1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
//===- CompileOnDemandLayer.h - Compile each function on demand -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// JIT layer for breaking up modules and inserting callbacks to allow
// individual functions to be compiled on demand.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#define LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#include "IndirectionUtils.h"
#include "LambdaResolver.h"
#include "LogicalDylib.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <list>
#include <memory>
#include <set>
#include <utility>
namespace llvm {
namespace orc {
/// @brief Compile-on-demand layer.
///
/// When a module is added to this layer a stub is created for each of its
/// function definitions. The stubs and other global values are immediately
/// added to the layer below. When a stub is called it triggers the extraction
/// of the function body from the original module. The extracted body is then
/// compiled and executed.
template <typename BaseLayerT,
typename CompileCallbackMgrT = JITCompileCallbackManager,
typename IndirectStubsMgrT = IndirectStubsManager>
class CompileOnDemandLayer {
private:
template <typename MaterializerFtor>
class LambdaMaterializer final : public ValueMaterializer {
public:
LambdaMaterializer(MaterializerFtor M) : M(std::move(M)) {}
Value *materialize(Value *V) final { return M(V); }
private:
MaterializerFtor M;
};
template <typename MaterializerFtor>
LambdaMaterializer<MaterializerFtor>
createLambdaMaterializer(MaterializerFtor M) {
return LambdaMaterializer<MaterializerFtor>(std::move(M));
}
typedef typename BaseLayerT::ModuleSetHandleT BaseLayerModuleSetHandleT;
// Provide type-erasure for the Modules and MemoryManagers.
template <typename ResourceT>
class ResourceOwner {
public:
ResourceOwner() = default;
ResourceOwner(const ResourceOwner&) = delete;
ResourceOwner& operator=(const ResourceOwner&) = delete;
virtual ~ResourceOwner() { }
virtual ResourceT& getResource() const = 0;
};
template <typename ResourceT, typename ResourcePtrT>
class ResourceOwnerImpl : public ResourceOwner<ResourceT> {
public:
ResourceOwnerImpl(ResourcePtrT ResourcePtr)
: ResourcePtr(std::move(ResourcePtr)) {}
ResourceT& getResource() const override { return *ResourcePtr; }
private:
ResourcePtrT ResourcePtr;
};
template <typename ResourceT, typename ResourcePtrT>
std::unique_ptr<ResourceOwner<ResourceT>>
wrapOwnership(ResourcePtrT ResourcePtr) {
typedef ResourceOwnerImpl<ResourceT, ResourcePtrT> RO;
return llvm::make_unique<RO>(std::move(ResourcePtr));
}
struct LogicalModuleResources {
std::unique_ptr<ResourceOwner<Module>> SourceModule;
std::set<const Function*> StubsToClone;
std::unique_ptr<IndirectStubsMgrT> StubsMgr;
LogicalModuleResources() = default;
// Explicit move constructor to make MSVC happy.
LogicalModuleResources(LogicalModuleResources &&Other)
: SourceModule(std::move(Other.SourceModule)),
StubsToClone(std::move(Other.StubsToClone)),
StubsMgr(std::move(Other.StubsMgr)) {}
// Explicit move assignment to make MSVC happy.
LogicalModuleResources& operator=(LogicalModuleResources &&Other) {
SourceModule = std::move(Other.SourceModule);
StubsToClone = std::move(Other.StubsToClone);
StubsMgr = std::move(Other.StubsMgr);
return *this;
}
JITSymbol findSymbol(StringRef Name, bool ExportedSymbolsOnly) {
if (Name.endswith("$stub_ptr") && !ExportedSymbolsOnly) {
assert(!ExportedSymbolsOnly && "Stubs are never exported");
return StubsMgr->findPointer(Name.drop_back(9));
}
return StubsMgr->findStub(Name, ExportedSymbolsOnly);
}
};
struct LogicalDylibResources {
typedef std::function<RuntimeDyld::SymbolInfo(const std::string&)>
SymbolResolverFtor;
typedef std::function<typename BaseLayerT::ModuleSetHandleT(
BaseLayerT&,
std::unique_ptr<Module>,
std::unique_ptr<RuntimeDyld::SymbolResolver>)>
ModuleAdderFtor;
LogicalDylibResources() = default;
// Explicit move constructor to make MSVC happy.
LogicalDylibResources(LogicalDylibResources &&Other)
: ExternalSymbolResolver(std::move(Other.ExternalSymbolResolver)),
MemMgr(std::move(Other.MemMgr)),
ModuleAdder(std::move(Other.ModuleAdder)) {}
// Explicit move assignment operator to make MSVC happy.
LogicalDylibResources& operator=(LogicalDylibResources &&Other) {
ExternalSymbolResolver = std::move(Other.ExternalSymbolResolver);
MemMgr = std::move(Other.MemMgr);
ModuleAdder = std::move(Other.ModuleAdder);
return *this;
}
std::unique_ptr<RuntimeDyld::SymbolResolver> ExternalSymbolResolver;
std::unique_ptr<ResourceOwner<RuntimeDyld::MemoryManager>> MemMgr;
ModuleAdderFtor ModuleAdder;
};
typedef LogicalDylib<BaseLayerT, LogicalModuleResources,
LogicalDylibResources> CODLogicalDylib;
typedef typename CODLogicalDylib::LogicalModuleHandle LogicalModuleHandle;
typedef std::list<CODLogicalDylib> LogicalDylibList;
public:
/// @brief Handle to a set of loaded modules.
typedef typename LogicalDylibList::iterator ModuleSetHandleT;
/// @brief Module partitioning functor.
typedef std::function<std::set<Function*>(Function&)> PartitioningFtor;
/// @brief Builder for IndirectStubsManagers.
typedef std::function<std::unique_ptr<IndirectStubsMgrT>()>
IndirectStubsManagerBuilderT;
/// @brief Construct a compile-on-demand layer instance.
CompileOnDemandLayer(BaseLayerT &BaseLayer, PartitioningFtor Partition,
CompileCallbackMgrT &CallbackMgr,
IndirectStubsManagerBuilderT CreateIndirectStubsManager,
bool CloneStubsIntoPartitions = true)
: BaseLayer(BaseLayer), Partition(std::move(Partition)),
CompileCallbackMgr(CallbackMgr),
CreateIndirectStubsManager(std::move(CreateIndirectStubsManager)),
CloneStubsIntoPartitions(CloneStubsIntoPartitions) {}
/// @brief Add a module to the compile-on-demand layer.
template <typename ModuleSetT, typename MemoryManagerPtrT,
typename SymbolResolverPtrT>
ModuleSetHandleT addModuleSet(ModuleSetT Ms,
MemoryManagerPtrT MemMgr,
SymbolResolverPtrT Resolver) {
LogicalDylibs.push_back(CODLogicalDylib(BaseLayer));
auto &LDResources = LogicalDylibs.back().getDylibResources();
LDResources.ExternalSymbolResolver = std::move(Resolver);
auto &MemMgrRef = *MemMgr;
LDResources.MemMgr =
wrapOwnership<RuntimeDyld::MemoryManager>(std::move(MemMgr));
LDResources.ModuleAdder =
[&MemMgrRef](BaseLayerT &B, std::unique_ptr<Module> M,
std::unique_ptr<RuntimeDyld::SymbolResolver> R) {
std::vector<std::unique_ptr<Module>> Ms;
Ms.push_back(std::move(M));
return B.addModuleSet(std::move(Ms), &MemMgrRef, std::move(R));
};
// Process each of the modules in this module set.
for (auto &M : Ms)
addLogicalModule(LogicalDylibs.back(), std::move(M));
return std::prev(LogicalDylibs.end());
}
/// @brief Remove the module represented by the given handle.
///
/// This will remove all modules in the layers below that were derived from
/// the module represented by H.
void removeModuleSet(ModuleSetHandleT H) {
LogicalDylibs.erase(H);
}
/// @brief Search for the given named symbol.
/// @param Name The name of the symbol to search for.
/// @param ExportedSymbolsOnly If true, search only for exported symbols.
/// @return A handle for the given named symbol, if it exists.
JITSymbol findSymbol(StringRef Name, bool ExportedSymbolsOnly) {
for (auto LDI = LogicalDylibs.begin(), LDE = LogicalDylibs.end();
LDI != LDE; ++LDI)
if (auto Symbol = findSymbolIn(LDI, Name, ExportedSymbolsOnly))
return Symbol;
return BaseLayer.findSymbol(Name, ExportedSymbolsOnly);
}
/// @brief Get the address of a symbol provided by this layer, or some layer
/// below this one.
JITSymbol findSymbolIn(ModuleSetHandleT H, const std::string &Name,
bool ExportedSymbolsOnly) {
return H->findSymbol(Name, ExportedSymbolsOnly);
}
private:
template <typename ModulePtrT>
void addLogicalModule(CODLogicalDylib &LD, ModulePtrT SrcMPtr) {
// Bump the linkage and rename any anonymous/privote members in SrcM to
// ensure that everything will resolve properly after we partition SrcM.
makeAllSymbolsExternallyAccessible(*SrcMPtr);
// Create a logical module handle for SrcM within the logical dylib.
auto LMH = LD.createLogicalModule();
auto &LMResources = LD.getLogicalModuleResources(LMH);
LMResources.SourceModule = wrapOwnership<Module>(std::move(SrcMPtr));
Module &SrcM = LMResources.SourceModule->getResource();
// Create stub functions.
const DataLayout &DL = SrcM.getDataLayout();
{
typename IndirectStubsMgrT::StubInitsMap StubInits;
for (auto &F : SrcM) {
// Skip declarations.
if (F.isDeclaration())
continue;
// Record all functions defined by this module.
if (CloneStubsIntoPartitions)
LMResources.StubsToClone.insert(&F);
// Create a callback, associate it with the stub for the function,
// and set the compile action to compile the partition containing the
// function.
auto CCInfo = CompileCallbackMgr.getCompileCallback();
StubInits[mangle(F.getName(), DL)] =
std::make_pair(CCInfo.getAddress(),
JITSymbolBase::flagsFromGlobalValue(F));
CCInfo.setCompileAction([this, &LD, LMH, &F]() {
return this->extractAndCompile(LD, LMH, F);
});
}
LMResources.StubsMgr = CreateIndirectStubsManager();
auto EC = LMResources.StubsMgr->createStubs(StubInits);
(void)EC;
// FIXME: This should be propagated back to the user. Stub creation may
// fail for remote JITs.
assert(!EC && "Error generating stubs");
}
// If this module doesn't contain any globals or aliases we can bail out
// early and avoid the overhead of creating and managing an empty globals
// module.
if (SrcM.global_empty() && SrcM.alias_empty())
return;
// Create the GlobalValues module.
auto GVsM = llvm::make_unique<Module>((SrcM.getName() + ".globals").str(),
SrcM.getContext());
GVsM->setDataLayout(DL);
ValueToValueMapTy VMap;
// Clone global variable decls.
for (auto &GV : SrcM.globals())
if (!GV.isDeclaration() && !VMap.count(&GV))
cloneGlobalVariableDecl(*GVsM, GV, &VMap);
// And the aliases.
for (auto &A : SrcM.aliases())
if (!VMap.count(&A))
cloneGlobalAliasDecl(*GVsM, A, VMap);
// Now we need to clone the GV and alias initializers.
// Initializers may refer to functions declared (but not defined) in this
// module. Build a materializer to clone decls on demand.
auto Materializer = createLambdaMaterializer(
[this, &GVsM, &LMResources](Value *V) -> Value* {
if (auto *F = dyn_cast<Function>(V)) {
// Decls in the original module just get cloned.
if (F->isDeclaration())
return cloneFunctionDecl(*GVsM, *F);
// Definitions in the original module (which we have emitted stubs
// for at this point) get turned into a constant alias to the stub
// instead.
const DataLayout &DL = GVsM->getDataLayout();
std::string FName = mangle(F->getName(), DL);
auto StubSym = LMResources.StubsMgr->findStub(FName, false);
unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(F->getType());
ConstantInt *StubAddr =
ConstantInt::get(GVsM->getContext(),
APInt(PtrBitWidth, StubSym.getAddress()));
Constant *Init = ConstantExpr::getCast(Instruction::IntToPtr,
StubAddr, F->getType());
return GlobalAlias::create(F->getFunctionType(),
F->getType()->getAddressSpace(),
F->getLinkage(), F->getName(),
Init, GVsM.get());
}
// else....
return nullptr;
});
// Clone the global variable initializers.
for (auto &GV : SrcM.globals())
if (!GV.isDeclaration())
moveGlobalVariableInitializer(GV, VMap, &Materializer);
// Clone the global alias initializers.
for (auto &A : SrcM.aliases()) {
auto *NewA = cast<GlobalAlias>(VMap[&A]);
assert(NewA && "Alias not cloned?");
Value *Init = MapValue(A.getAliasee(), VMap, RF_None, nullptr,
&Materializer);
NewA->setAliasee(cast<Constant>(Init));
}
// Build a resolver for the globals module and add it to the base layer.
auto GVsResolver = createLambdaResolver(
[&LD, LMH](const std::string &Name) {
auto &LMResources = LD.getLogicalModuleResources(LMH);
if (auto Sym = LMResources.StubsMgr->findStub(Name, false))
return Sym.toRuntimeDyldSymbol();
auto &LDResolver = LD.getDylibResources().ExternalSymbolResolver;
return LDResolver->findSymbolInLogicalDylib(Name);
},
[&LD](const std::string &Name) {
auto &LDResolver = LD.getDylibResources().ExternalSymbolResolver;
return LDResolver->findSymbol(Name);
});
auto GVsH = LD.getDylibResources().ModuleAdder(BaseLayer, std::move(GVsM),
std::move(GVsResolver));
LD.addToLogicalModule(LMH, GVsH);
}
static std::string mangle(StringRef Name, const DataLayout &DL) {
std::string MangledName;
{
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
}
return MangledName;
}
TargetAddress extractAndCompile(CODLogicalDylib &LD,
LogicalModuleHandle LMH,
Function &F) {
auto &LMResources = LD.getLogicalModuleResources(LMH);
Module &SrcM = LMResources.SourceModule->getResource();
// If F is a declaration we must already have compiled it.
if (F.isDeclaration())
return 0;
// Grab the name of the function being called here.
std::string CalledFnName = mangle(F.getName(), SrcM.getDataLayout());
auto Part = Partition(F);
auto PartH = emitPartition(LD, LMH, Part);
TargetAddress CalledAddr = 0;
for (auto *SubF : Part) {
std::string FnName = mangle(SubF->getName(), SrcM.getDataLayout());
auto FnBodySym = BaseLayer.findSymbolIn(PartH, FnName, false);
assert(FnBodySym && "Couldn't find function body.");
TargetAddress FnBodyAddr = FnBodySym.getAddress();
// If this is the function we're calling record the address so we can
// return it from this function.
if (SubF == &F)
CalledAddr = FnBodyAddr;
// Update the function body pointer for the stub.
if (auto EC = LMResources.StubsMgr->updatePointer(FnName, FnBodyAddr))
return 0;
}
return CalledAddr;
}
template <typename PartitionT>
BaseLayerModuleSetHandleT emitPartition(CODLogicalDylib &LD,
LogicalModuleHandle LMH,
const PartitionT &Part) {
auto &LMResources = LD.getLogicalModuleResources(LMH);
Module &SrcM = LMResources.SourceModule->getResource();
// Create the module.
std::string NewName = SrcM.getName();
for (auto *F : Part) {
NewName += ".";
NewName += F->getName();
}
auto M = llvm::make_unique<Module>(NewName, SrcM.getContext());
M->setDataLayout(SrcM.getDataLayout());
ValueToValueMapTy VMap;
auto Materializer = createLambdaMaterializer([this, &LMResources, &M,
&VMap](Value *V) -> Value * {
if (auto *GV = dyn_cast<GlobalVariable>(V))
return cloneGlobalVariableDecl(*M, *GV);
if (auto *F = dyn_cast<Function>(V)) {
// Check whether we want to clone an available_externally definition.
if (!LMResources.StubsToClone.count(F))
return cloneFunctionDecl(*M, *F);
// Ok - we want an inlinable stub. For that to work we need a decl
// for the stub pointer.
auto *StubPtr = createImplPointer(*F->getType(), *M,
F->getName() + "$stub_ptr", nullptr);
auto *ClonedF = cloneFunctionDecl(*M, *F);
makeStub(*ClonedF, *StubPtr);
ClonedF->setLinkage(GlobalValue::AvailableExternallyLinkage);
ClonedF->addFnAttr(Attribute::AlwaysInline);
return ClonedF;
}
if (auto *A = dyn_cast<GlobalAlias>(V)) {
auto *Ty = A->getValueType();
if (Ty->isFunctionTy())
return Function::Create(cast<FunctionType>(Ty),
GlobalValue::ExternalLinkage, A->getName(),
M.get());
return new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage,
nullptr, A->getName(), nullptr,
GlobalValue::NotThreadLocal,
A->getType()->getAddressSpace());
}
return nullptr;
});
// Create decls in the new module.
for (auto *F : Part)
cloneFunctionDecl(*M, *F, &VMap);
// Move the function bodies.
for (auto *F : Part)
moveFunctionBody(*F, VMap, &Materializer);
// Create memory manager and symbol resolver.
auto Resolver = createLambdaResolver(
[this, &LD, LMH](const std::string &Name) {
if (auto Sym = LD.findSymbolInternally(LMH, Name))
return Sym.toRuntimeDyldSymbol();
auto &LDResolver = LD.getDylibResources().ExternalSymbolResolver;
return LDResolver->findSymbolInLogicalDylib(Name);
},
[this, &LD](const std::string &Name) {
auto &LDResolver = LD.getDylibResources().ExternalSymbolResolver;
return LDResolver->findSymbol(Name);
});
return LD.getDylibResources().ModuleAdder(BaseLayer, std::move(M),
std::move(Resolver));
}
BaseLayerT &BaseLayer;
PartitioningFtor Partition;
CompileCallbackMgrT &CompileCallbackMgr;
IndirectStubsManagerBuilderT CreateIndirectStubsManager;
LogicalDylibList LogicalDylibs;
bool CloneStubsIntoPartitions;
};
} // End namespace orc.
} // End namespace llvm.
#endif // LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
|