1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides helpers for the implementation of
/// a TargetTransformInfo-conforming class.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/Analysis/VectorUtils.h"
namespace llvm {
/// \brief Base class for use as a mix-in that aids implementing
/// a TargetTransformInfo-compatible class.
class TargetTransformInfoImplBase {
protected:
typedef TargetTransformInfo TTI;
const DataLayout &DL;
explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
public:
// Provide value semantics. MSVC requires that we spell all of these out.
TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
: DL(Arg.DL) {}
TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
const DataLayout &getDataLayout() const { return DL; }
unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
switch (Opcode) {
default:
// By default, just classify everything as 'basic'.
return TTI::TCC_Basic;
case Instruction::GetElementPtr:
llvm_unreachable("Use getGEPCost for GEP operations!");
case Instruction::BitCast:
assert(OpTy && "Cast instructions must provide the operand type");
if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
// Identity and pointer-to-pointer casts are free.
return TTI::TCC_Free;
// Otherwise, the default basic cost is used.
return TTI::TCC_Basic;
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::UDiv:
case Instruction::URem:
return TTI::TCC_Expensive;
case Instruction::IntToPtr: {
// An inttoptr cast is free so long as the input is a legal integer type
// which doesn't contain values outside the range of a pointer.
unsigned OpSize = OpTy->getScalarSizeInBits();
if (DL.isLegalInteger(OpSize) &&
OpSize <= DL.getPointerTypeSizeInBits(Ty))
return TTI::TCC_Free;
// Otherwise it's not a no-op.
return TTI::TCC_Basic;
}
case Instruction::PtrToInt: {
// A ptrtoint cast is free so long as the result is large enough to store
// the pointer, and a legal integer type.
unsigned DestSize = Ty->getScalarSizeInBits();
if (DL.isLegalInteger(DestSize) &&
DestSize >= DL.getPointerTypeSizeInBits(OpTy))
return TTI::TCC_Free;
// Otherwise it's not a no-op.
return TTI::TCC_Basic;
}
case Instruction::Trunc:
// trunc to a native type is free (assuming the target has compare and
// shift-right of the same width).
if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
return TTI::TCC_Free;
return TTI::TCC_Basic;
}
}
int getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands) {
// In the basic model, we just assume that all-constant GEPs will be folded
// into their uses via addressing modes.
for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
if (!isa<Constant>(Operands[Idx]))
return TTI::TCC_Basic;
return TTI::TCC_Free;
}
unsigned getCallCost(FunctionType *FTy, int NumArgs) {
assert(FTy && "FunctionType must be provided to this routine.");
// The target-independent implementation just measures the size of the
// function by approximating that each argument will take on average one
// instruction to prepare.
if (NumArgs < 0)
// Set the argument number to the number of explicit arguments in the
// function.
NumArgs = FTy->getNumParams();
return TTI::TCC_Basic * (NumArgs + 1);
}
unsigned getInliningThresholdMultiplier() { return 1; }
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
ArrayRef<Type *> ParamTys) {
switch (IID) {
default:
// Intrinsics rarely (if ever) have normal argument setup constraints.
// Model them as having a basic instruction cost.
// FIXME: This is wrong for libc intrinsics.
return TTI::TCC_Basic;
case Intrinsic::annotation:
case Intrinsic::assume:
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::objectsize:
case Intrinsic::ptr_annotation:
case Intrinsic::var_annotation:
case Intrinsic::experimental_gc_result:
case Intrinsic::experimental_gc_relocate:
// These intrinsics don't actually represent code after lowering.
return TTI::TCC_Free;
}
}
bool hasBranchDivergence() { return false; }
bool isSourceOfDivergence(const Value *V) { return false; }
bool isLoweredToCall(const Function *F) {
// FIXME: These should almost certainly not be handled here, and instead
// handled with the help of TLI or the target itself. This was largely
// ported from existing analysis heuristics here so that such refactorings
// can take place in the future.
if (F->isIntrinsic())
return false;
if (F->hasLocalLinkage() || !F->hasName())
return true;
StringRef Name = F->getName();
// These will all likely lower to a single selection DAG node.
if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
Name == "fmin" || Name == "fminf" || Name == "fminl" ||
Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
return false;
// These are all likely to be optimized into something smaller.
if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
Name == "floorf" || Name == "ceil" || Name == "round" ||
Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
Name == "llabs")
return false;
return true;
}
void getUnrollingPreferences(Loop *, TTI::UnrollingPreferences &) {}
bool isLegalAddImmediate(int64_t Imm) { return false; }
bool isLegalICmpImmediate(int64_t Imm) { return false; }
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace) {
// Guess that only reg and reg+reg addressing is allowed. This heuristic is
// taken from the implementation of LSR.
return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
}
bool isLegalMaskedStore(Type *DataType) { return false; }
bool isLegalMaskedLoad(Type *DataType) { return false; }
bool isLegalMaskedScatter(Type *DataType) { return false; }
bool isLegalMaskedGather(Type *DataType) { return false; }
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
// Guess that all legal addressing mode are free.
if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale, AddrSpace))
return 0;
return -1;
}
bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
bool isProfitableToHoist(Instruction *I) { return true; }
bool isTypeLegal(Type *Ty) { return false; }
unsigned getJumpBufAlignment() { return 0; }
unsigned getJumpBufSize() { return 0; }
bool shouldBuildLookupTables() { return true; }
bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
bool enableInterleavedAccessVectorization() { return false; }
bool isFPVectorizationPotentiallyUnsafe() { return false; }
bool allowsMisalignedMemoryAccesses(unsigned BitWidth,
unsigned AddressSpace,
unsigned Alignment,
bool *Fast) { return false; }
TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
return TTI::PSK_Software;
}
bool haveFastSqrt(Type *Ty) { return false; }
unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Type *Ty) {
return 0;
}
unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Type *Ty) {
return TTI::TCC_Free;
}
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Type *Ty) {
return TTI::TCC_Free;
}
unsigned getNumberOfRegisters(bool Vector) { return 8; }
unsigned getRegisterBitWidth(bool Vector) { return 32; }
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) { return 128; }
unsigned getCacheLineSize() { return 0; }
unsigned getPrefetchDistance() { return 0; }
unsigned getMinPrefetchStride() { return 1; }
unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
TTI::OperandValueKind Opd1Info,
TTI::OperandValueKind Opd2Info,
TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo) {
return 1;
}
unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
Type *SubTp) {
return 1;
}
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { return 1; }
unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy, unsigned Index) {
return 1;
}
unsigned getCFInstrCost(unsigned Opcode) { return 1; }
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
return 1;
}
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
return 1;
}
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) {
return 1;
}
unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) {
return 1;
}
unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
bool VariableMask,
unsigned Alignment) {
return 1;
}
unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
unsigned Factor,
ArrayRef<unsigned> Indices,
unsigned Alignment,
unsigned AddressSpace) {
return 1;
}
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Type *> Tys, FastMathFlags FMF) {
return 1;
}
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Value *> Args, FastMathFlags FMF) {
return 1;
}
unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
return 1;
}
unsigned getNumberOfParts(Type *Tp) { return 0; }
unsigned getAddressComputationCost(Type *Tp, bool) { return 0; }
unsigned getReductionCost(unsigned, Type *, bool) { return 1; }
unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
return false;
}
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) {
return nullptr;
}
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const {
return (Caller->getFnAttribute("target-cpu") ==
Callee->getFnAttribute("target-cpu")) &&
(Caller->getFnAttribute("target-features") ==
Callee->getFnAttribute("target-features"));
}
};
/// \brief CRTP base class for use as a mix-in that aids implementing
/// a TargetTransformInfo-compatible class.
template <typename T>
class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
private:
typedef TargetTransformInfoImplBase BaseT;
protected:
explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
public:
// Provide value semantics. MSVC requires that we spell all of these out.
TargetTransformInfoImplCRTPBase(const TargetTransformInfoImplCRTPBase &Arg)
: BaseT(static_cast<const BaseT &>(Arg)) {}
TargetTransformInfoImplCRTPBase(TargetTransformInfoImplCRTPBase &&Arg)
: BaseT(std::move(static_cast<BaseT &>(Arg))) {}
using BaseT::getCallCost;
unsigned getCallCost(const Function *F, int NumArgs) {
assert(F && "A concrete function must be provided to this routine.");
if (NumArgs < 0)
// Set the argument number to the number of explicit arguments in the
// function.
NumArgs = F->arg_size();
if (Intrinsic::ID IID = F->getIntrinsicID()) {
FunctionType *FTy = F->getFunctionType();
SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
return static_cast<T *>(this)
->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
}
if (!static_cast<T *>(this)->isLoweredToCall(F))
return TTI::TCC_Basic; // Give a basic cost if it will be lowered
// directly.
return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
}
unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
// Simply delegate to generic handling of the call.
// FIXME: We should use instsimplify or something else to catch calls which
// will constant fold with these arguments.
return static_cast<T *>(this)->getCallCost(F, Arguments.size());
}
using BaseT::getGEPCost;
int getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands) {
const GlobalValue *BaseGV = nullptr;
if (Ptr != nullptr) {
// TODO: will remove this when pointers have an opaque type.
assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
PointeeType &&
"explicit pointee type doesn't match operand's pointee type");
BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
}
bool HasBaseReg = (BaseGV == nullptr);
int64_t BaseOffset = 0;
int64_t Scale = 0;
// Assumes the address space is 0 when Ptr is nullptr.
unsigned AS =
(Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
auto GTI = gep_type_begin(PointeeType, AS, Operands);
for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
// We assume that the cost of Scalar GEP with constant index and the
// cost of Vector GEP with splat constant index are the same.
const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
if (!ConstIdx)
if (auto Splat = getSplatValue(*I))
ConstIdx = dyn_cast<ConstantInt>(Splat);
if (isa<SequentialType>(*GTI)) {
int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
if (ConstIdx)
BaseOffset += ConstIdx->getSExtValue() * ElementSize;
else {
// Needs scale register.
if (Scale != 0)
// No addressing mode takes two scale registers.
return TTI::TCC_Basic;
Scale = ElementSize;
}
} else {
StructType *STy = cast<StructType>(*GTI);
// For structures the index is always splat or scalar constant
assert(ConstIdx && "Unexpected GEP index");
uint64_t Field = ConstIdx->getZExtValue();
BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
}
}
if (static_cast<T *>(this)->isLegalAddressingMode(
PointerType::get(*GTI, AS), const_cast<GlobalValue *>(BaseGV),
BaseOffset, HasBaseReg, Scale, AS)) {
return TTI::TCC_Free;
}
return TTI::TCC_Basic;
}
using BaseT::getIntrinsicCost;
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
ArrayRef<const Value *> Arguments) {
// Delegate to the generic intrinsic handling code. This mostly provides an
// opportunity for targets to (for example) special case the cost of
// certain intrinsics based on constants used as arguments.
SmallVector<Type *, 8> ParamTys;
ParamTys.reserve(Arguments.size());
for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
ParamTys.push_back(Arguments[Idx]->getType());
return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
}
unsigned getUserCost(const User *U) {
if (isa<PHINode>(U))
return TTI::TCC_Free; // Model all PHI nodes as free.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
SmallVector<Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end());
return static_cast<T *>(this)->getGEPCost(
GEP->getSourceElementType(), GEP->getPointerOperand(), Indices);
}
if (auto CS = ImmutableCallSite(U)) {
const Function *F = CS.getCalledFunction();
if (!F) {
// Just use the called value type.
Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
return static_cast<T *>(this)
->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
}
SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
return static_cast<T *>(this)->getCallCost(F, Arguments);
}
if (const CastInst *CI = dyn_cast<CastInst>(U)) {
// Result of a cmp instruction is often extended (to be used by other
// cmp instructions, logical or return instructions). These are usually
// nop on most sane targets.
if (isa<CmpInst>(CI->getOperand(0)))
return TTI::TCC_Free;
}
return static_cast<T *>(this)->getOperationCost(
Operator::getOpcode(U), U->getType(),
U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
}
};
}
#endif
|