File: main.cpp

package info (click to toggle)
llvm-toolchain-3.8 1%3A3.8.1-24
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 379,280 kB
  • ctags: 388,501
  • sloc: cpp: 2,309,705; ansic: 477,070; objc: 100,918; asm: 97,974; python: 95,911; sh: 18,634; makefile: 7,294; perl: 5,584; ml: 5,460; pascal: 4,661; lisp: 2,548; xml: 686; cs: 350; php: 212; csh: 117
file content (89 lines) | stat: -rw-r--r-- 2,259 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
//===-- main.cpp ------------------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// This test is intended to create a situation in which one thread will be
// created while the debugger is stepping in another thread.

#include <atomic>
#include <thread>

// Note that although hogging the CPU while waiting for a variable to change
// would be terrible in production code, it's great for testing since it
// avoids a lot of messy context switching to get multiple threads synchronized.
#define do_nothing()

#define pseudo_barrier_wait(bar) \
    --bar;                       \
    while (bar > 0)              \
        do_nothing();

#define pseudo_barrier_init(bar, count) (bar = count)

std::atomic_int g_barrier;

volatile int g_thread_created = 0;
volatile int g_test = 0;

void *
step_thread_func ()
{
    g_test = 0;         // Set breakpoint here

    while (!g_thread_created)
        g_test++;

    // One more time to provide a continue point
    g_test++;           // Continue from here

    // Return
    return NULL;
}

void *
create_thread_func (void *input)
{
    std::thread *step_thread = (std::thread*)input;

    // Wait until the main thread knows this thread is started.
    pseudo_barrier_wait(g_barrier);

    // Wait until the other thread is done.
    step_thread->join();

    // Return
    return NULL;
}

int main ()
{
    // Use a simple count to simulate a barrier.
    pseudo_barrier_init(g_barrier, 2);

    // Create a thread to hit the breakpoint.
    std::thread thread_1(step_thread_func);

    // Wait until the step thread is stepping
    while (g_test < 1)
        do_nothing();

    // Create a thread to exit while we're stepping.
    std::thread thread_2(create_thread_func, &thread_1);

    // Wait until that thread is started
    pseudo_barrier_wait(g_barrier);

    // Let the stepping thread know the other thread is there
    g_thread_created = 1;

    // Wait for the threads to finish.
    thread_2.join();
    thread_1.join();

    return 0;
}