPR64Opnd, uimm5, uimm5_plus33, MipsExt>,
EXT_FM<1>;
def DEXTU : ExtBase<"dextu", GPR64Opnd, uimm5_plus32, uimm5_plus1,
MipsExt>, EXT_FM<2>;
}
def DINS : InsBase<"dins", GPR64Opnd, uimm6, MipsIns>, EXT_FM<7>;
def DINSU : InsBase<"dinsu", GPR64Opnd, uimm5_plus32>, EXT_FM<6>;
def DINSM : InsBase<"dinsm", GPR64Opnd, uimm5>, EXT_FM<5>;
let isCodeGenOnly = 1, rs = 0, shamt = 0 in {
def DSLL64_32 : FR<0x00, 0x3c, (outs GPR64:$rd), (ins GPR32:$rt),
"dsll\t$rd, $rt, 32", [], II_DSLL>;
def SLL64_32 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR32:$rt),
"sll\t$rd, $rt, 0", [], II_SLL>;
def SLL64_64 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR64:$rt),
"sll\t$rd, $rt, 0", [], II_SLL>;
}
// We need the following pseudo instruction to avoid offset calculation for
// long branches. See the comment in file MipsLongBranch.cpp for detailed
// explanation.
// Expands to: daddiu $dst, $src, %PART($tgt - $baltgt)
// where %PART may be %hi or %lo, depending on the relocation kind
// that $tgt is annotated with.
def LONG_BRANCH_DADDiu : PseudoSE<(outs GPR64Opnd:$dst),
(ins GPR64Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []>;
// Cavium Octeon cnMIPS instructions
let DecoderNamespace = "CnMips",
EncodingPredicates = []<Predicate>, // FIXME: The lack of HasStdEnc is probably a bug
AdditionalPredicates = [HasCnMips] in {
class Count1s<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
[(set RO:$rd, (ctpop RO:$rs))], II_POP, FrmR, opstr> {
let TwoOperandAliasConstraint = "$rd = $rs";
}
class ExtsCins<string opstr, SDPatternOperator Op = null_frag>:
InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, uimm5:$pos, uimm5:$lenm1),
!strconcat(opstr, " $rt, $rs, $pos, $lenm1"),
[(set GPR64Opnd:$rt, (Op GPR64Opnd:$rs, imm:$pos, imm:$lenm1))],
NoItinerary, FrmR, opstr> {
let TwoOperandAliasConstraint = "$rt = $rs";
}
class SetCC64_R<string opstr, PatFrag cond_op> :
InstSE<(outs GPR64Opnd:$rd), (ins GPR64Opnd:$rs, GPR64Opnd:$rt),
!strconcat(opstr, "\t$rd, $rs, $rt"),
[(set GPR64Opnd:$rd, (zext (cond_op GPR64Opnd:$rs,
GPR64Opnd:$rt)))],
II_SEQ_SNE, FrmR, opstr> {
let TwoOperandAliasConstraint = "$rd = $rs";
}
class SetCC64_I<string opstr, PatFrag cond_op>:
InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, simm10_64:$imm10),
!strconcat(opstr, "\t$rt, $rs, $imm10"),
[(set GPR64Opnd:$rt, (zext (cond_op GPR64Opnd:$rs,
immSExt10_64:$imm10)))],
II_SEQI_SNEI, FrmI, opstr> {
let TwoOperandAliasConstraint = "$rt = $rs";
}
class CBranchBitNum<string opstr, DAGOperand opnd, PatFrag cond_op,
RegisterOperand RO, Operand ImmOp, bits<64> shift = 1> :
InstSE<(outs), (ins RO:$rs, ImmOp:$p, opnd:$offset),
!strconcat(opstr, "\t$rs, $p, $offset"),
[(brcond (i32 (cond_op (and RO:$rs, (shl shift, immZExt5_64:$p)), 0)),
bb:$offset)], II_BBIT, FrmI, opstr> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
let Defs = [AT];
}
class MFC2OP<string asmstr, RegisterOperand RO> :
InstSE<(outs RO:$rt, uimm16:$imm16), (ins),
!strconcat(asmstr, "\t$rt, $imm16"), [], NoItinerary, FrmFR>;
// Unsigned Byte Add
let Pattern = [(set GPR64Opnd:$rd,
(and (add GPR64Opnd:$rs, GPR64Opnd:$rt), 255))] in
def BADDu : ArithLogicR<"baddu", GPR64Opnd, 1, II_BADDU>,
ADD_FM<0x1c, 0x28>;
// Branch on Bit Clear /+32
def BBIT0 : CBranchBitNum<"bbit0", brtarget, seteq, GPR64Opnd,
uimm5_64_report_uimm6>, BBIT_FM<0x32>;
def BBIT032: CBranchBitNum<"bbit032", brtarget, seteq, GPR64Opnd, uimm5_64,
0x100000000>,
BBIT_FM<0x36>;
// Branch on Bit Set /+32
def BBIT1 : CBranchBitNum<"bbit1", brtarget, setne, GPR64Opnd,
uimm5_64_report_uimm6>, BBIT_FM<0x3a>;
def BBIT132: CBranchBitNum<"bbit132", brtarget, setne, GPR64Opnd, uimm5_64,
0x100000000>, BBIT_FM<0x3e>;
// Multiply Doubleword to GPR
let Defs = [HI0, LO0, P0, P1, P2] in
def DMUL : ArithLogicR<"dmul", GPR64Opnd, 1, II_DMUL, mul>,
ADD_FM<0x1c, 0x03>;
// Extract a signed bit field /+32
def EXTS : ExtsCins<"exts">, EXTS_FM<0x3a>;
def EXTS32: ExtsCins<"exts32">, EXTS_FM<0x3b>;
// Clear and insert a bit field /+32
def CINS : ExtsCins<"cins">, EXTS_FM<0x32>;
def CINS32: ExtsCins<"cins32">, EXTS_FM<0x33>;
// Move to multiplier/product register
def MTM0 : MoveToLOHI<"mtm0", GPR64Opnd, [MPL0, P0, P1, P2]>, MTMR_FM<0x08>;
def MTM1 : MoveToLOHI<"mtm1", GPR64Opnd, [MPL1, P0, P1, P2]>, MTMR_FM<0x0c>;
def MTM2 : MoveToLOHI<"mtm2", GPR64Opnd, [MPL2, P0, P1, P2]>, MTMR_FM<0x0d>;
def MTP0 : MoveToLOHI<"mtp0", GPR64Opnd, [P0]>, MTMR_FM<0x09>;
def MTP1 : MoveToLOHI<"mtp1", GPR64Opnd, [P1]>, MTMR_FM<0x0a>;
def MTP2 : MoveToLOHI<"mtp2", GPR64Opnd, [P2]>, MTMR_FM<0x0b>;
// Count Ones in a Word/Doubleword
def POP : Count1s<"pop", GPR32Opnd>, POP_FM<0x2c>;
def DPOP : Count1s<"dpop", GPR64Opnd>, POP_FM<0x2d>;
// Set on equal/not equal
def SEQ : SetCC64_R<"seq", seteq>, SEQ_FM<0x2a>;
def SEQi : SetCC64_I<"seqi", seteq>, SEQI_FM<0x2e>;
def SNE : SetCC64_R<"sne", setne>, SEQ_FM<0x2b>;
def SNEi : SetCC64_I<"snei", setne>, SEQI_FM<0x2f>;
// 192-bit x 64-bit Unsigned Multiply and Add
let Defs = [P0, P1, P2] in
def V3MULU: ArithLogicR<"v3mulu", GPR64Opnd, 0, II_DMUL>,
ADD_FM<0x1c, 0x11>;
// 64-bit Unsigned Multiply and Add Move
let Defs = [MPL0, P0, P1, P2] in
def VMM0 : ArithLogicR<"vmm0", GPR64Opnd, 0, II_DMUL>,
ADD_FM<0x1c, 0x10>;
// 64-bit Unsigned Multiply and Add
let Defs = [MPL1, MPL2, P0, P1, P2] in
def VMULU : ArithLogicR<"vmulu", GPR64Opnd, 0, II_DMUL>,
ADD_FM<0x1c, 0x0f>;
// Move between CPU and coprocessor registers
def DMFC2_OCTEON : MFC2OP<"dmfc2", GPR64Opnd>, MFC2OP_FM<0x12, 1>;
def DMTC2_OCTEON : MFC2OP<"dmtc2", GPR64Opnd>, MFC2OP_FM<0x12, 5>;
}
}
/// Move between CPU and coprocessor registers
let DecoderNamespace = "Mips64", Predicates = [HasMips64] in {
def DMFC0 : MFC3OP<"dmfc0", GPR64Opnd, COP0Opnd>, MFC3OP_FM<0x10, 1>, ISA_MIPS3;
def DMTC0 : MTC3OP<"dmtc0", COP0Opnd, GPR64Opnd>, MFC3OP_FM<0x10, 5>, ISA_MIPS3;
def DMFC2 : MFC3OP<"dmfc2", GPR64Opnd, COP2Opnd>, MFC3OP_FM<0x12, 1>, ISA_MIPS3;
def DMTC2 : MTC3OP<"dmtc2", COP2Opnd, GPR64Opnd>, MFC3OP_FM<0x12, 5>, ISA_MIPS3;
}
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// extended loads
def : MipsPat<(i64 (extloadi1 addr:$src)), (LB64 addr:$src)>;
def : MipsPat<(i64 (extloadi8 addr:$src)), (LB64 addr:$src)>;
def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>;
def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>;
// hi/lo relocs
def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>;
def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>;
def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>;
def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>;
def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>;
def : MipsPat<(MipsHi texternalsym:$in), (LUi64 texternalsym:$in)>;
def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>;
def : MipsPat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>;
def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>;
def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>;
def : MipsPat<(MipsLo tglobaltlsaddr:$in),
(DADDiu ZERO_64, tglobaltlsaddr:$in)>;
def : MipsPat<(MipsLo texternalsym:$in), (DADDiu ZERO_64, texternalsym:$in)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tglobaladdr:$lo)),
(DADDiu GPR64:$hi, tglobaladdr:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tblockaddress:$lo)),
(DADDiu GPR64:$hi, tblockaddress:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tjumptable:$lo)),
(DADDiu GPR64:$hi, tjumptable:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tconstpool:$lo)),
(DADDiu GPR64:$hi, tconstpool:$lo)>;
def : MipsPat<(add GPR64:$hi, (MipsLo tglobaltlsaddr:$lo)),
(DADDiu GPR64:$hi, tglobaltlsaddr:$lo)>;
def : WrapperPat<tglobaladdr, DADDiu, GPR64>;
def : WrapperPat<tconstpool, DADDiu, GPR64>;
def : WrapperPat<texternalsym, DADDiu, GPR64>;
def : WrapperPat<tblockaddress, DADDiu, GPR64>;
def : WrapperPat<tjumptable, DADDiu, GPR64>;
def : WrapperPat<tglobaltlsaddr, DADDiu, GPR64>;
defm : BrcondPats<GPR64, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
ZERO_64>;
def : MipsPat<(brcond (i32 (setlt i64:$lhs, 1)), bb:$dst),
(BLEZ64 i64:$lhs, bb:$dst)>;
def : MipsPat<(brcond (i32 (setgt i64:$lhs, -1)), bb:$dst),
(BGEZ64 i64:$lhs, bb:$dst)>;
// setcc patterns
defm : SeteqPats<GPR64, SLTiu64, XOR64, SLTu64, ZERO_64>;
defm : SetlePats<GPR64, SLT64, SLTu64>;
defm : SetgtPats<GPR64, SLT64, SLTu64>;
defm : SetgePats<GPR64, SLT64, SLTu64>;
defm : SetgeImmPats<GPR64, SLTi64, SLTiu64>;
// truncate
def : MipsPat<(trunc (assertsext GPR64:$src)),
(EXTRACT_SUBREG GPR64:$src, sub_32)>;
def : MipsPat<(trunc (assertzext GPR64:$src)),
(EXTRACT_SUBREG GPR64:$src, sub_32)>;
def : MipsPat<(i32 (trunc GPR64:$src)),
(SLL (EXTRACT_SUBREG GPR64:$src, sub_32), 0)>;
// variable shift instructions patterns
def : MipsPat<(shl GPR64:$rt, (i32 (trunc GPR64:$rs))),
(DSLLV GPR64:$rt, (EXTRACT_SUBREG GPR64:$rs, sub_32))>;
def : MipsPat<(srl GPR64:$rt, (i32 (trunc GPR64:$rs))),
(DSRLV GPR64:$rt, (EXTRACT_SUBREG GPR64:$rs, sub_32))>;
def : MipsPat<(sra GPR64:$rt, (i32 (trunc GPR64:$rs))),
(DSRAV GPR64:$rt, (EXTRACT_SUBREG GPR64:$rs, sub_32))>;
def : MipsPat<(rotr GPR64:$rt, (i32 (trunc GPR64:$rs))),
(DROTRV GPR64:$rt, (EXTRACT_SUBREG GPR64:$rs, sub_32))>;
// 32-to-64-bit extension
def : MipsPat<(i64 (anyext GPR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
def : MipsPat<(i64 (zext GPR32:$src)), (DSRL (DSLL64_32 GPR32:$src), 32)>;
def : MipsPat<(i64 (sext GPR32:$src)), (SLL64_32 GPR32:$src)>;
// Sign extend in register
def : MipsPat<(i64 (sext_inreg GPR64:$src, i32)),
(SLL64_64 GPR64:$src)>;
// bswap MipsPattern
def : MipsPat<(bswap GPR64:$rt), (DSHD (DSBH GPR64:$rt))>;
// Carry pattern
def : MipsPat<(subc GPR64:$lhs, GPR64:$rhs),
(DSUBu GPR64:$lhs, GPR64:$rhs)>;
let AdditionalPredicates = [NotDSP] in {
def : MipsPat<(addc GPR64:$lhs, GPR64:$rhs),
(DADDu GPR64:$lhs, GPR64:$rhs)>;
def : MipsPat<(addc GPR64:$lhs, immSExt16:$imm),
(DADDiu GPR64:$lhs, imm:$imm)>;
}
// Octeon bbit0/bbit1 MipsPattern
let Predicates = [HasMips64, HasCnMips] in {
def : MipsPat<(brcond (i32 (seteq (and i64:$lhs, PowerOf2LO:$mask), 0)), bb:$dst),
(BBIT0 i64:$lhs, (Log2LO PowerOf2LO:$mask), bb:$dst)>;
def : MipsPat<(brcond (i32 (seteq (and i64:$lhs, PowerOf2HI:$mask), 0)), bb:$dst),
(BBIT032 i64:$lhs, (Log2HI PowerOf2HI:$mask), bb:$dst)>;
def : MipsPat<(brcond (i32 (setne (and i64:$lhs, PowerOf2LO:$mask), 0)), bb:$dst),
(BBIT1 i64:$lhs, (Log2LO PowerOf2LO:$mask), bb:$dst)>;
def : MipsPat<(brcond (i32 (setne (and i64:$lhs, PowerOf2HI:$mask), 0)), bb:$dst),
(BBIT132 i64:$lhs, (Log2HI PowerOf2HI:$mask), bb:$dst)>;
}
// Atomic load patterns.
def : MipsPat<(atomic_load_8 addr:$a), (LB64 addr:$a)>;
def : MipsPat<(atomic_load_16 addr:$a), (LH64 addr:$a)>;
def : MipsPat<(atomic_load_32 addr:$a), (LW64 addr:$a)>;
def : MipsPat<(atomic_load_64 addr:$a), (LD addr:$a)>;
// Atomic store patterns.
def : MipsPat<(atomic_store_8 addr:$a, GPR64:$v), (SB64 GPR64:$v, addr:$a)>;
def : MipsPat<(atomic_store_16 addr:$a, GPR64:$v), (SH64 GPR64:$v, addr:$a)>;
def : MipsPat<(atomic_store_32 addr:$a, GPR64:$v), (SW64 GPR64:$v, addr:$a)>;
def : MipsPat<(atomic_store_64 addr:$a, GPR64:$v), (SD GPR64:$v, addr:$a)>;
//===----------------------------------------------------------------------===//
// Instruction aliases
//===----------------------------------------------------------------------===//
def : MipsInstAlias<"move $dst, $src",
(OR64 GPR64Opnd:$dst, GPR64Opnd:$src, ZERO_64), 1>,
GPR_64;
def : MipsInstAlias<"move $dst, $src",
(DADDu GPR64Opnd:$dst, GPR64Opnd:$src, ZERO_64), 1>,
GPR_64;
def : MipsInstAlias<"daddu $rs, $rt, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
0>, ISA_MIPS3;
def : MipsInstAlias<"dadd $rs, $rt, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"daddu $rs, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
0>, ISA_MIPS3;
def : MipsInstAlias<"dadd $rs, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsll $rd, $rt, $rs",
(DSLLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
ISA_MIPS3;
def : MipsInstAlias<"dneg $rt, $rs",
(DSUB GPR64Opnd:$rt, ZERO_64, GPR64Opnd:$rs), 1>,
ISA_MIPS3;
def : MipsInstAlias<"dneg $rt",
(DSUB GPR64Opnd:$rt, ZERO_64, GPR64Opnd:$rt), 0>,
ISA_MIPS3;
def : MipsInstAlias<"dnegu $rt, $rs",
(DSUBu GPR64Opnd:$rt, ZERO_64, GPR64Opnd:$rs), 1>,
ISA_MIPS3;
def : MipsInstAlias<"dsubu $rt, $rs, $imm",
(DADDiu GPR64Opnd:$rt, GPR64Opnd:$rs,
InvertedImOperand64:$imm), 0>, ISA_MIPS3;
def : MipsInstAlias<"dsubi $rs, $rt, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rt,
InvertedImOperand64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsubi $rs, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rs,
InvertedImOperand64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsub $rs, $rt, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rt,
InvertedImOperand64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsub $rs, $imm",
(DADDi GPR64Opnd:$rs, GPR64Opnd:$rs,
InvertedImOperand64:$imm),
0>, ISA_MIPS3_NOT_32R6_64R6;
def : MipsInstAlias<"dsubu $rs, $imm",
(DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs,
InvertedImOperand64:$imm),
0>, ISA_MIPS3;
def : MipsInstAlias<"dsra $rd, $rt, $rs",
(DSRAV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
ISA_MIPS3;
def : MipsInstAlias<"dsrl $rd, $rt, $rs",
(DSRLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>,
ISA_MIPS3;
// Two operand (implicit 0 selector) versions:
def : MipsInstAlias<"dmfc0 $rt, $rd", (DMFC0 GPR64Opnd:$rt, COP0Opnd:$rd, 0), 0>;
def : MipsInstAlias<"dmtc0 $rt, $rd", (DMTC0 COP0Opnd:$rd, GPR64Opnd:$rt, 0), 0>;
def : MipsInstAlias<"dmfc2 $rt, $rd", (DMFC2 GPR64Opnd:$rt, COP2Opnd:$rd, 0), 0>;
def : MipsInstAlias<"dmtc2 $rt, $rd", (DMTC2 COP2Opnd:$rd, GPR64Opnd:$rt, 0), 0>;
let Predicates = [HasMips64, HasCnMips] in {
def : MipsInstAlias<"synciobdma", (SYNC 0x2), 0>;
def : MipsInstAlias<"syncs", (SYNC 0x6), 0>;
def : MipsInstAlias<"syncw", (SYNC 0x4), 0>;
def : MipsInstAlias<"syncws", (SYNC 0x5), 0>;
}
// cnMIPS Aliases.
// bbit* with $p 32-63 converted to bbit*32 with $p 0-31
def : MipsInstAlias<"bbit0 $rs, $p, $offset",
(BBIT032 GPR64Opnd:$rs, uimm5_plus32_normalize_64:$p,
brtarget:$offset), 0>,
ASE_CNMIPS;
def : MipsInstAlias<"bbit1 $rs, $p, $offset",
(BBIT132 GPR64Opnd:$rs, uimm5_plus32_normalize_64:$p,
brtarget:$offset), 0>,
ASE_CNMIPS;
// exts with $pos 32-63 in converted to exts32 with $pos 0-31
def : MipsInstAlias<"exts $rt, $rs, $pos, $lenm1",
(EXTS32 GPR64Opnd:$rt, GPR64Opnd:$rs,
uimm5_plus32_normalize:$pos, uimm5:$lenm1), 0>,
ASE_CNMIPS;
def : MipsInstAlias<"exts $rt, $pos, $lenm1",
(EXTS32 GPR64Opnd:$rt, GPR64Opnd:$rt,
uimm5_plus32_normalize:$pos, uimm5:$lenm1), 0>,
ASE_CNMIPS;
// cins with $pos 32-63 in converted to cins32 with $pos 0-31
def : MipsInstAlias<"cins $rt, $rs, $pos, $lenm1",
(CINS32 GPR64Opnd:$rt, GPR64Opnd:$rs,
uimm5_plus32_normalize:$pos, uimm5:$lenm1), 0>,
ASE_CNMIPS;
def : MipsInstAlias<"cins $rt, $pos, $lenm1",
(CINS32 GPR64Opnd:$rt, GPR64Opnd:$rt,
uimm5_plus32_normalize:$pos, uimm5:$lenm1), 0>,
ASE_CNMIPS;
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions
//===----------------------------------------------------------------------===//
class LoadImmediate64<string instr_asm, Operand Od, RegisterOperand RO> :
MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm64),
!strconcat(instr_asm, "\t$rt, $imm64")> ;
def LoadImm64 : LoadImmediate64<"dli", imm64, GPR64Opnd>;
def LoadAddrReg64 : MipsAsmPseudoInst<(outs GPR64Opnd:$rt), (ins mem:$addr),
"dla\t$rt, $addr">;
def LoadAddrImm64 : MipsAsmPseudoInst<(outs GPR64Opnd:$rt), (ins imm64:$imm64),
"dla\t$rt, $imm64">;
|