1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
//===- RecordSerialization.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_CODEVIEW_RECORDSERIALIZATION_H
#define LLVM_DEBUGINFO_CODEVIEW_RECORDSERIALIZATION_H
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Endian.h"
#include "llvm/DebugInfo/CodeView/CodeView.h"
#include <cinttypes>
#include <tuple>
namespace llvm {
namespace codeview {
using llvm::support::little32_t;
using llvm::support::ulittle16_t;
using llvm::support::ulittle32_t;
struct RecordPrefix {
ulittle16_t RecordLen; // Record length, starting from &Leaf.
ulittle16_t RecordKind; // Record kind enum (SymRecordKind or TypeRecordKind)
};
/// Reinterpret a byte array as an array of characters. Does not interpret as
/// a C string, as StringRef has several helpers (split) that make that easy.
StringRef getBytesAsCharacters(ArrayRef<uint8_t> LeafData);
StringRef getBytesAsCString(ArrayRef<uint8_t> LeafData);
/// Consumes sizeof(T) bytes from the given byte sequence. Returns an error if
/// there are not enough bytes remaining. Reinterprets the consumed bytes as a
/// T object and points 'Res' at them.
template <typename T, typename U>
inline std::error_code consumeObject(U &Data, const T *&Res) {
if (Data.size() < sizeof(*Res))
return std::make_error_code(std::errc::illegal_byte_sequence);
Res = reinterpret_cast<const T *>(Data.data());
Data = Data.drop_front(sizeof(*Res));
return std::error_code();
}
inline std::error_code consume(ArrayRef<uint8_t> &Data) {
return std::error_code();
}
/// Decodes a numeric "leaf" value. These are integer literals encountered in
/// the type stream. If the value is positive and less than LF_NUMERIC (1 <<
/// 15), it is emitted directly in Data. Otherwise, it has a tag like LF_CHAR
/// that indicates the bitwidth and sign of the numeric data.
std::error_code consume(ArrayRef<uint8_t> &Data, APSInt &Num);
std::error_code consume(StringRef &Data, APSInt &Num);
/// Decodes a numeric leaf value that is known to be a particular type.
std::error_code consume_numeric(ArrayRef<uint8_t> &Data, uint64_t &Value);
/// Decodes signed and unsigned fixed-length integers.
std::error_code consume(ArrayRef<uint8_t> &Data, uint32_t &Item);
std::error_code consume(StringRef &Data, uint32_t &Item);
std::error_code consume(ArrayRef<uint8_t> &Data, int32_t &Item);
/// Decodes a null terminated string.
std::error_code consume(ArrayRef<uint8_t> &Data, StringRef &Item);
/// Decodes an arbitrary object whose layout matches that of the underlying
/// byte sequence, and returns a pointer to the object.
template <typename T>
std::error_code consume(ArrayRef<uint8_t> &Data, T *&Item) {
return consumeObject(Data, Item);
}
template <typename T, typename U> struct serialize_conditional_impl {
serialize_conditional_impl(T &Item, U Func) : Item(Item), Func(Func) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
if (!Func())
return std::error_code();
return consume(Data, Item);
}
T &Item;
U Func;
};
template <typename T, typename U>
serialize_conditional_impl<T, U> serialize_conditional(T &Item, U Func) {
return serialize_conditional_impl<T, U>(Item, Func);
}
template <typename T, typename U> struct serialize_array_impl {
serialize_array_impl(ArrayRef<T> &Item, U Func) : Item(Item), Func(Func) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
uint32_t N = Func();
if (N == 0)
return std::error_code();
uint32_t Size = sizeof(T) * N;
if (Size / sizeof(T) != N)
return std::make_error_code(std::errc::illegal_byte_sequence);
if (Data.size() < Size)
return std::make_error_code(std::errc::illegal_byte_sequence);
Item = ArrayRef<T>(reinterpret_cast<const T *>(Data.data()), N);
Data = Data.drop_front(Size);
return std::error_code();
}
ArrayRef<T> &Item;
U Func;
};
template <typename T> struct serialize_vector_tail_impl {
serialize_vector_tail_impl(std::vector<T> &Item) : Item(Item) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
T Field;
// Stop when we run out of bytes or we hit record padding bytes.
while (!Data.empty() && Data.front() < LF_PAD0) {
if (auto EC = consume(Data, Field))
return EC;
Item.push_back(Field);
}
return std::error_code();
}
std::vector<T> &Item;
};
struct serialize_null_term_string_array_impl {
serialize_null_term_string_array_impl(std::vector<StringRef> &Item)
: Item(Item) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
if (Data.empty())
return std::make_error_code(std::errc::illegal_byte_sequence);
StringRef Field;
// Stop when we run out of bytes or we hit record padding bytes.
while (Data.front() != 0) {
if (auto EC = consume(Data, Field))
return EC;
Item.push_back(Field);
if (Data.empty())
return std::make_error_code(std::errc::illegal_byte_sequence);
}
Data = Data.drop_front(1);
return std::error_code();
}
std::vector<StringRef> &Item;
};
template <typename T> struct serialize_arrayref_tail_impl {
serialize_arrayref_tail_impl(ArrayRef<T> &Item) : Item(Item) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
uint32_t Count = Data.size() / sizeof(T);
Item = ArrayRef<T>(reinterpret_cast<const T *>(Data.begin()), Count);
return std::error_code();
}
ArrayRef<T> &Item;
};
template <typename T> struct serialize_numeric_impl {
serialize_numeric_impl(T &Item) : Item(Item) {}
std::error_code deserialize(ArrayRef<uint8_t> &Data) const {
return consume_numeric(Data, Item);
}
T &Item;
};
template <typename T, typename U>
serialize_array_impl<T, U> serialize_array(ArrayRef<T> &Item, U Func) {
return serialize_array_impl<T, U>(Item, Func);
}
inline serialize_null_term_string_array_impl
serialize_null_term_string_array(std::vector<StringRef> &Item) {
return serialize_null_term_string_array_impl(Item);
}
template <typename T>
serialize_vector_tail_impl<T> serialize_array_tail(std::vector<T> &Item) {
return serialize_vector_tail_impl<T>(Item);
}
template <typename T>
serialize_arrayref_tail_impl<T> serialize_array_tail(ArrayRef<T> &Item) {
return serialize_arrayref_tail_impl<T>(Item);
}
template <typename T> serialize_numeric_impl<T> serialize_numeric(T &Item) {
return serialize_numeric_impl<T>(Item);
}
// This field is only present in the byte record if the condition is true. The
// condition is evaluated lazily, so it can depend on items that were
// deserialized
// earlier.
#define CV_CONDITIONAL_FIELD(I, C) \
serialize_conditional(I, [&]() { return !!(C); })
// This is an array of N items, where N is evaluated lazily, so it can refer
// to a field deserialized earlier.
#define CV_ARRAY_FIELD_N(I, N) serialize_array(I, [&]() { return N; })
// This is an array that exhausts the remainder of the input buffer.
#define CV_ARRAY_FIELD_TAIL(I) serialize_array_tail(I)
// This is an array that consumes null terminated strings until a double null
// is encountered.
#define CV_STRING_ARRAY_NULL_TERM(I) serialize_null_term_string_array(I)
#define CV_NUMERIC_FIELD(I) serialize_numeric(I)
template <typename T, typename U>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_conditional_impl<T, U> &Item) {
return Item.deserialize(Data);
}
template <typename T, typename U>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_array_impl<T, U> &Item) {
return Item.deserialize(Data);
}
inline std::error_code
consume(ArrayRef<uint8_t> &Data,
const serialize_null_term_string_array_impl &Item) {
return Item.deserialize(Data);
}
template <typename T>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_vector_tail_impl<T> &Item) {
return Item.deserialize(Data);
}
template <typename T>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_arrayref_tail_impl<T> &Item) {
return Item.deserialize(Data);
}
template <typename T>
std::error_code consume(ArrayRef<uint8_t> &Data,
const serialize_numeric_impl<T> &Item) {
return Item.deserialize(Data);
}
template <typename T, typename U, typename... Args>
std::error_code consume(ArrayRef<uint8_t> &Data, T &&X, U &&Y,
Args &&... Rest) {
if (auto EC = consume(Data, X))
return EC;
return consume(Data, Y, std::forward<Args>(Rest)...);
}
#define CV_DESERIALIZE(...) \
if (auto EC = consume(__VA_ARGS__)) \
return EC;
}
}
#endif
|