1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
|
//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
/// code. When passed an MCAsmStreamer it prints assembly and when passed
/// an MCObjectStreamer it outputs binary code.
//
//===----------------------------------------------------------------------===//
//
#include "AMDGPUAsmPrinter.h"
#include "MCTargetDesc/AMDGPUTargetStreamer.h"
#include "InstPrinter/AMDGPUInstPrinter.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "AMDGPU.h"
#include "AMDKernelCodeT.h"
#include "AMDGPUSubtarget.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "AMDGPURuntimeMetadata.h"
using namespace ::AMDGPU;
using namespace llvm;
// TODO: This should get the default rounding mode from the kernel. We just set
// the default here, but this could change if the OpenCL rounding mode pragmas
// are used.
//
// The denormal mode here should match what is reported by the OpenCL runtime
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
//
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
// precision, and leaves single precision to flush all and does not report
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
// CL_FP_DENORM for both.
//
// FIXME: It seems some instructions do not support single precision denormals
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
// and sin_f32, cos_f32 on most parts).
// We want to use these instructions, and using fp32 denormals also causes
// instructions to run at the double precision rate for the device so it's
// probably best to just report no single precision denormals.
static uint32_t getFPMode(const MachineFunction &F) {
const SISubtarget& ST = F.getSubtarget<SISubtarget>();
// TODO: Is there any real use for the flush in only / flush out only modes?
uint32_t FP32Denormals =
ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
uint32_t FP64Denormals =
ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
FP_DENORM_MODE_SP(FP32Denormals) |
FP_DENORM_MODE_DP(FP64Denormals);
}
static AsmPrinter *
createAMDGPUAsmPrinterPass(TargetMachine &tm,
std::unique_ptr<MCStreamer> &&Streamer) {
return new AMDGPUAsmPrinter(tm, std::move(Streamer));
}
extern "C" void LLVMInitializeAMDGPUAsmPrinter() {
TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(TheGCNTarget, createAMDGPUAsmPrinterPass);
}
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)) {}
void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (TM.getTargetTriple().getOS() != Triple::AMDHSA)
return;
// Need to construct an MCSubtargetInfo here in case we have no functions
// in the module.
std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
TM.getTargetTriple().str(), TM.getTargetCPU(),
TM.getTargetFeatureString()));
AMDGPUTargetStreamer *TS =
static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
TS->EmitDirectiveHSACodeObjectVersion(2, 1);
AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(STI->getFeatureBits());
TS->EmitDirectiveHSACodeObjectISA(ISA.Major, ISA.Minor, ISA.Stepping,
"AMD", "AMDGPU");
emitStartOfRuntimeMetadata(M);
}
void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
SIProgramInfo KernelInfo;
if (STM.isAmdHsaOS()) {
getSIProgramInfo(KernelInfo, *MF);
EmitAmdKernelCodeT(*MF, KernelInfo);
}
}
void AMDGPUAsmPrinter::EmitFunctionEntryLabel() {
const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
if (MFI->isKernel() && STM.isAmdHsaOS()) {
AMDGPUTargetStreamer *TS =
static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
TS->EmitAMDGPUSymbolType(CurrentFnSym->getName(),
ELF::STT_AMDGPU_HSA_KERNEL);
}
AsmPrinter::EmitFunctionEntryLabel();
}
void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
// Group segment variables aren't emitted in HSA.
if (AMDGPU::isGroupSegment(GV))
return;
AsmPrinter::EmitGlobalVariable(GV);
}
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// The starting address of all shader programs must be 256 bytes aligned.
MF.setAlignment(8);
SetupMachineFunction(MF);
MCContext &Context = getObjFileLowering().getContext();
MCSectionELF *ConfigSection =
Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
OutStreamer->SwitchSection(ConfigSection);
const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>();
SIProgramInfo KernelInfo;
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
getSIProgramInfo(KernelInfo, MF);
if (!STM.isAmdHsaOS()) {
EmitProgramInfoSI(MF, KernelInfo);
}
} else {
EmitProgramInfoR600(MF);
}
DisasmLines.clear();
HexLines.clear();
DisasmLineMaxLen = 0;
EmitFunctionBody();
if (isVerbose()) {
MCSectionELF *CommentSection =
Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
OutStreamer->SwitchSection(CommentSection);
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
OutStreamer->emitRawComment(" Kernel info:", false);
OutStreamer->emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen),
false);
OutStreamer->emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR),
false);
OutStreamer->emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR),
false);
OutStreamer->emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode),
false);
OutStreamer->emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode),
false);
OutStreamer->emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize),
false);
OutStreamer->emitRawComment(" LDSByteSize: " + Twine(KernelInfo.LDSSize) +
" bytes/workgroup (compile time only)", false);
OutStreamer->emitRawComment(" ReservedVGPRFirst: " + Twine(KernelInfo.ReservedVGPRFirst),
false);
OutStreamer->emitRawComment(" ReservedVGPRCount: " + Twine(KernelInfo.ReservedVGPRCount),
false);
if (MF.getSubtarget<SISubtarget>().debuggerEmitPrologue()) {
OutStreamer->emitRawComment(" DebuggerWavefrontPrivateSegmentOffsetSGPR: s" +
Twine(KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false);
OutStreamer->emitRawComment(" DebuggerPrivateSegmentBufferSGPR: s" +
Twine(KernelInfo.DebuggerPrivateSegmentBufferSGPR), false);
}
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:USER_SGPR: " +
Twine(G_00B84C_USER_SGPR(KernelInfo.ComputePGMRSrc2)),
false);
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_X_EN: " +
Twine(G_00B84C_TGID_X_EN(KernelInfo.ComputePGMRSrc2)),
false);
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
Twine(G_00B84C_TGID_Y_EN(KernelInfo.ComputePGMRSrc2)),
false);
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
Twine(G_00B84C_TGID_Z_EN(KernelInfo.ComputePGMRSrc2)),
false);
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
Twine(G_00B84C_TIDIG_COMP_CNT(KernelInfo.ComputePGMRSrc2)),
false);
} else {
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
OutStreamer->emitRawComment(
Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->StackSize)));
}
}
if (STM.dumpCode()) {
OutStreamer->SwitchSection(
Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0));
for (size_t i = 0; i < DisasmLines.size(); ++i) {
std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
Comment += " ; " + HexLines[i] + "\n";
OutStreamer->EmitBytes(StringRef(DisasmLines[i]));
OutStreamer->EmitBytes(StringRef(Comment));
}
}
emitRuntimeMetadata(*MF.getFunction());
return false;
}
void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
unsigned MaxGPR = 0;
bool killPixel = false;
const R600Subtarget &STM = MF.getSubtarget<R600Subtarget>();
const R600RegisterInfo *RI = STM.getRegisterInfo();
const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
if (MI.getOpcode() == AMDGPU::KILLGT)
killPixel = true;
unsigned numOperands = MI.getNumOperands();
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
const MachineOperand &MO = MI.getOperand(op_idx);
if (!MO.isReg())
continue;
unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff;
// Register with value > 127 aren't GPR
if (HWReg > 127)
continue;
MaxGPR = std::max(MaxGPR, HWReg);
}
}
}
unsigned RsrcReg;
if (STM.getGeneration() >= R600Subtarget::EVERGREEN) {
// Evergreen / Northern Islands
switch (MF.getFunction()->getCallingConv()) {
default: // Fall through
case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
}
} else {
// R600 / R700
switch (MF.getFunction()->getCallingConv()) {
default: // Fall through
case CallingConv::AMDGPU_GS: // Fall through
case CallingConv::AMDGPU_CS: // Fall through
case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
}
}
OutStreamer->EmitIntValue(RsrcReg, 4);
OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
S_STACK_SIZE(MFI->StackSize), 4);
OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);
if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
OutStreamer->EmitIntValue(alignTo(MFI->LDSSize, 4) >> 2, 4);
}
}
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
const MachineFunction &MF) const {
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
uint64_t CodeSize = 0;
unsigned MaxSGPR = 0;
unsigned MaxVGPR = 0;
bool VCCUsed = false;
bool FlatUsed = false;
const SIRegisterInfo *RI = STM.getRegisterInfo();
const SIInstrInfo *TII = STM.getInstrInfo();
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
// TODO: CodeSize should account for multiple functions.
// TODO: Should we count size of debug info?
if (MI.isDebugValue())
continue;
CodeSize += TII->getInstSizeInBytes(MI);
unsigned numOperands = MI.getNumOperands();
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
const MachineOperand &MO = MI.getOperand(op_idx);
unsigned width = 0;
bool isSGPR = false;
if (!MO.isReg())
continue;
unsigned reg = MO.getReg();
switch (reg) {
case AMDGPU::EXEC:
case AMDGPU::EXEC_LO:
case AMDGPU::EXEC_HI:
case AMDGPU::SCC:
case AMDGPU::M0:
continue;
case AMDGPU::VCC:
case AMDGPU::VCC_LO:
case AMDGPU::VCC_HI:
VCCUsed = true;
continue;
case AMDGPU::FLAT_SCR:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
FlatUsed = true;
continue;
case AMDGPU::TBA:
case AMDGPU::TBA_LO:
case AMDGPU::TBA_HI:
case AMDGPU::TMA:
case AMDGPU::TMA_LO:
case AMDGPU::TMA_HI:
llvm_unreachable("Trap Handler registers should not be used");
continue;
default:
break;
}
if (AMDGPU::SReg_32RegClass.contains(reg)) {
if (AMDGPU::TTMP_32RegClass.contains(reg)) {
llvm_unreachable("Trap Handler registers should not be used");
}
isSGPR = true;
width = 1;
} else if (AMDGPU::VGPR_32RegClass.contains(reg)) {
isSGPR = false;
width = 1;
} else if (AMDGPU::SReg_64RegClass.contains(reg)) {
if (AMDGPU::TTMP_64RegClass.contains(reg)) {
llvm_unreachable("Trap Handler registers should not be used");
}
isSGPR = true;
width = 2;
} else if (AMDGPU::VReg_64RegClass.contains(reg)) {
isSGPR = false;
width = 2;
} else if (AMDGPU::VReg_96RegClass.contains(reg)) {
isSGPR = false;
width = 3;
} else if (AMDGPU::SReg_128RegClass.contains(reg)) {
isSGPR = true;
width = 4;
} else if (AMDGPU::VReg_128RegClass.contains(reg)) {
isSGPR = false;
width = 4;
} else if (AMDGPU::SReg_256RegClass.contains(reg)) {
isSGPR = true;
width = 8;
} else if (AMDGPU::VReg_256RegClass.contains(reg)) {
isSGPR = false;
width = 8;
} else if (AMDGPU::SReg_512RegClass.contains(reg)) {
isSGPR = true;
width = 16;
} else if (AMDGPU::VReg_512RegClass.contains(reg)) {
isSGPR = false;
width = 16;
} else {
llvm_unreachable("Unknown register class");
}
unsigned hwReg = RI->getEncodingValue(reg) & 0xff;
unsigned maxUsed = hwReg + width - 1;
if (isSGPR) {
MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR;
} else {
MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR;
}
}
}
}
unsigned ExtraSGPRs = 0;
if (VCCUsed)
ExtraSGPRs = 2;
if (STM.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) {
if (FlatUsed)
ExtraSGPRs = 4;
} else {
if (STM.isXNACKEnabled())
ExtraSGPRs = 4;
if (FlatUsed)
ExtraSGPRs = 6;
}
MaxSGPR += ExtraSGPRs;
// Record first reserved register and reserved register count fields, and
// update max register counts if "amdgpu-debugger-reserve-regs" attribute was
// specified.
if (STM.debuggerReserveRegs()) {
ProgInfo.ReservedVGPRFirst = MaxVGPR + 1;
ProgInfo.ReservedVGPRCount = MFI->getDebuggerReservedVGPRCount();
MaxVGPR += MFI->getDebuggerReservedVGPRCount();
}
// Update DebuggerWavefrontPrivateSegmentOffsetSGPR and
// DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue"
// attribute was specified.
if (STM.debuggerEmitPrologue()) {
ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR =
RI->getHWRegIndex(MFI->getScratchWaveOffsetReg());
ProgInfo.DebuggerPrivateSegmentBufferSGPR =
RI->getHWRegIndex(MFI->getScratchRSrcReg());
}
// We found the maximum register index. They start at 0, so add one to get the
// number of registers.
ProgInfo.NumVGPR = MaxVGPR + 1;
ProgInfo.NumSGPR = MaxSGPR + 1;
if (STM.hasSGPRInitBug()) {
if (ProgInfo.NumSGPR > SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG) {
LLVMContext &Ctx = MF.getFunction()->getContext();
DiagnosticInfoResourceLimit Diag(*MF.getFunction(),
"SGPRs with SGPR init bug",
ProgInfo.NumSGPR, DS_Error);
Ctx.diagnose(Diag);
}
ProgInfo.NumSGPR = SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG;
}
if (MFI->NumUserSGPRs > STM.getMaxNumUserSGPRs()) {
LLVMContext &Ctx = MF.getFunction()->getContext();
DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "user SGPRs",
MFI->NumUserSGPRs, DS_Error);
Ctx.diagnose(Diag);
}
if (MFI->LDSSize > static_cast<unsigned>(STM.getLocalMemorySize())) {
LLVMContext &Ctx = MF.getFunction()->getContext();
DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "local memory",
MFI->LDSSize, DS_Error);
Ctx.diagnose(Diag);
}
ProgInfo.VGPRBlocks = (ProgInfo.NumVGPR - 1) / 4;
ProgInfo.SGPRBlocks = (ProgInfo.NumSGPR - 1) / 8;
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
// register.
ProgInfo.FloatMode = getFPMode(MF);
ProgInfo.IEEEMode = 0;
// Make clamp modifier on NaN input returns 0.
ProgInfo.DX10Clamp = 1;
const MachineFrameInfo *FrameInfo = MF.getFrameInfo();
ProgInfo.ScratchSize = FrameInfo->getStackSize();
ProgInfo.FlatUsed = FlatUsed;
ProgInfo.VCCUsed = VCCUsed;
ProgInfo.CodeLen = CodeSize;
unsigned LDSAlignShift;
if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) {
// LDS is allocated in 64 dword blocks.
LDSAlignShift = 8;
} else {
// LDS is allocated in 128 dword blocks.
LDSAlignShift = 9;
}
unsigned LDSSpillSize = MFI->LDSWaveSpillSize *
MFI->getMaximumWorkGroupSize(MF);
ProgInfo.LDSSize = MFI->LDSSize + LDSSpillSize;
ProgInfo.LDSBlocks =
alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
// Scratch is allocated in 256 dword blocks.
unsigned ScratchAlignShift = 10;
// We need to program the hardware with the amount of scratch memory that
// is used by the entire wave. ProgInfo.ScratchSize is the amount of
// scratch memory used per thread.
ProgInfo.ScratchBlocks =
alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
1ULL << ScratchAlignShift) >>
ScratchAlignShift;
ProgInfo.ComputePGMRSrc1 =
S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
S_00B848_PRIORITY(ProgInfo.Priority) |
S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
S_00B848_PRIV(ProgInfo.Priv) |
S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
// 0 = X, 1 = XY, 2 = XYZ
unsigned TIDIGCompCnt = 0;
if (MFI->hasWorkItemIDZ())
TIDIGCompCnt = 2;
else if (MFI->hasWorkItemIDY())
TIDIGCompCnt = 1;
ProgInfo.ComputePGMRSrc2 =
S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
S_00B84C_EXCP_EN_MSB(0) |
S_00B84C_LDS_SIZE(ProgInfo.LDSBlocks) |
S_00B84C_EXCP_EN(0);
}
static unsigned getRsrcReg(CallingConv::ID CallConv) {
switch (CallConv) {
default: // Fall through
case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
}
}
void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
const SIProgramInfo &KernelInfo) {
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned RsrcReg = getRsrcReg(MF.getFunction()->getCallingConv());
if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc1, 4);
OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc2, 4);
OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
OutStreamer->EmitIntValue(S_00B860_WAVESIZE(KernelInfo.ScratchBlocks), 4);
// TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
// 0" comment but I don't see a corresponding field in the register spec.
} else {
OutStreamer->EmitIntValue(RsrcReg, 4);
OutStreamer->EmitIntValue(S_00B028_VGPRS(KernelInfo.VGPRBlocks) |
S_00B028_SGPRS(KernelInfo.SGPRBlocks), 4);
if (STM.isVGPRSpillingEnabled(*MF.getFunction())) {
OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(KernelInfo.ScratchBlocks), 4);
}
}
if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_PS) {
OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(KernelInfo.LDSBlocks), 4);
OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
OutStreamer->EmitIntValue(MFI->PSInputEna, 4);
OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4);
OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4);
}
OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4);
OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4);
OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4);
OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4);
}
// This is supposed to be log2(Size)
static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
switch (Size) {
case 4:
return AMD_ELEMENT_4_BYTES;
case 8:
return AMD_ELEMENT_8_BYTES;
case 16:
return AMD_ELEMENT_16_BYTES;
default:
llvm_unreachable("invalid private_element_size");
}
}
void AMDGPUAsmPrinter::EmitAmdKernelCodeT(const MachineFunction &MF,
const SIProgramInfo &KernelInfo) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
amd_kernel_code_t header;
AMDGPU::initDefaultAMDKernelCodeT(header, STM.getFeatureBits());
header.compute_pgm_resource_registers =
KernelInfo.ComputePGMRSrc1 |
(KernelInfo.ComputePGMRSrc2 << 32);
header.code_properties = AMD_CODE_PROPERTY_IS_PTR64;
AMD_HSA_BITS_SET(header.code_properties,
AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
getElementByteSizeValue(STM.getMaxPrivateElementSize()));
if (MFI->hasPrivateSegmentBuffer()) {
header.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
}
if (MFI->hasDispatchPtr())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
if (MFI->hasQueuePtr())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
if (MFI->hasKernargSegmentPtr())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
if (MFI->hasDispatchID())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
if (MFI->hasFlatScratchInit())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
// TODO: Private segment size
if (MFI->hasGridWorkgroupCountX()) {
header.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X;
}
if (MFI->hasGridWorkgroupCountY()) {
header.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y;
}
if (MFI->hasGridWorkgroupCountZ()) {
header.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z;
}
if (MFI->hasDispatchPtr())
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
if (STM.debuggerSupported())
header.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED;
if (STM.isXNACKEnabled())
header.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
header.kernarg_segment_byte_size = MFI->ABIArgOffset;
header.wavefront_sgpr_count = KernelInfo.NumSGPR;
header.workitem_vgpr_count = KernelInfo.NumVGPR;
header.workitem_private_segment_byte_size = KernelInfo.ScratchSize;
header.workgroup_group_segment_byte_size = KernelInfo.LDSSize;
header.reserved_vgpr_first = KernelInfo.ReservedVGPRFirst;
header.reserved_vgpr_count = KernelInfo.ReservedVGPRCount;
if (STM.debuggerEmitPrologue()) {
header.debug_wavefront_private_segment_offset_sgpr =
KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
header.debug_private_segment_buffer_sgpr =
KernelInfo.DebuggerPrivateSegmentBufferSGPR;
}
AMDGPUTargetStreamer *TS =
static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
TS->EmitAMDKernelCodeT(header);
}
bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'r':
break;
}
}
AMDGPUInstPrinter::printRegOperand(MI->getOperand(OpNo).getReg(), O,
*TM.getSubtargetImpl(*MF->getFunction())->getRegisterInfo());
return false;
}
// Emit a key and an integer value for runtime metadata.
static void emitRuntimeMDIntValue(std::unique_ptr<MCStreamer> &Streamer,
RuntimeMD::Key K, uint64_t V,
unsigned Size) {
Streamer->EmitIntValue(K, 1);
Streamer->EmitIntValue(V, Size);
}
// Emit a key and a string value for runtime metadata.
static void emitRuntimeMDStringValue(std::unique_ptr<MCStreamer> &Streamer,
RuntimeMD::Key K, StringRef S) {
Streamer->EmitIntValue(K, 1);
Streamer->EmitIntValue(S.size(), 4);
Streamer->EmitBytes(S);
}
// Emit a key and three integer values for runtime metadata.
// The three integer values are obtained from MDNode \p Node;
static void emitRuntimeMDThreeIntValues(std::unique_ptr<MCStreamer> &Streamer,
RuntimeMD::Key K, MDNode *Node,
unsigned Size) {
Streamer->EmitIntValue(K, 1);
Streamer->EmitIntValue(mdconst::extract<ConstantInt>(
Node->getOperand(0))->getZExtValue(), Size);
Streamer->EmitIntValue(mdconst::extract<ConstantInt>(
Node->getOperand(1))->getZExtValue(), Size);
Streamer->EmitIntValue(mdconst::extract<ConstantInt>(
Node->getOperand(2))->getZExtValue(), Size);
}
void AMDGPUAsmPrinter::emitStartOfRuntimeMetadata(const Module &M) {
OutStreamer->SwitchSection(getObjFileLowering().getContext()
.getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0));
emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyMDVersion,
RuntimeMD::MDVersion << 8 | RuntimeMD::MDRevision, 2);
if (auto MD = M.getNamedMetadata("opencl.ocl.version")) {
if (MD->getNumOperands()) {
auto Node = MD->getOperand(0);
if (Node->getNumOperands() > 1) {
emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyLanguage,
RuntimeMD::OpenCL_C, 1);
uint16_t Major = mdconst::extract<ConstantInt>(Node->getOperand(0))
->getZExtValue();
uint16_t Minor = mdconst::extract<ConstantInt>(Node->getOperand(1))
->getZExtValue();
emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyLanguageVersion,
Major * 100 + Minor * 10, 2);
}
}
}
}
static std::string getOCLTypeName(Type *Ty, bool isSigned) {
if (VectorType* VecTy = dyn_cast<VectorType>(Ty)) {
Type* EleTy = VecTy->getElementType();
unsigned Size = VecTy->getVectorNumElements();
return (Twine(getOCLTypeName(EleTy, isSigned)) + Twine(Size)).str();
}
switch (Ty->getTypeID()) {
case Type::HalfTyID: return "half";
case Type::FloatTyID: return "float";
case Type::DoubleTyID: return "double";
case Type::IntegerTyID: {
if (!isSigned)
return (Twine('u') + Twine(getOCLTypeName(Ty, true))).str();
auto IntTy = cast<IntegerType>(Ty);
auto BW = IntTy->getIntegerBitWidth();
switch (BW) {
case 8:
return "char";
case 16:
return "short";
case 32:
return "int";
case 64:
return "long";
default:
return (Twine('i') + Twine(BW)).str();
}
}
default:
llvm_unreachable("invalid type");
}
}
static RuntimeMD::KernelArg::ValueType getRuntimeMDValueType(
Type *Ty, StringRef TypeName) {
if (auto VT = dyn_cast<VectorType>(Ty))
return getRuntimeMDValueType(VT->getElementType(), TypeName);
else if (auto PT = dyn_cast<PointerType>(Ty))
return getRuntimeMDValueType(PT->getElementType(), TypeName);
else if (Ty->isHalfTy())
return RuntimeMD::KernelArg::F16;
else if (Ty->isFloatTy())
return RuntimeMD::KernelArg::F32;
else if (Ty->isDoubleTy())
return RuntimeMD::KernelArg::F64;
else if (IntegerType* intTy = dyn_cast<IntegerType>(Ty)) {
bool Signed = !TypeName.startswith("u");
switch (intTy->getIntegerBitWidth()) {
case 8:
return Signed ? RuntimeMD::KernelArg::I8 : RuntimeMD::KernelArg::U8;
case 16:
return Signed ? RuntimeMD::KernelArg::I16 : RuntimeMD::KernelArg::U16;
case 32:
return Signed ? RuntimeMD::KernelArg::I32 : RuntimeMD::KernelArg::U32;
case 64:
return Signed ? RuntimeMD::KernelArg::I64 : RuntimeMD::KernelArg::U64;
default:
// Runtime does not recognize other integer types. Report as
// struct type.
return RuntimeMD::KernelArg::Struct;
}
} else
return RuntimeMD::KernelArg::Struct;
}
void AMDGPUAsmPrinter::emitRuntimeMetadata(const Function &F) {
if (!F.getMetadata("kernel_arg_type"))
return;
MCContext &Context = getObjFileLowering().getContext();
OutStreamer->SwitchSection(
Context.getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0));
OutStreamer->EmitIntValue(RuntimeMD::KeyKernelBegin, 1);
emitRuntimeMDStringValue(OutStreamer, RuntimeMD::KeyKernelName, F.getName());
for (auto &Arg:F.args()) {
// Emit KeyArgBegin.
unsigned I = Arg.getArgNo();
OutStreamer->EmitIntValue(RuntimeMD::KeyArgBegin, 1);
// Emit KeyArgSize and KeyArgAlign.
auto T = Arg.getType();
auto DL = F.getParent()->getDataLayout();
emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgSize,
DL.getTypeAllocSize(T), 4);
emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgAlign,
DL.getABITypeAlignment(T), 4);
// Emit KeyArgTypeName.
auto TypeName = dyn_cast<MDString>(F.getMetadata(
"kernel_arg_type")->getOperand(I))->getString();
emitRuntimeMDStringValue(OutStreamer, RuntimeMD::KeyArgTypeName, TypeName);
// Emit KeyArgName.
if (auto ArgNameMD = F.getMetadata("kernel_arg_name")) {
auto ArgName = cast<MDString>(ArgNameMD->getOperand(
I))->getString();
emitRuntimeMDStringValue(OutStreamer, RuntimeMD::KeyArgName, ArgName);
}
// Emit KeyArgIsVolatile, KeyArgIsRestrict, KeyArgIsConst and KeyArgIsPipe.
auto TypeQual = cast<MDString>(F.getMetadata(
"kernel_arg_type_qual")->getOperand(I))->getString();
SmallVector<StringRef, 1> SplitQ;
TypeQual.split(SplitQ, " ", -1, false/* drop empty entry*/);
for (auto &I:SplitQ) {
auto Key = StringSwitch<RuntimeMD::Key>(I)
.Case("volatile", RuntimeMD::KeyArgIsVolatile)
.Case("restrict", RuntimeMD::KeyArgIsRestrict)
.Case("const", RuntimeMD::KeyArgIsConst)
.Case("pipe", RuntimeMD::KeyArgIsPipe)
.Default(RuntimeMD::KeyNull);
OutStreamer->EmitIntValue(Key, 1);
}
// Emit KeyArgTypeKind.
auto BaseTypeName = cast<MDString>(
F.getMetadata("kernel_arg_base_type")->getOperand(I))->getString();
auto TypeKind = StringSwitch<RuntimeMD::KernelArg::TypeKind>(BaseTypeName)
.Case("sampler_t", RuntimeMD::KernelArg::Sampler)
.Case("queue_t", RuntimeMD::KernelArg::Queue)
.Cases("image1d_t", "image1d_array_t", "image1d_buffer_t",
"image2d_t" , "image2d_array_t", RuntimeMD::KernelArg::Image)
.Cases("image2d_depth_t", "image2d_array_depth_t",
"image2d_msaa_t", "image2d_array_msaa_t",
"image2d_msaa_depth_t", RuntimeMD::KernelArg::Image)
.Cases("image2d_array_msaa_depth_t", "image3d_t",
RuntimeMD::KernelArg::Image)
.Default(isa<PointerType>(T) ? RuntimeMD::KernelArg::Pointer :
RuntimeMD::KernelArg::Value);
emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgTypeKind, TypeKind, 1);
// Emit KeyArgValueType.
emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgValueType,
getRuntimeMDValueType(T, BaseTypeName), 2);
// Emit KeyArgAccQual.
auto AccQual = cast<MDString>(F.getMetadata(
"kernel_arg_access_qual")->getOperand(I))->getString();
auto AQ = StringSwitch<RuntimeMD::KernelArg::AccessQualifer>(AccQual)
.Case("read_only", RuntimeMD::KernelArg::ReadOnly)
.Case("write_only", RuntimeMD::KernelArg::WriteOnly)
.Case("read_write", RuntimeMD::KernelArg::ReadWrite)
.Default(RuntimeMD::KernelArg::None);
emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgAccQual,
AQ, 1);
// Emit KeyArgAddrQual.
if (isa<PointerType>(T))
emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgAddrQual,
T->getPointerAddressSpace(), 1);
// Emit KeyArgEnd
OutStreamer->EmitIntValue(RuntimeMD::KeyArgEnd, 1);
}
// Emit KeyReqdWorkGroupSize, KeyWorkGroupSizeHint, and KeyVecTypeHint.
if (auto RWGS = F.getMetadata("reqd_work_group_size"))
emitRuntimeMDThreeIntValues(OutStreamer, RuntimeMD::KeyReqdWorkGroupSize,
RWGS, 4);
if (auto WGSH = F.getMetadata("work_group_size_hint"))
emitRuntimeMDThreeIntValues(OutStreamer, RuntimeMD::KeyWorkGroupSizeHint,
WGSH, 4);
if (auto VTH = F.getMetadata("vec_type_hint")) {
auto TypeName = getOCLTypeName(cast<ValueAsMetadata>(
VTH->getOperand(0))->getType(), mdconst::extract<ConstantInt>(
VTH->getOperand(1))->getZExtValue());
emitRuntimeMDStringValue(OutStreamer, RuntimeMD::KeyVecTypeHint,
TypeName);
}
// Emit KeyKernelEnd
OutStreamer->EmitIntValue(RuntimeMD::KeyKernelEnd, 1);
}
|