1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// \brief This file implements semantic analysis for CUDA constructs.
///
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;
ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
MultiExprArg ExecConfig,
SourceLocation GGGLoc) {
FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
if (!ConfigDecl)
return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
<< "cudaConfigureCall");
QualType ConfigQTy = ConfigDecl->getType();
DeclRefExpr *ConfigDR = new (Context)
DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
MarkFunctionReferenced(LLLLoc, ConfigDecl);
return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
/*IsExecConfig=*/true);
}
/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
if (D->hasAttr<CUDAInvalidTargetAttr>())
return CFT_InvalidTarget;
if (D->hasAttr<CUDAGlobalAttr>())
return CFT_Global;
if (D->hasAttr<CUDADeviceAttr>()) {
if (D->hasAttr<CUDAHostAttr>())
return CFT_HostDevice;
return CFT_Device;
} else if (D->hasAttr<CUDAHostAttr>()) {
return CFT_Host;
} else if (D->isImplicit()) {
// Some implicit declarations (like intrinsic functions) are not marked.
// Set the most lenient target on them for maximal flexibility.
return CFT_HostDevice;
}
return CFT_Host;
}
// * CUDA Call preference table
//
// F - from,
// T - to
// Ph - preference in host mode
// Pd - preference in device mode
// H - handled in (x)
// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
//
// | F | T | Ph | Pd | H |
// |----+----+-----+-----+-----+
// | d | d | N | N | (c) |
// | d | g | -- | -- | (a) |
// | d | h | -- | -- | (e) |
// | d | hd | HD | HD | (b) |
// | g | d | N | N | (c) |
// | g | g | -- | -- | (a) |
// | g | h | -- | -- | (e) |
// | g | hd | HD | HD | (b) |
// | h | d | -- | -- | (e) |
// | h | g | N | N | (c) |
// | h | h | N | N | (c) |
// | h | hd | HD | HD | (b) |
// | hd | d | WS | SS | (d) |
// | hd | g | SS | -- |(d/a)|
// | hd | h | SS | WS | (d) |
// | hd | hd | HD | HD | (b) |
Sema::CUDAFunctionPreference
Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
const FunctionDecl *Callee) {
assert(Callee && "Callee must be valid.");
CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
CUDAFunctionTarget CallerTarget =
(Caller != nullptr) ? IdentifyCUDATarget(Caller) : Sema::CFT_Host;
// If one of the targets is invalid, the check always fails, no matter what
// the other target is.
if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
return CFP_Never;
// (a) Can't call global from some contexts until we support CUDA's
// dynamic parallelism.
if (CalleeTarget == CFT_Global &&
(CallerTarget == CFT_Global || CallerTarget == CFT_Device ||
(CallerTarget == CFT_HostDevice && getLangOpts().CUDAIsDevice)))
return CFP_Never;
// (b) Calling HostDevice is OK for everyone.
if (CalleeTarget == CFT_HostDevice)
return CFP_HostDevice;
// (c) Best case scenarios
if (CalleeTarget == CallerTarget ||
(CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
(CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
return CFP_Native;
// (d) HostDevice behavior depends on compilation mode.
if (CallerTarget == CFT_HostDevice) {
// It's OK to call a compilation-mode matching function from an HD one.
if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
(!getLangOpts().CUDAIsDevice &&
(CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
return CFP_SameSide;
// Calls from HD to non-mode-matching functions (i.e., to host functions
// when compiling in device mode or to device functions when compiling in
// host mode) are allowed at the sema level, but eventually rejected if
// they're ever codegened. TODO: Reject said calls earlier.
return CFP_WrongSide;
}
// (e) Calling across device/host boundary is not something you should do.
if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
(CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
(CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
return CFP_Never;
llvm_unreachable("All cases should've been handled by now.");
}
template <typename T>
static void EraseUnwantedCUDAMatchesImpl(
Sema &S, const FunctionDecl *Caller, llvm::SmallVectorImpl<T> &Matches,
std::function<const FunctionDecl *(const T &)> FetchDecl) {
if (Matches.size() <= 1)
return;
// Gets the CUDA function preference for a call from Caller to Match.
auto GetCFP = [&](const T &Match) {
return S.IdentifyCUDAPreference(Caller, FetchDecl(Match));
};
// Find the best call preference among the functions in Matches.
Sema::CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
Matches.begin(), Matches.end(),
[&](const T &M1, const T &M2) { return GetCFP(M1) < GetCFP(M2); }));
// Erase all functions with lower priority.
Matches.erase(
llvm::remove_if(Matches,
[&](const T &Match) { return GetCFP(Match) < BestCFP; }),
Matches.end());
}
void Sema::EraseUnwantedCUDAMatches(const FunctionDecl *Caller,
SmallVectorImpl<FunctionDecl *> &Matches){
EraseUnwantedCUDAMatchesImpl<FunctionDecl *>(
*this, Caller, Matches, [](const FunctionDecl *item) { return item; });
}
void Sema::EraseUnwantedCUDAMatches(const FunctionDecl *Caller,
SmallVectorImpl<DeclAccessPair> &Matches) {
EraseUnwantedCUDAMatchesImpl<DeclAccessPair>(
*this, Caller, Matches, [](const DeclAccessPair &item) {
return dyn_cast<FunctionDecl>(item.getDecl());
});
}
void Sema::EraseUnwantedCUDAMatches(
const FunctionDecl *Caller,
SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches){
EraseUnwantedCUDAMatchesImpl<std::pair<DeclAccessPair, FunctionDecl *>>(
*this, Caller, Matches,
[](const std::pair<DeclAccessPair, FunctionDecl *> &item) {
return dyn_cast<FunctionDecl>(item.second);
});
}
/// When an implicitly-declared special member has to invoke more than one
/// base/field special member, conflicts may occur in the targets of these
/// members. For example, if one base's member __host__ and another's is
/// __device__, it's a conflict.
/// This function figures out if the given targets \param Target1 and
/// \param Target2 conflict, and if they do not it fills in
/// \param ResolvedTarget with a target that resolves for both calls.
/// \return true if there's a conflict, false otherwise.
static bool
resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
Sema::CUDAFunctionTarget Target2,
Sema::CUDAFunctionTarget *ResolvedTarget) {
// Only free functions and static member functions may be global.
assert(Target1 != Sema::CFT_Global);
assert(Target2 != Sema::CFT_Global);
if (Target1 == Sema::CFT_HostDevice) {
*ResolvedTarget = Target2;
} else if (Target2 == Sema::CFT_HostDevice) {
*ResolvedTarget = Target1;
} else if (Target1 != Target2) {
return true;
} else {
*ResolvedTarget = Target1;
}
return false;
}
bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
CXXSpecialMember CSM,
CXXMethodDecl *MemberDecl,
bool ConstRHS,
bool Diagnose) {
llvm::Optional<CUDAFunctionTarget> InferredTarget;
// We're going to invoke special member lookup; mark that these special
// members are called from this one, and not from its caller.
ContextRAII MethodContext(*this, MemberDecl);
// Look for special members in base classes that should be invoked from here.
// Infer the target of this member base on the ones it should call.
// Skip direct and indirect virtual bases for abstract classes.
llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
for (const auto &B : ClassDecl->bases()) {
if (!B.isVirtual()) {
Bases.push_back(&B);
}
}
if (!ClassDecl->isAbstract()) {
for (const auto &VB : ClassDecl->vbases()) {
Bases.push_back(&VB);
}
}
for (const auto *B : Bases) {
const RecordType *BaseType = B->getType()->getAs<RecordType>();
if (!BaseType) {
continue;
}
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
Sema::SpecialMemberOverloadResult *SMOR =
LookupSpecialMember(BaseClassDecl, CSM,
/* ConstArg */ ConstRHS,
/* VolatileArg */ false,
/* RValueThis */ false,
/* ConstThis */ false,
/* VolatileThis */ false);
if (!SMOR || !SMOR->getMethod()) {
continue;
}
CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR->getMethod());
if (!InferredTarget.hasValue()) {
InferredTarget = BaseMethodTarget;
} else {
bool ResolutionError = resolveCalleeCUDATargetConflict(
InferredTarget.getValue(), BaseMethodTarget,
InferredTarget.getPointer());
if (ResolutionError) {
if (Diagnose) {
Diag(ClassDecl->getLocation(),
diag::note_implicit_member_target_infer_collision)
<< (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
}
MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
return true;
}
}
}
// Same as for bases, but now for special members of fields.
for (const auto *F : ClassDecl->fields()) {
if (F->isInvalidDecl()) {
continue;
}
const RecordType *FieldType =
Context.getBaseElementType(F->getType())->getAs<RecordType>();
if (!FieldType) {
continue;
}
CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
Sema::SpecialMemberOverloadResult *SMOR =
LookupSpecialMember(FieldRecDecl, CSM,
/* ConstArg */ ConstRHS && !F->isMutable(),
/* VolatileArg */ false,
/* RValueThis */ false,
/* ConstThis */ false,
/* VolatileThis */ false);
if (!SMOR || !SMOR->getMethod()) {
continue;
}
CUDAFunctionTarget FieldMethodTarget =
IdentifyCUDATarget(SMOR->getMethod());
if (!InferredTarget.hasValue()) {
InferredTarget = FieldMethodTarget;
} else {
bool ResolutionError = resolveCalleeCUDATargetConflict(
InferredTarget.getValue(), FieldMethodTarget,
InferredTarget.getPointer());
if (ResolutionError) {
if (Diagnose) {
Diag(ClassDecl->getLocation(),
diag::note_implicit_member_target_infer_collision)
<< (unsigned)CSM << InferredTarget.getValue()
<< FieldMethodTarget;
}
MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
return true;
}
}
}
if (InferredTarget.hasValue()) {
if (InferredTarget.getValue() == CFT_Device) {
MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
} else if (InferredTarget.getValue() == CFT_Host) {
MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
} else {
MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
}
} else {
// If no target was inferred, mark this member as __host__ __device__;
// it's the least restrictive option that can be invoked from any target.
MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
}
return false;
}
bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
if (!CD->isDefined() && CD->isTemplateInstantiation())
InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
// (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
// empty at a point in the translation unit, if it is either a
// trivial constructor
if (CD->isTrivial())
return true;
// ... or it satisfies all of the following conditions:
// The constructor function has been defined.
// The constructor function has no parameters,
// and the function body is an empty compound statement.
if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
return false;
// Its class has no virtual functions and no virtual base classes.
if (CD->getParent()->isDynamicClass())
return false;
// The only form of initializer allowed is an empty constructor.
// This will recursively check all base classes and member initializers
if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
if (const CXXConstructExpr *CE =
dyn_cast<CXXConstructExpr>(CI->getInit()))
return isEmptyCudaConstructor(Loc, CE->getConstructor());
return false;
}))
return false;
return true;
}
bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
// No destructor -> no problem.
if (!DD)
return true;
if (!DD->isDefined() && DD->isTemplateInstantiation())
InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
// (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
// empty at a point in the translation unit, if it is either a
// trivial constructor
if (DD->isTrivial())
return true;
// ... or it satisfies all of the following conditions:
// The destructor function has been defined.
// and the function body is an empty compound statement.
if (!DD->hasTrivialBody())
return false;
const CXXRecordDecl *ClassDecl = DD->getParent();
// Its class has no virtual functions and no virtual base classes.
if (ClassDecl->isDynamicClass())
return false;
// Only empty destructors are allowed. This will recursively check
// destructors for all base classes...
if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
return isEmptyCudaDestructor(Loc, RD->getDestructor());
return true;
}))
return false;
// ... and member fields.
if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
if (CXXRecordDecl *RD = Field->getType()
->getBaseElementTypeUnsafe()
->getAsCXXRecordDecl())
return isEmptyCudaDestructor(Loc, RD->getDestructor());
return true;
}))
return false;
return true;
}
// With -fcuda-host-device-constexpr, an unattributed constexpr function is
// treated as implicitly __host__ __device__, unless:
// * it is a variadic function (device-side variadic functions are not
// allowed), or
// * a __device__ function with this signature was already declared, in which
// case in which case we output an error, unless the __device__ decl is in a
// system header, in which case we leave the constexpr function unattributed.
void Sema::maybeAddCUDAHostDeviceAttrs(Scope *S, FunctionDecl *NewD,
const LookupResult &Previous) {
assert(getLangOpts().CUDA && "May be called only for CUDA compilations.");
if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
return;
// Is D a __device__ function with the same signature as NewD, ignoring CUDA
// attributes?
auto IsMatchingDeviceFn = [&](NamedDecl *D) {
if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
D = Using->getTargetDecl();
FunctionDecl *OldD = D->getAsFunction();
return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
!OldD->hasAttr<CUDAHostAttr>() &&
!IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
/* ConsiderCudaAttrs = */ false);
};
auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
if (It != Previous.end()) {
// We found a __device__ function with the same name and signature as NewD
// (ignoring CUDA attrs). This is an error unless that function is defined
// in a system header, in which case we simply return without making NewD
// host+device.
NamedDecl *Match = *It;
if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
Diag(NewD->getLocation(),
diag::err_cuda_unattributed_constexpr_cannot_overload_device)
<< NewD->getName();
Diag(Match->getLocation(),
diag::note_cuda_conflicting_device_function_declared_here);
}
return;
}
NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
}
|