1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
|
//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Stack allocation
//===----------------------------------------------------------------------===//
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)]>;
let hasSideEffects = 0 in {
// Takes as input the value of the stack pointer after a dynamic allocation
// has been made. Sets the output to the address of the dynamically-
// allocated area itself, skipping the outgoing arguments.
//
// This expands to an LA or LAY instruction. We restrict the offset
// to the range of LA and keep the LAY range in reserve for when
// the size of the outgoing arguments is added.
def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
[(set GR64:$dst, dynalloc12only:$src)]>;
}
//===----------------------------------------------------------------------===//
// Control flow instructions
//===----------------------------------------------------------------------===//
// A return instruction (br %r14).
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
// Unconditional branches. R1 is the condition-code mask (all 1s).
let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
let isIndirectBranch = 1 in
def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
"br\t$R2", [(brind ADDR64:$R2)]>;
// An assembler extended mnemonic for BRC.
def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
[(br bb:$I2)]>;
// An assembler extended mnemonic for BRCL. (The extension is "G"
// rather than "L" because "JL" is "Jump if Less".)
def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
}
// Conditional branches. It's easier for LLVM to handle these branches
// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
// the first operand. It seems friendlier to use mnemonic forms like
// JE and JLH when writing out the assembly though.
let isBranch = 1, isTerminator = 1, Uses = [CC] in {
let isCodeGenOnly = 1, CCMaskFirst = 1 in {
def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
brtarget16:$I2), "j$R1\t$I2",
[(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
brtarget32:$I2), "jg$R1\t$I2", []>;
}
def AsmBRC : InstRI<0xA74, (outs), (ins imm32zx4:$R1, brtarget16:$I2),
"brc\t$R1, $I2", []>;
def AsmBRCL : InstRIL<0xC04, (outs), (ins imm32zx4:$R1, brtarget32:$I2),
"brcl\t$R1, $I2", []>;
def AsmBCR : InstRR<0x07, (outs), (ins imm32zx4:$R1, GR64:$R2),
"bcr\t$R1, $R2", []>;
}
// Fused compare-and-branch instructions. As for normal branches,
// we handle these instructions internally in their raw CRJ-like form,
// but use assembly macros like CRJE when writing them out.
//
// These instructions do not use or clobber the condition codes.
// We nevertheless pretend that they clobber CC, so that we can lower
// them to separate comparisons and BRCLs if the branch ends up being
// out of range.
multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
let isBranch = 1, isTerminator = 1, Defs = [CC] in {
def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
brtarget16:$RI4),
"crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
brtarget16:$RI4),
"cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
brtarget16:$RI4),
"cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
brtarget16:$RI4),
"cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
def LRJ : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
brtarget16:$RI4),
"clrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
brtarget16:$RI4),
"clgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
def LIJ : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3,
brtarget16:$RI4),
"clij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3,
brtarget16:$RI4),
"clgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
}
}
let isCodeGenOnly = 1 in
defm C : CompareBranches<cond4, "$M3", "">;
defm AsmC : CompareBranches<imm32zx4, "", "$M3, ">;
// Define AsmParser mnemonics for each general condition-code mask
// (integer or floating-point)
multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
let R1 = ccmask in {
def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
"j"##name##"\t$I2", []>;
def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
"jg"##name##"\t$I2", []>;
def BR : InstRR<0x07, (outs), (ins ADDR64:$R2), "b"##name##"r\t$R2", []>;
}
def LOCR : FixedCondUnaryRRF<"locr"##name, 0xB9F2, GR32, GR32, ccmask>;
def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
def LOC : FixedCondUnaryRSY<"loc"##name, 0xEBF2, GR32, ccmask, 4>;
def LOCG : FixedCondUnaryRSY<"locg"##name, 0xEBE2, GR64, ccmask, 8>;
def STOC : FixedCondStoreRSY<"stoc"##name, 0xEBF3, GR32, ccmask, 4>;
def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
}
defm AsmO : CondExtendedMnemonic<1, "o">;
defm AsmH : CondExtendedMnemonic<2, "h">;
defm AsmNLE : CondExtendedMnemonic<3, "nle">;
defm AsmL : CondExtendedMnemonic<4, "l">;
defm AsmNHE : CondExtendedMnemonic<5, "nhe">;
defm AsmLH : CondExtendedMnemonic<6, "lh">;
defm AsmNE : CondExtendedMnemonic<7, "ne">;
defm AsmE : CondExtendedMnemonic<8, "e">;
defm AsmNLH : CondExtendedMnemonic<9, "nlh">;
defm AsmHE : CondExtendedMnemonic<10, "he">;
defm AsmNL : CondExtendedMnemonic<11, "nl">;
defm AsmLE : CondExtendedMnemonic<12, "le">;
defm AsmNH : CondExtendedMnemonic<13, "nh">;
defm AsmNO : CondExtendedMnemonic<14, "no">;
// Define AsmParser mnemonics for each integer condition-code mask.
// This is like the list above, except that condition 3 is not possible
// and that the low bit of the mask is therefore always 0. This means
// that each condition has two names. Conditions "o" and "no" are not used.
//
// We don't make one of the two names an alias of the other because
// we need the custom parsing routines to select the correct register class.
multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
let M3 = ccmask in {
def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
brtarget16:$RI4),
"crj"##name##"\t$R1, $R2, $RI4", []>;
def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
brtarget16:$RI4),
"cgrj"##name##"\t$R1, $R2, $RI4", []>;
def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
brtarget16:$RI4),
"cij"##name##"\t$R1, $I2, $RI4", []>;
def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
brtarget16:$RI4),
"cgij"##name##"\t$R1, $I2, $RI4", []>;
def CLR : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2,
brtarget16:$RI4),
"clrj"##name##"\t$R1, $R2, $RI4", []>;
def CLGR : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2,
brtarget16:$RI4),
"clgrj"##name##"\t$R1, $R2, $RI4", []>;
def CLI : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2,
brtarget16:$RI4),
"clij"##name##"\t$R1, $I2, $RI4", []>;
def CLGI : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2,
brtarget16:$RI4),
"clgij"##name##"\t$R1, $I2, $RI4", []>;
}
}
multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
: IntCondExtendedMnemonicA<ccmask, name1> {
let isAsmParserOnly = 1 in
defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
}
defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">;
defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">;
defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">;
defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">;
defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">;
defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">;
// Decrement a register and branch if it is nonzero. These don't clobber CC,
// but we might need to split long branches into sequences that do.
let Defs = [CC] in {
def BRCT : BranchUnaryRI<"brct", 0xA76, GR32>;
def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
}
//===----------------------------------------------------------------------===//
// Select instructions
//===----------------------------------------------------------------------===//
def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>;
def Select32 : SelectWrapper<GR32>;
def Select64 : SelectWrapper<GR64>;
// We don't define 32-bit Mux stores because the low-only STOC should
// always be used if possible.
defm CondStore8Mux : CondStores<GRX32, nonvolatile_truncstorei8,
nonvolatile_anyextloadi8, bdxaddr20only>,
Requires<[FeatureHighWord]>;
defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
nonvolatile_anyextloadi16, bdxaddr20only>,
Requires<[FeatureHighWord]>;
defm CondStore8 : CondStores<GR32, nonvolatile_truncstorei8,
nonvolatile_anyextloadi8, bdxaddr20only>;
defm CondStore16 : CondStores<GR32, nonvolatile_truncstorei16,
nonvolatile_anyextloadi16, bdxaddr20only>;
defm CondStore32 : CondStores<GR32, nonvolatile_store,
nonvolatile_load, bdxaddr20only>;
defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
nonvolatile_anyextloadi8, bdxaddr20only>;
defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
nonvolatile_anyextloadi16, bdxaddr20only>;
defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
nonvolatile_anyextloadi32, bdxaddr20only>;
defm CondStore64 : CondStores<GR64, nonvolatile_store,
nonvolatile_load, bdxaddr20only>;
//===----------------------------------------------------------------------===//
// Call instructions
//===----------------------------------------------------------------------===//
let isCall = 1, Defs = [R14D, CC] in {
def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
[(z_call pcrel32:$I2)]>;
def CallBASR : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
[(z_call ADDR64:$R2)]>;
}
// Sibling calls. Indirect sibling calls must be via R1, since R2 upwards
// are argument registers and since branching to R0 is a no-op.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
[(z_sibcall pcrel32:$I2)]>;
let Uses = [R1D] in
def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
}
// TLS calls. These will be lowered into a call to __tls_get_offset,
// with an extra relocation specifying the TLS symbol.
let isCall = 1, Defs = [R14D, CC] in {
def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
[(z_tls_gdcall tglobaltlsaddr:$I2)]>;
def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
[(z_tls_ldcall tglobaltlsaddr:$I2)]>;
}
// Define the general form of the call instructions for the asm parser.
// These instructions don't hard-code %r14 as the return address register.
// Allow an optional TLS marker symbol to generate TLS call relocations.
def BRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16tls:$I2),
"bras\t$R1, $I2", []>;
def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32tls:$I2),
"brasl\t$R1, $I2", []>;
def BASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
"basr\t$R1, $R2", []>;
//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//
// Register moves.
let hasSideEffects = 0 in {
// Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>,
Requires<[FeatureHighWord]>;
def LR : UnaryRR <"l", 0x18, null_frag, GR32, GR32>;
def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
def LTR : UnaryRR <"lt", 0x12, null_frag, GR32, GR32>;
def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
}
// Move on condition.
let isCodeGenOnly = 1, Uses = [CC] in {
def LOCR : CondUnaryRRF<"loc", 0xB9F2, GR32, GR32>;
def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
}
let Uses = [CC] in {
def AsmLOCR : AsmCondUnaryRRF<"loc", 0xB9F2, GR32, GR32>;
def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
}
// Immediate moves.
let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
isReMaterializable = 1 in {
// 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF,
// deopending on the choice of register.
def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
Requires<[FeatureHighWord]>;
def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
// Other 16-bit immediates.
def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
// 32-bit immediates.
def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
}
// Register loads.
let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
// Expands to L, LY or LFH, depending on the choice of register.
def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
Requires<[FeatureHighWord]>;
defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
Requires<[FeatureHighWord]>;
def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
// These instructions are split after register allocation, so we don't
// want a custom inserter.
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
[(set GR128:$dst, (load bdxaddr20only128:$src))]>;
}
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
def LT : UnaryRXY<"lt", 0xE312, load, GR32, 4>;
def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
}
let canFoldAsLoad = 1 in {
def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
}
// Load on condition.
let isCodeGenOnly = 1, Uses = [CC] in {
def LOC : CondUnaryRSY<"loc", 0xEBF2, nonvolatile_load, GR32, 4>;
def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
}
let Uses = [CC] in {
def AsmLOC : AsmCondUnaryRSY<"loc", 0xEBF2, GR32, 4>;
def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
}
// Register stores.
let SimpleBDXStore = 1 in {
// Expands to ST, STY or STFH, depending on the choice of register.
def STMux : StoreRXYPseudo<store, GRX32, 4>,
Requires<[FeatureHighWord]>;
defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
Requires<[FeatureHighWord]>;
def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
// These instructions are split after register allocation, so we don't
// want a custom inserter.
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
[(store GR128:$src, bdxaddr20only128:$dst)]>;
}
}
def STRL : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
// Store on condition.
let isCodeGenOnly = 1, Uses = [CC] in {
def STOC : CondStoreRSY<"stoc", 0xEBF3, GR32, 4>;
def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
}
let Uses = [CC] in {
def AsmSTOC : AsmCondStoreRSY<"stoc", 0xEBF3, GR32, 4>;
def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
}
// 8-bit immediate stores to 8-bit fields.
defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
// 16-bit immediate stores to 16-, 32- or 64-bit fields.
def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
// Memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
// String moves.
let mayLoad = 1, mayStore = 1, Defs = [CC] in
defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
//===----------------------------------------------------------------------===//
// Sign extensions
//===----------------------------------------------------------------------===//
//
// Note that putting these before zero extensions mean that we will prefer
// them for anyextload*. There's not really much to choose between the two
// either way, but signed-extending loads have a short LH and a long LHY,
// while zero-extending loads have only the long LLH.
//
//===----------------------------------------------------------------------===//
// 32-bit extensions from registers.
let hasSideEffects = 0 in {
def LBR : UnaryRRE<"lb", 0xB926, sext8, GR32, GR32>;
def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
}
// 64-bit extensions from registers.
let hasSideEffects = 0 in {
def LGBR : UnaryRRE<"lgb", 0xB906, sext8, GR64, GR64>;
def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR32>;
// Match 32-to-64-bit sign extensions in which the source is already
// in a 64-bit register.
def : Pat<(sext_inreg GR64:$src, i32),
(LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
// 32-bit extensions from 8-bit memory. LBMux expands to LB or LBH,
// depending on the choice of register.
def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
Requires<[FeatureHighWord]>;
def LB : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
Requires<[FeatureHighWord]>;
// 32-bit extensions from 16-bit memory. LHMux expands to LH or LHH,
// depending on the choice of register.
def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
Requires<[FeatureHighWord]>;
defm LH : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
def LHH : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
Requires<[FeatureHighWord]>;
def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
// 64-bit extensions from memory.
def LGB : UnaryRXY<"lgb", 0xE377, asextloadi8, GR64, 1>;
def LGH : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
def LGF : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
//===----------------------------------------------------------------------===//
// Zero extensions
//===----------------------------------------------------------------------===//
// 32-bit extensions from registers.
let hasSideEffects = 0 in {
// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>,
Requires<[FeatureHighWord]>;
def LLCR : UnaryRRE<"llc", 0xB994, zext8, GR32, GR32>;
// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
def LLHRMux : UnaryRRPseudo<"llh", zext16, GRX32, GRX32>,
Requires<[FeatureHighWord]>;
def LLHR : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
}
// 64-bit extensions from registers.
let hasSideEffects = 0 in {
def LLGCR : UnaryRRE<"llgc", 0xB984, zext8, GR64, GR64>;
def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
}
// Match 32-to-64-bit zero extensions in which the source is already
// in a 64-bit register.
def : Pat<(and GR64:$src, 0xffffffff),
(LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
// 32-bit extensions from 8-bit memory. LLCMux expands to LLC or LLCH,
// depending on the choice of register.
def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
Requires<[FeatureHighWord]>;
def LLC : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
Requires<[FeatureHighWord]>;
// 32-bit extensions from 16-bit memory. LLHMux expands to LLH or LLHH,
// depending on the choice of register.
def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
Requires<[FeatureHighWord]>;
def LLH : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
def LLHH : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
Requires<[FeatureHighWord]>;
def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
// 64-bit extensions from memory.
def LLGC : UnaryRXY<"llgc", 0xE390, azextloadi8, GR64, 1>;
def LLGH : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
def LLGF : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
//===----------------------------------------------------------------------===//
// Truncations
//===----------------------------------------------------------------------===//
// Truncations of 64-bit registers to 32-bit registers.
def : Pat<(i32 (trunc GR64:$src)),
(EXTRACT_SUBREG GR64:$src, subreg_l32)>;
// Truncations of 32-bit registers to 8-bit memory. STCMux expands to
// STC, STCY or STCH, depending on the choice of register.
def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
Requires<[FeatureHighWord]>;
defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
Requires<[FeatureHighWord]>;
// Truncations of 32-bit registers to 16-bit memory. STHMux expands to
// STH, STHY or STHH, depending on the choice of register.
def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
Requires<[FeatureHighWord]>;
defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
Requires<[FeatureHighWord]>;
def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
// Truncations of 64-bit registers to memory.
defm : StoreGR64Pair<STC, STCY, truncstorei8>;
defm : StoreGR64Pair<STH, STHY, truncstorei16>;
def : StoreGR64PC<STHRL, aligned_truncstorei16>;
defm : StoreGR64Pair<ST, STY, truncstorei32>;
def : StoreGR64PC<STRL, aligned_truncstorei32>;
//===----------------------------------------------------------------------===//
// Multi-register moves
//===----------------------------------------------------------------------===//
// Multi-register loads.
def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
// Multi-register stores.
def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//
// Byte-swapping register moves.
let hasSideEffects = 0 in {
def LRVR : UnaryRRE<"lrv", 0xB91F, bswap, GR32, GR32>;
def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
}
// Byte-swapping loads. Unlike normal loads, these instructions are
// allowed to access storage more than once.
def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
// Likewise byte-swapping stores.
def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
GR64, 8>;
//===----------------------------------------------------------------------===//
// Load address instructions
//===----------------------------------------------------------------------===//
// Load BDX-style addresses.
let hasSideEffects = 0, isAsCheapAsAMove = 1, isReMaterializable = 1,
DispKey = "la" in {
let DispSize = "12" in
def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
"la\t$R1, $XBD2",
[(set GR64:$R1, laaddr12pair:$XBD2)]>;
let DispSize = "20" in
def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
"lay\t$R1, $XBD2",
[(set GR64:$R1, laaddr20pair:$XBD2)]>;
}
// Load a PC-relative address. There's no version of this instruction
// with a 16-bit offset, so there's no relaxation.
let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
isReMaterializable = 1 in {
def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
"larl\t$R1, $I2",
[(set GR64:$R1, pcrel32:$I2)]>;
}
// Load the Global Offset Table address. This will be lowered into a
// larl $R1, _GLOBAL_OFFSET_TABLE_
// instruction.
def GOT : Alias<6, (outs GR64:$R1), (ins),
[(set GR64:$R1, (global_offset_table))]>;
//===----------------------------------------------------------------------===//
// Absolute and Negation
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
def LPR : UnaryRR <"lp", 0x10, z_iabs, GR32, GR32>;
def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs, GR64, GR64>;
}
let CCValues = 0xE, CompareZeroCCMask = 0xE in
def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>;
}
def : Pat<(z_iabs32 GR32:$src), (LPR GR32:$src)>;
def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
defm : SXU<z_iabs, LPGFR>;
defm : SXU<z_iabs64, LPGFR>;
let Defs = [CC] in {
let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
def LNR : UnaryRR <"ln", 0x11, z_inegabs, GR32, GR32>;
def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs, GR64, GR64>;
}
let CCValues = 0xE, CompareZeroCCMask = 0xE in
def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>;
}
def : Pat<(z_inegabs32 GR32:$src), (LNR GR32:$src)>;
def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
defm : SXU<z_inegabs, LNGFR>;
defm : SXU<z_inegabs64, LNGFR>;
let Defs = [CC] in {
let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
def LCR : UnaryRR <"lc", 0x13, ineg, GR32, GR32>;
def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
}
let CCValues = 0xE, CompareZeroCCMask = 0xE in
def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
}
defm : SXU<ineg, LCGFR>;
//===----------------------------------------------------------------------===//
// Insertion
//===----------------------------------------------------------------------===//
let isCodeGenOnly = 1 in
defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
defm : InsertMem<"inserti8", IC32, GR32, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
defm : InsertMem<"inserti8", IC, GR64, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
// Insertions of a 16-bit immediate, leaving other bits unaffected.
// We don't have or_as_insert equivalents of these operations because
// OI is available instead.
//
// IIxMux expands to II[LH]x, depending on the choice of register.
def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
Requires<[FeatureHighWord]>;
def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
Requires<[FeatureHighWord]>;
def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
// ...likewise for 32-bit immediates. For GR32s this is a general
// full-width move. (We use IILF rather than something like LLILF
// for 32-bit moves because IILF leaves the upper 32 bits of the
// GR64 unchanged.)
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
}
def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
// An alternative model of inserthf, with the first operand being
// a zero-extended value.
def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
(IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
imm64hf32:$imm)>;
//===----------------------------------------------------------------------===//
// Addition
//===----------------------------------------------------------------------===//
// Plain addition.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
// Addition of a register.
let isCommutable = 1 in {
defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
}
def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
// Addition of signed 16-bit immediates.
defm AHIMux : BinaryRIAndKPseudo<"ahimux", add, GRX32, imm32sx16>;
defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, add, GR32, imm32sx16>;
defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
// Addition of signed 32-bit immediates.
def AFIMux : BinaryRIPseudo<add, GRX32, simm32>,
Requires<[FeatureHighWord]>;
def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
def AIH : BinaryRIL<"aih", 0xCC8, add, GRH32, simm32>,
Requires<[FeatureHighWord]>;
def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
// Addition of memory.
defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>;
defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load, 4>;
def AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>;
def AG : BinaryRXY<"ag", 0xE308, add, GR64, load, 8>;
// Addition to memory.
def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
}
defm : SXB<add, GR64, AGFR>;
// Addition producing a carry.
let Defs = [CC] in {
// Addition of a register.
let isCommutable = 1 in {
defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
}
def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
// Addition of signed 16-bit immediates.
def ALHSIK : BinaryRIE<"alhsik", 0xECDA, addc, GR32, imm32sx16>,
Requires<[FeatureDistinctOps]>;
def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
Requires<[FeatureDistinctOps]>;
// Addition of unsigned 32-bit immediates.
def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
// Addition of memory.
defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>;
def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load, 8>;
}
defm : ZXB<addc, GR64, ALGFR>;
// Addition producing and using a carry.
let Defs = [CC], Uses = [CC] in {
// Addition of a register.
def ALCR : BinaryRRE<"alc", 0xB998, adde, GR32, GR32>;
def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
// Addition of memory.
def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load, 4>;
def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
}
//===----------------------------------------------------------------------===//
// Subtraction
//===----------------------------------------------------------------------===//
// Plain subtraction. Although immediate forms exist, we use the
// add-immediate instruction instead.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
// Subtraction of a register.
defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
// Subtraction of memory.
defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>;
defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>;
def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load, 8>;
}
defm : SXB<sub, GR64, SGFR>;
// Subtraction producing a carry.
let Defs = [CC] in {
// Subtraction of a register.
defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
// Subtraction of unsigned 32-bit immediates. These don't match
// subc because we prefer addc for constants.
def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
// Subtraction of memory.
defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>;
def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load, 8>;
}
defm : ZXB<subc, GR64, SLGFR>;
// Subtraction producing and using a carry.
let Defs = [CC], Uses = [CC] in {
// Subtraction of a register.
def SLBR : BinaryRRE<"slb", 0xB999, sube, GR32, GR32>;
def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
// Subtraction of memory.
def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load, 4>;
def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
}
//===----------------------------------------------------------------------===//
// AND
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
// ANDs of a register.
let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
}
let isConvertibleToThreeAddress = 1 in {
// ANDs of a 16-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 16-bit field, not the full register.
//
// NIxMux expands to NI[LH]x, depending on the choice of register.
def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
Requires<[FeatureHighWord]>;
def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
Requires<[FeatureHighWord]>;
def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
// ANDs of a 32-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 32-bit field, which means we can
// use it as a zero indicator for i32 operations but not otherwise.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
// Expands to NILF or NIHF, depending on the choice of register.
def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
}
def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
}
// ANDs of memory.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
def NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>;
}
// AND to memory
defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
// Block AND.
let mayLoad = 1, mayStore = 1 in
defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
}
defm : RMWIByte<and, bdaddr12pair, NI>;
defm : RMWIByte<and, bdaddr20pair, NIY>;
//===----------------------------------------------------------------------===//
// OR
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
// ORs of a register.
let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
}
// ORs of a 16-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 16-bit field, not the full register.
//
// OIxMux expands to OI[LH]x, depending on the choice of register.
def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
Requires<[FeatureHighWord]>;
def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
Requires<[FeatureHighWord]>;
def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
// ORs of a 32-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 32-bit field, which means we can
// use it as a zero indicator for i32 operations but not otherwise.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
// Expands to OILF or OIHF, depending on the choice of register.
def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
}
def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
// ORs of memory.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
def OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
}
// OR to memory
defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
// Block OR.
let mayLoad = 1, mayStore = 1 in
defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
}
defm : RMWIByte<or, bdaddr12pair, OI>;
defm : RMWIByte<or, bdaddr20pair, OIY>;
//===----------------------------------------------------------------------===//
// XOR
//===----------------------------------------------------------------------===//
let Defs = [CC] in {
// XORs of a register.
let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
}
// XORs of a 32-bit immediate, leaving other bits unaffected.
// The CC result only reflects the 32-bit field, which means we can
// use it as a zero indicator for i32 operations but not otherwise.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
// Expands to XILF or XIHF, depending on the choice of register.
def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
}
def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
// XORs of memory.
let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
}
// XOR to memory
defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
// Block XOR.
let mayLoad = 1, mayStore = 1 in
defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
}
defm : RMWIByte<xor, bdaddr12pair, XI>;
defm : RMWIByte<xor, bdaddr20pair, XIY>;
//===----------------------------------------------------------------------===//
// Multiplication
//===----------------------------------------------------------------------===//
// Multiplication of a register.
let isCommutable = 1 in {
def MSR : BinaryRRE<"ms", 0xB252, mul, GR32, GR32>;
def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
}
def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
defm : SXB<mul, GR64, MSGFR>;
// Multiplication of a signed 16-bit immediate.
def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
// Multiplication of a signed 32-bit immediate.
def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
// Multiplication of memory.
defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>;
// Multiplication of a register, producing two results.
def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
// Multiplication of memory, producing two results.
def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
//===----------------------------------------------------------------------===//
// Division and remainder
//===----------------------------------------------------------------------===//
// Division and remainder, from registers.
def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
def DSGR : BinaryRRE<"dsg", 0xB90D, z_sdivrem64, GR128, GR64>;
def DLR : BinaryRRE<"dl", 0xB997, z_udivrem32, GR128, GR32>;
def DLGR : BinaryRRE<"dlg", 0xB987, z_udivrem64, GR128, GR64>;
// Division and remainder, from memory.
def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load, 8>;
def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load, 4>;
def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load, 8>;
//===----------------------------------------------------------------------===//
// Shifts
//===----------------------------------------------------------------------===//
// Shift left.
let hasSideEffects = 0 in {
defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
def SLLG : BinaryRSY<"sllg", 0xEB0D, shl, GR64>;
}
// Logical shift right.
let hasSideEffects = 0 in {
defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
def SRLG : BinaryRSY<"srlg", 0xEB0C, srl, GR64>;
}
// Arithmetic shift right.
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
def SRAG : BinaryRSY<"srag", 0xEB0A, sra, GR64>;
}
// Rotate left.
let hasSideEffects = 0 in {
def RLL : BinaryRSY<"rll", 0xEB1D, rotl, GR32>;
def RLLG : BinaryRSY<"rllg", 0xEB1C, rotl, GR64>;
}
// Rotate second operand left and inserted selected bits into first operand.
// These can act like 32-bit operands provided that the constant start and
// end bits (operands 2 and 3) are in the range [32, 64).
let Defs = [CC] in {
let isCodeGenOnly = 1 in
def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
let CCValues = 0xE, CompareZeroCCMask = 0xE in
def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
}
// On zEC12 we have a variant of RISBG that does not set CC.
let Predicates = [FeatureMiscellaneousExtensions] in
def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
// Forms of RISBG that only affect one word of the destination register.
// They do not set CC.
let Predicates = [FeatureHighWord] in {
def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
def RISBLL : RotateSelectAliasRIEf<GR32, GR32>;
def RISBLH : RotateSelectAliasRIEf<GR32, GRH32>;
def RISBHL : RotateSelectAliasRIEf<GRH32, GR32>;
def RISBHH : RotateSelectAliasRIEf<GRH32, GRH32>;
def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
}
// Rotate second operand left and perform a logical operation with selected
// bits of the first operand. The CC result only describes the selected bits,
// so isn't useful for a full comparison against zero.
let Defs = [CC] in {
def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
}
//===----------------------------------------------------------------------===//
// Comparison
//===----------------------------------------------------------------------===//
// Signed comparisons. We put these before the unsigned comparisons because
// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
// of the unsigned forms do.
let Defs = [CC], CCValues = 0xE in {
// Comparison with a register.
def CR : CompareRR <"c", 0x19, z_scmp, GR32, GR32>;
def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
def CGR : CompareRRE<"cg", 0xB920, z_scmp, GR64, GR64>;
// Comparison with a signed 16-bit immediate.
def CHI : CompareRI<"chi", 0xA7E, z_scmp, GR32, imm32sx16>;
def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
// Comparison with a signed 32-bit immediate. CFIMux expands to CFI or CIH,
// depending on the choice of register.
def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
Requires<[FeatureHighWord]>;
def CFI : CompareRIL<"cfi", 0xC2D, z_scmp, GR32, simm32>;
def CIH : CompareRIL<"cih", 0xCCD, z_scmp, GRH32, simm32>,
Requires<[FeatureHighWord]>;
def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
// Comparison with memory.
defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
def CMux : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
Requires<[FeatureHighWord]>;
defm C : CompareRXPair<"c", 0x59, 0xE359, z_scmp, GR32, load, 4>;
def CHF : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
Requires<[FeatureHighWord]>;
def CGH : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
def CGF : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
def CG : CompareRXY<"cg", 0xE320, z_scmp, GR64, load, 8>;
def CHRL : CompareRILPC<"chrl", 0xC65, z_scmp, GR32, aligned_asextloadi16>;
def CRL : CompareRILPC<"crl", 0xC6D, z_scmp, GR32, aligned_load>;
def CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
def CGRL : CompareRILPC<"cgrl", 0xC68, z_scmp, GR64, aligned_load>;
// Comparison between memory and a signed 16-bit immediate.
def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
def CHSI : CompareSIL<"chsi", 0xE55C, z_scmp, load, imm32sx16>;
def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
}
defm : SXB<z_scmp, GR64, CGFR>;
// Unsigned comparisons.
let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
// Comparison with a register.
def CLR : CompareRR <"cl", 0x15, z_ucmp, GR32, GR32>;
def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
def CLGR : CompareRRE<"clg", 0xB921, z_ucmp, GR64, GR64>;
// Comparison with an unsigned 32-bit immediate. CLFIMux expands to CLFI
// or CLIH, depending on the choice of register.
def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
def CLIH : CompareRIL<"clih", 0xCCF, z_ucmp, GRH32, uimm32>,
Requires<[FeatureHighWord]>;
def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
// Comparison with memory.
def CLMux : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
Requires<[FeatureHighWord]>;
defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
def CLHF : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
Requires<[FeatureHighWord]>;
def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>;
def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
aligned_azextloadi16>;
def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
aligned_load>;
def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
aligned_azextloadi16>;
def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
aligned_azextloadi32>;
def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
aligned_load>;
// Comparison between memory and an unsigned 8-bit immediate.
defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
// Comparison between memory and an unsigned 16-bit immediate.
def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
}
defm : ZXB<z_ucmp, GR64, CLGFR>;
// Memory-to-memory comparison.
let mayLoad = 1, Defs = [CC] in
defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
// String comparison.
let mayLoad = 1, Defs = [CC] in
defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
// Test under mask.
let Defs = [CC] in {
// TMxMux expands to TM[LH]x, depending on the choice of register.
def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
Requires<[FeatureHighWord]>;
def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
Requires<[FeatureHighWord]>;
def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
}
//===----------------------------------------------------------------------===//
// Prefetch
//===----------------------------------------------------------------------===//
def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
//===----------------------------------------------------------------------===//
// Atomic operations
//===----------------------------------------------------------------------===//
// A serialization instruction that acts as a barrier for all memory
// accesses, which expands to "bcr 14, 0".
let hasSideEffects = 1 in
def Serialize : Alias<2, (outs), (ins), [(z_serialize)]>;
let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
def LAA : LoadAndOpRSY<"laa", 0xEBF8, atomic_load_add_32, GR32>;
def LAAG : LoadAndOpRSY<"laag", 0xEBE8, atomic_load_add_64, GR64>;
def LAAL : LoadAndOpRSY<"laal", 0xEBFA, null_frag, GR32>;
def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
def LAN : LoadAndOpRSY<"lan", 0xEBF4, atomic_load_and_32, GR32>;
def LANG : LoadAndOpRSY<"lang", 0xEBE4, atomic_load_and_64, GR64>;
def LAO : LoadAndOpRSY<"lao", 0xEBF6, atomic_load_or_32, GR32>;
def LAOG : LoadAndOpRSY<"laog", 0xEBE6, atomic_load_or_64, GR64>;
def LAX : LoadAndOpRSY<"lax", 0xEBF7, atomic_load_xor_32, GR32>;
def LAXG : LoadAndOpRSY<"laxg", 0xEBE7, atomic_load_xor_64, GR64>;
}
def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
}
def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
let Predicates = [FeatureNoInterlockedAccess1] in {
def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm32<atomic_load_and_32,
imm32ll16c>;
def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm32<atomic_load_and_32,
imm32lh16c>;
def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64ll16c>;
def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64lh16c>;
def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64hl16c>;
def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64hh16c>;
def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64lf32c>;
def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
imm64hf32c>;
}
def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
let Predicates = [FeatureNoInterlockedAccess1] in {
def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
}
def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
}
def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
imm32lh16c>;
def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm32<atomic_load_nand_32,
imm32ll16c>;
def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm32<atomic_load_nand_32,
imm32lh16c>;
def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64ll16c>;
def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64lh16c>;
def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64hl16c>;
def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64hh16c>;
def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64lf32c>;
def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
imm64hf32c>;
def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
def ATOMIC_CMP_SWAPW
: Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
ADDR32:$bitshift, ADDR32:$negbitshift,
uimm32:$bitsize),
[(set GR32:$dst,
(z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
ADDR32:$bitshift, ADDR32:$negbitshift,
uimm32:$bitsize))]> {
let Defs = [CC];
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
}
let Defs = [CC] in {
defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
}
//===----------------------------------------------------------------------===//
// Transactional execution
//===----------------------------------------------------------------------===//
let Predicates = [FeatureTransactionalExecution] in {
// Transaction Begin
let hasSideEffects = 1, mayStore = 1,
usesCustomInserter = 1, Defs = [CC] in {
def TBEGIN : InstSIL<0xE560,
(outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
"tbegin\t$BD1, $I2",
[(z_tbegin bdaddr12only:$BD1, imm32zx16:$I2)]>;
def TBEGIN_nofloat : Pseudo<(outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
[(z_tbegin_nofloat bdaddr12only:$BD1,
imm32zx16:$I2)]>;
def TBEGINC : InstSIL<0xE561,
(outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
"tbeginc\t$BD1, $I2",
[(int_s390_tbeginc bdaddr12only:$BD1,
imm32zx16:$I2)]>;
}
// Transaction End
let hasSideEffects = 1, Defs = [CC], BD2 = 0 in
def TEND : InstS<0xB2F8, (outs), (ins), "tend", [(z_tend)]>;
// Transaction Abort
let hasSideEffects = 1, isTerminator = 1, isBarrier = 1 in
def TABORT : InstS<0xB2FC, (outs), (ins bdaddr12only:$BD2),
"tabort\t$BD2",
[(int_s390_tabort bdaddr12only:$BD2)]>;
// Nontransactional Store
let hasSideEffects = 1 in
def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
// Extract Transaction Nesting Depth
let hasSideEffects = 1 in
def ETND : InherentRRE<"etnd", 0xB2EC, GR32, (int_s390_etnd)>;
}
//===----------------------------------------------------------------------===//
// Processor assist
//===----------------------------------------------------------------------===//
let Predicates = [FeatureProcessorAssist] in {
let hasSideEffects = 1, R4 = 0 in
def PPA : InstRRF<0xB2E8, (outs), (ins GR64:$R1, GR64:$R2, imm32zx4:$R3),
"ppa\t$R1, $R2, $R3", []>;
def : Pat<(int_s390_ppa_txassist GR32:$src),
(PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
0, 1)>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//===----------------------------------------------------------------------===//
// Extract CC into bits 29 and 28 of a register.
let Uses = [CC] in
def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>;
// Read a 32-bit access register into a GR32. As with all GR32 operations,
// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
// when a 64-bit address is stored in a pair of access registers.
def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
"ear\t$R1, $R2",
[(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
// Find leftmost one, AKA count leading zeros. The instruction actually
// returns a pair of GR64s, the first giving the number of leading zeros
// and the second giving a copy of the source with the leftmost one bit
// cleared. We only use the first result here.
let Defs = [CC] in {
def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
}
def : Pat<(ctlz GR64:$src),
(EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
// Population count. Counts bits set per byte.
let Predicates = [FeaturePopulationCount], Defs = [CC] in {
def POPCNT : InstRRE<0xB9E1, (outs GR64:$R1), (ins GR64:$R2),
"popcnt\t$R1, $R2",
[(set GR64:$R1, (z_popcnt GR64:$R2))]>;
}
// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
def : Pat<(i64 (anyext GR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
// Extend GR32s and GR64s to GR128s.
let usesCustomInserter = 1 in {
def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
}
// Search a block of memory for a character.
let mayLoad = 1, Defs = [CC] in
defm SRST : StringRRE<"srst", 0xb25e, z_search_string>;
// Other instructions for inline assembly
let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
def STCK : InstS<0xB205, (outs), (ins bdaddr12only:$BD2),
"stck\t$BD2",
[]>;
let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
def STCKF : InstS<0xB27C, (outs), (ins bdaddr12only:$BD2),
"stckf\t$BD2",
[]>;
let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
def STCKE : InstS<0xB278, (outs), (ins bdaddr12only:$BD2),
"stcke\t$BD2",
[]>;
let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
def STFLE : InstS<0xB2B0, (outs), (ins bdaddr12only:$BD2),
"stfle\t$BD2",
[]>;
//===----------------------------------------------------------------------===//
// Peepholes.
//===----------------------------------------------------------------------===//
// Use AL* for GR64 additions of unsigned 32-bit values.
defm : ZXB<add, GR64, ALGFR>;
def : Pat<(add GR64:$src1, imm64zx32:$src2),
(ALGFI GR64:$src1, imm64zx32:$src2)>;
def : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
(ALGF GR64:$src1, bdxaddr20only:$addr)>;
// Use SL* for GR64 subtractions of unsigned 32-bit values.
defm : ZXB<sub, GR64, SLGFR>;
def : Pat<(add GR64:$src1, imm64zx32n:$src2),
(SLGFI GR64:$src1, imm64zx32n:$src2)>;
def : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
(SLGF GR64:$src1, bdxaddr20only:$addr)>;
// Optimize sign-extended 1/0 selects to -1/0 selects. This is important
// for vector legalization.
def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, imm32zx4:$valid, imm32zx4:$cc)),
(i32 31)),
(i32 31)),
(Select32 (LHI -1), (LHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, imm32zx4:$valid,
imm32zx4:$cc)))),
(i32 63)),
(i32 63)),
(Select64 (LGHI -1), (LGHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
// Peepholes for turning scalar operations into block operations.
defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
XCSequence, 2>;
defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
XCSequence, 4>;
defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
OCSequence, XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
XCSequence, 2>;
defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
XCSequence, 4>;
defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
XCSequence, 8>;
|