1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  
     | 
    
      ; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse2 < %s | FileCheck %s
; PR22428: https://llvm.org/bugs/show_bug.cgi?id=22428
; f1, f2, f3, and f4 should use an integer logic instruction.
; f9 and f10 should use an FP (SSE) logic instruction.
;
; f5, f6, f7, and f8 are less clear.
;
; For f5 and f6, we can save a register move by using an FP logic instruction,
; but we may need to calculate the relative costs of an SSE op vs. int op vs. 
; scalar <-> SSE register moves.
;
; For f7 and f8, the SSE instructions don't take immediate operands, so if we
; use one of those, we either have to load a constant from memory or move the
; scalar immediate value from an integer register over to an SSE register.
; Optimizing for size may affect that decision. Also, note that there are no
; scalar versions of the FP logic ops, so if we want to fold a load into a
; logic op, we have to load or splat a 16-byte vector constant.
; 1 FP operand, 1 int operand, int result
define i32 @f1(float %x, i32 %y) {
; CHECK-LABEL: f1:
; CHECK:       # BB#0:
; CHECK-NEXT:    movd %xmm0, %eax
; CHECK-NEXT:    andl %edi, %eax
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = and i32 %bc1, %y
  ret i32 %and
}
; Swap operands of the logic op.
define i32 @f2(float %x, i32 %y) {
; CHECK-LABEL: f2:
; CHECK:       # BB#0:
; CHECK-NEXT:    movd %xmm0, %eax
; CHECK-NEXT:    andl %edi, %eax
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = and i32 %y, %bc1
  ret i32 %and
}
; 1 FP operand, 1 constant operand, int result
define i32 @f3(float %x) {
; CHECK-LABEL: f3:
; CHECK:       # BB#0:
; CHECK-NEXT:    movd %xmm0, %eax
; CHECK-NEXT:    andl $1, %eax
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = and i32 %bc1, 1
  ret i32 %and
}
; Swap operands of the logic op.
define i32 @f4(float %x) {
; CHECK-LABEL: f4:
; CHECK:       # BB#0:
; CHECK-NEXT:    movd %xmm0, %eax
; CHECK-NEXT:    andl $2, %eax
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = and i32 2, %bc1
  ret i32 %and
}
; 1 FP operand, 1 integer operand, FP result
define float @f5(float %x, i32 %y) {
; CHECK-LABEL: f5:
; CHECK:       # BB#0:
; CHECK-NEXT:    movd %xmm0, %eax
; CHECK-NEXT:    andl %edi, %eax
; CHECK-NEXT:    movd %eax, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = and i32 %bc1, %y
  %bc2 = bitcast i32 %and to float
  ret float %bc2
}
; Swap operands of the logic op.
define float @f6(float %x, i32 %y) {
; CHECK-LABEL: f6:
; CHECK:       # BB#0:
; CHECK-NEXT:    movd %xmm0, %eax
; CHECK-NEXT:    andl %edi, %eax
; CHECK-NEXT:    movd %eax, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = and i32 %y, %bc1
  %bc2 = bitcast i32 %and to float
  ret float %bc2
}
; 1 FP operand, 1 constant operand, FP result
define float @f7(float %x) {
; CHECK-LABEL: f7:
; CHECK:       # BB#0:
; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT:    andps %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = and i32 %bc1, 3
  %bc2 = bitcast i32 %and to float
  ret float %bc2
}
; Swap operands of the logic op.
define float @f8(float %x) {
; CHECK-LABEL: f8:
; CHECK:       # BB#0:
; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT:    andps %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = and i32 4, %bc1
  %bc2 = bitcast i32 %and to float
  ret float %bc2
}
; 2 FP operands, int result
define i32 @f9(float %x, float %y) {
; CHECK-LABEL: f9:
; CHECK:       # BB#0:
; CHECK-NEXT:    andps %xmm1, %xmm0
; CHECK-NEXT:    movd %xmm0, %eax
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %bc2 = bitcast float %y to i32
  %and = and i32 %bc1, %bc2
  ret i32 %and
}
; 2 FP operands, FP result
define float @f10(float %x, float %y) {
; CHECK-LABEL: f10:
; CHECK:       # BB#0:
; CHECK-NEXT:    andps %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %bc2 = bitcast float %y to i32
  %and = and i32 %bc1, %bc2
  %bc3 = bitcast i32 %and to float
  ret float %bc3
}
define float @or(float %x, float %y) {
; CHECK-LABEL: or:
; CHECK:       # BB#0:
; CHECK-NEXT:    orps %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %bc2 = bitcast float %y to i32
  %and = or i32 %bc1, %bc2
  %bc3 = bitcast i32 %and to float
  ret float %bc3
}
define float @xor(float %x, float %y) {
; CHECK-LABEL: xor:
; CHECK:       # BB#0:
; CHECK-NEXT:    xorps %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %bc2 = bitcast float %y to i32
  %and = xor i32 %bc1, %bc2
  %bc3 = bitcast i32 %and to float
  ret float %bc3
}
define float @f7_or(float %x) {
; CHECK-LABEL: f7_or:
; CHECK:       # BB#0:
; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT:    orps %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = or i32 %bc1, 3
  %bc2 = bitcast i32 %and to float
  ret float %bc2
}
define float @f7_xor(float %x) {
; CHECK-LABEL: f7_xor:
; CHECK:       # BB#0:
; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT:    xorps %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = xor i32 %bc1, 3
  %bc2 = bitcast i32 %and to float
  ret float %bc2
}
; Make sure that doubles work too.
define double @doubles(double %x, double %y) {
; CHECK-LABEL: doubles:
; CHECK:       # BB#0:
; CHECK-NEXT:    andpd %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast double %x to i64
  %bc2 = bitcast double %y to i64
  %and = and i64 %bc1, %bc2
  %bc3 = bitcast i64 %and to double
  ret double %bc3
}
define double @f7_double(double %x) {
; CHECK-LABEL: f7_double:
; CHECK:       # BB#0:
; CHECK-NEXT:    movsd {{.*#+}} xmm1 = mem[0],zero
; CHECK-NEXT:    andpd %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast double %x to i64
  %and = and i64 %bc1, 3
  %bc2 = bitcast i64 %and to double
  ret double %bc2
}
; Grabbing the sign bit is a special case that could be handled
; by movmskps/movmskpd, but if we're not shifting it over, then
; a simple FP logic op is cheaper.
define float @movmsk(float %x) {
; CHECK-LABEL: movmsk:
; CHECK:       # BB#0:
; CHECK-NEXT:    movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT:    andps %xmm1, %xmm0
; CHECK-NEXT:    retq
  %bc1 = bitcast float %x to i32
  %and = and i32 %bc1, 2147483648
  %bc2 = bitcast i32 %and to float
  ret float %bc2
}
 
     |