1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
//===-- SymbolRewriter.h - Symbol Rewriting Pass ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides the prototypes and definitions related to the Symbol
// Rewriter pass.
//
// The Symbol Rewriter pass takes a set of rewrite descriptors which define
// transformations for symbol names. These can be either single name to name
// trnsformation or more broad regular expression based transformations.
//
// All the functions are re-written at the IR level. The Symbol Rewriter itself
// is exposed as a module level pass. All symbols at the module level are
// iterated. For any matching symbol, the requested transformation is applied,
// updating references to it as well (a la RAUW). The resulting binary will
// only contain the rewritten symbols.
//
// By performing this operation in the compiler, we are able to catch symbols
// that would otherwise not be possible to catch (e.g. inlined symbols).
//
// This makes it possible to cleanly transform symbols without resorting to
// overly-complex macro tricks and the pre-processor. An example of where this
// is useful is the sanitizers where we would like to intercept a well-defined
// set of functions across the module.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_SYMBOL_REWRITER_H
#define LLVM_TRANSFORMS_UTILS_SYMBOL_REWRITER_H
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/IR/Module.h"
namespace llvm {
class MemoryBuffer;
namespace yaml {
class KeyValueNode;
class MappingNode;
class ScalarNode;
class Stream;
}
namespace SymbolRewriter {
/// The basic entity representing a rewrite operation. It serves as the base
/// class for any rewrite descriptor. It has a certain set of specializations
/// which describe a particular rewrite.
///
/// The RewriteMapParser can be used to parse a mapping file that provides the
/// mapping for rewriting the symbols. The descriptors individually describe
/// whether to rewrite a function, global variable, or global alias. Each of
/// these can be selected either by explicitly providing a name for the ones to
/// be rewritten or providing a (posix compatible) regular expression that will
/// select the symbols to rewrite. This descriptor list is passed to the
/// SymbolRewriter pass.
class RewriteDescriptor : public ilist_node<RewriteDescriptor> {
RewriteDescriptor(const RewriteDescriptor &) = delete;
const RewriteDescriptor &
operator=(const RewriteDescriptor &) = delete;
public:
enum class Type {
Invalid, /// invalid
Function, /// function - descriptor rewrites a function
GlobalVariable, /// global variable - descriptor rewrites a global variable
NamedAlias, /// named alias - descriptor rewrites a global alias
};
virtual ~RewriteDescriptor() {}
Type getType() const { return Kind; }
virtual bool performOnModule(Module &M) = 0;
protected:
explicit RewriteDescriptor(Type T) : Kind(T) {}
private:
const Type Kind;
};
typedef iplist<RewriteDescriptor> RewriteDescriptorList;
class RewriteMapParser {
public:
bool parse(const std::string &MapFile, RewriteDescriptorList *Descriptors);
private:
bool parse(std::unique_ptr<MemoryBuffer> &MapFile, RewriteDescriptorList *DL);
bool parseEntry(yaml::Stream &Stream, yaml::KeyValueNode &Entry,
RewriteDescriptorList *DL);
bool parseRewriteFunctionDescriptor(yaml::Stream &Stream,
yaml::ScalarNode *Key,
yaml::MappingNode *Value,
RewriteDescriptorList *DL);
bool parseRewriteGlobalVariableDescriptor(yaml::Stream &Stream,
yaml::ScalarNode *Key,
yaml::MappingNode *Value,
RewriteDescriptorList *DL);
bool parseRewriteGlobalAliasDescriptor(yaml::Stream &YS, yaml::ScalarNode *K,
yaml::MappingNode *V,
RewriteDescriptorList *DL);
};
}
template <>
struct ilist_traits<SymbolRewriter::RewriteDescriptor>
: public ilist_default_traits<SymbolRewriter::RewriteDescriptor> {
mutable ilist_half_node<SymbolRewriter::RewriteDescriptor> Sentinel;
public:
// createSentinel is used to get a reference to a node marking the end of
// the list. Because the sentinel is relative to this instance, use a
// non-static method.
SymbolRewriter::RewriteDescriptor *createSentinel() const {
// since i[p] lists always publicly derive from the corresponding
// traits, placing a data member in this class will augment the
// i[p]list. Since the NodeTy is expected to publicly derive from
// ilist_node<NodeTy>, there is a legal viable downcast from it to
// NodeTy. We use this trick to superpose i[p]list with a "ghostly"
// NodeTy, which becomes the sentinel. Dereferencing the sentinel is
// forbidden (save the ilist_node<NodeTy>) so no one will ever notice
// the superposition.
return static_cast<SymbolRewriter::RewriteDescriptor *>(&Sentinel);
}
void destroySentinel(SymbolRewriter::RewriteDescriptor *) {}
SymbolRewriter::RewriteDescriptor *provideInitialHead() const {
return createSentinel();
}
SymbolRewriter::RewriteDescriptor *
ensureHead(SymbolRewriter::RewriteDescriptor *&) const {
return createSentinel();
}
static void noteHead(SymbolRewriter::RewriteDescriptor *,
SymbolRewriter::RewriteDescriptor *) {}
};
ModulePass *createRewriteSymbolsPass();
ModulePass *createRewriteSymbolsPass(SymbolRewriter::RewriteDescriptorList &);
}
#endif
|