1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
|
//===--- RDFLiveness.cpp --------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Computation of the liveness information from the data-flow graph.
//
// The main functionality of this code is to compute block live-in
// information. With the live-in information in place, the placement
// of kill flags can also be recalculated.
//
// The block live-in calculation is based on the ideas from the following
// publication:
//
// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
// ACM Transactions on Architecture and Code Optimization, Association for
// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
// and Embedded Architectures and Compilers", 8 (4),
// <10.1145/2086696.2086706>. <hal-00647369>
//
#include "RDFGraph.h"
#include "RDFLiveness.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominanceFrontier.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
using namespace rdf;
namespace llvm {
namespace rdf {
template<>
raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
OS << '{';
for (auto I : P.Obj) {
OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{';
for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
OS << Print<NodeId>(*J, P.G);
if (++J != E)
OS << ',';
}
OS << '}';
}
OS << " }";
return OS;
}
} // namespace rdf
} // namespace llvm
// The order in the returned sequence is the order of reaching defs in the
// upward traversal: the first def is the closest to the given reference RefA,
// the next one is further up, and so on.
// The list ends at a reaching phi def, or when the reference from RefA is
// covered by the defs in the list (see FullChain).
// This function provides two modes of operation:
// (1) Returning the sequence of reaching defs for a particular reference
// node. This sequence will terminate at the first phi node [1].
// (2) Returning a partial sequence of reaching defs, where the final goal
// is to traverse past phi nodes to the actual defs arising from the code
// itself.
// In mode (2), the register reference for which the search was started
// may be different from the reference node RefA, for which this call was
// made, hence the argument RefRR, which holds the original register.
// Also, some definitions may have already been encountered in a previous
// call that will influence register covering. The register references
// already defined are passed in through DefRRs.
// In mode (1), the "continuation" considerations do not apply, and the
// RefRR is the same as the register in RefA, and the set DefRRs is empty.
//
// [1] It is possible for multiple phi nodes to be included in the returned
// sequence:
// SubA = phi ...
// SubB = phi ...
// ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
// However, these phi nodes are independent from one another in terms of
// the data-flow.
NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) {
SetVector<NodeId> DefQ;
SetVector<NodeId> Owners;
// The initial queue should not have reaching defs for shadows. The
// whole point of a shadow is that it will have a reaching def that
// is not aliased to the reaching defs of the related shadows.
NodeId Start = RefA.Id;
auto SNA = DFG.addr<RefNode*>(Start);
if (NodeId RD = SNA.Addr->getReachingDef())
DefQ.insert(RD);
// Collect all the reaching defs, going up until a phi node is encountered,
// or there are no more reaching defs. From this set, the actual set of
// reaching defs will be selected.
// The traversal upwards must go on until a covering def is encountered.
// It is possible that a collection of non-covering (individually) defs
// will be sufficient, but keep going until a covering one is found.
for (unsigned i = 0; i < DefQ.size(); ++i) {
auto TA = DFG.addr<DefNode*>(DefQ[i]);
if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
continue;
// Stop at the covering/overwriting def of the initial register reference.
RegisterRef RR = TA.Addr->getRegRef();
if (RAI.covers(RR, RefRR)) {
uint16_t Flags = TA.Addr->getFlags();
if (!(Flags & NodeAttrs::Preserving))
continue;
}
// Get the next level of reaching defs. This will include multiple
// reaching defs for shadows.
for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
DefQ.insert(RD);
}
// Remove all non-phi defs that are not aliased to RefRR, and collect
// the owners of the remaining defs.
SetVector<NodeId> Defs;
for (auto N : DefQ) {
auto TA = DFG.addr<DefNode*>(N);
bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef()))
continue;
Defs.insert(TA.Id);
Owners.insert(TA.Addr->getOwner(DFG).Id);
}
// Return the MachineBasicBlock containing a given instruction.
auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
if (IA.Addr->getKind() == NodeAttrs::Stmt)
return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
assert(IA.Addr->getKind() == NodeAttrs::Phi);
NodeAddr<PhiNode*> PA = IA;
NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
return BA.Addr->getCode();
};
// Less(A,B) iff instruction A is further down in the dominator tree than B.
auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
if (A == B)
return false;
auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
if (BA != BB)
return MDT.dominates(BB, BA);
// They are in the same block.
bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
if (StmtA) {
if (!StmtB) // OB is a phi and phis dominate statements.
return true;
auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
// The order must be linear, so tie-break such equalities.
if (CA == CB)
return A < B;
return MDT.dominates(CB, CA);
} else {
// OA is a phi.
if (StmtB)
return false;
// Both are phis. There is no ordering between phis (in terms of
// the data-flow), so tie-break this via node id comparison.
return A < B;
}
};
std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
std::sort(Tmp.begin(), Tmp.end(), Less);
// The vector is a list of instructions, so that defs coming from
// the same instruction don't need to be artificially ordered.
// Then, when computing the initial segment, and iterating over an
// instruction, pick the defs that contribute to the covering (i.e. is
// not covered by previously added defs). Check the defs individually,
// i.e. first check each def if is covered or not (without adding them
// to the tracking set), and then add all the selected ones.
// The reason for this is this example:
// *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
// *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
// covered if we added A first, and A would be covered
// if we added B first.
NodeList RDefs;
RegisterSet RRs = DefRRs;
auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
return TA.Addr->getKind() == NodeAttrs::Def &&
Defs.count(TA.Id);
};
for (auto T : Tmp) {
if (!FullChain && RAI.covers(RRs, RefRR))
break;
auto TA = DFG.addr<InstrNode*>(T);
bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
NodeList Ds;
for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
auto QR = DA.Addr->getRegRef();
// Add phi defs even if they are covered by subsequent defs. This is
// for cases where the reached use is not covered by any of the defs
// encountered so far: the phi def is needed to expose the liveness
// of that use to the entry of the block.
// Example:
// phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
// d2<R3>(d1,,u3), ...
// ..., u3<D1>(d2) This use needs to be live on entry.
if (FullChain || IsPhi || !RAI.covers(RRs, QR))
Ds.push_back(DA);
}
RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
for (NodeAddr<DefNode*> DA : Ds) {
// When collecting a full chain of definitions, do not consider phi
// defs to actually define a register.
uint16_t Flags = DA.Addr->getFlags();
if (!FullChain || !(Flags & NodeAttrs::PhiRef))
if (!(Flags & NodeAttrs::Preserving))
RRs.insert(DA.Addr->getRegRef());
}
}
return RDefs;
}
static const RegisterSet NoRegs;
NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) {
return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs);
}
NodeSet Liveness::getAllReachingDefsRec(RegisterRef RefRR,
NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs) {
// Collect all defined registers. Do not consider phis to be defining
// anything, only collect "real" definitions.
RegisterSet DefRRs;
for (const auto D : Defs) {
const auto DA = DFG.addr<const DefNode*>(D);
if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
DefRRs.insert(DA.Addr->getRegRef());
}
auto RDs = getAllReachingDefs(RefRR, RefA, true, DefRRs);
if (RDs.empty())
return Defs;
// Make a copy of the preexisting definitions and add the newly found ones.
NodeSet TmpDefs = Defs;
for (auto R : RDs)
TmpDefs.insert(R.Id);
NodeSet Result = Defs;
for (NodeAddr<DefNode*> DA : RDs) {
Result.insert(DA.Id);
if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
continue;
NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
if (Visited.count(PA.Id))
continue;
Visited.insert(PA.Id);
// Go over all phi uses and get the reaching defs for each use.
for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
const auto &T = getAllReachingDefsRec(RefRR, U, Visited, TmpDefs);
Result.insert(T.begin(), T.end());
}
}
return Result;
}
NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
NodeAddr<DefNode*> DefA, const RegisterSet &DefRRs) {
NodeSet Uses;
// If the original register is already covered by all the intervening
// defs, no more uses can be reached.
if (RAI.covers(DefRRs, RefRR))
return Uses;
// Add all directly reached uses.
NodeId U = DefA.Addr->getReachedUse();
while (U != 0) {
auto UA = DFG.addr<UseNode*>(U);
auto UR = UA.Addr->getRegRef();
if (RAI.alias(RefRR, UR) && !RAI.covers(DefRRs, UR))
Uses.insert(U);
U = UA.Addr->getSibling();
}
// Traverse all reached defs.
for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
auto DA = DFG.addr<DefNode*>(D);
NextD = DA.Addr->getSibling();
auto DR = DA.Addr->getRegRef();
// If this def is already covered, it cannot reach anything new.
// Similarly, skip it if it is not aliased to the interesting register.
if (RAI.covers(DefRRs, DR) || !RAI.alias(RefRR, DR))
continue;
NodeSet T;
if (DA.Addr->getFlags() & NodeAttrs::Preserving) {
// If it is a preserving def, do not update the set of intervening defs.
T = getAllReachedUses(RefRR, DA, DefRRs);
} else {
RegisterSet NewDefRRs = DefRRs;
NewDefRRs.insert(DR);
T = getAllReachedUses(RefRR, DA, NewDefRRs);
}
Uses.insert(T.begin(), T.end());
}
return Uses;
}
void Liveness::computePhiInfo() {
RealUseMap.clear();
NodeList Phis;
NodeAddr<FuncNode*> FA = DFG.getFunc();
auto Blocks = FA.Addr->members(DFG);
for (NodeAddr<BlockNode*> BA : Blocks) {
auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
Phis.insert(Phis.end(), Ps.begin(), Ps.end());
}
// phi use -> (map: reaching phi -> set of registers defined in between)
std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp;
std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
// Go over all phis.
for (NodeAddr<PhiNode*> PhiA : Phis) {
// Go over all defs and collect the reached uses that are non-phi uses
// (i.e. the "real uses").
auto &RealUses = RealUseMap[PhiA.Id];
auto PhiRefs = PhiA.Addr->members(DFG);
// Have a work queue of defs whose reached uses need to be found.
// For each def, add to the queue all reached (non-phi) defs.
SetVector<NodeId> DefQ;
NodeSet PhiDefs;
for (auto R : PhiRefs) {
if (!DFG.IsRef<NodeAttrs::Def>(R))
continue;
DefQ.insert(R.Id);
PhiDefs.insert(R.Id);
}
for (unsigned i = 0; i < DefQ.size(); ++i) {
NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
NodeId UN = DA.Addr->getReachedUse();
while (UN != 0) {
NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
if (!(A.Addr->getFlags() & NodeAttrs::PhiRef))
RealUses[getRestrictedRegRef(A)].insert(A.Id);
UN = A.Addr->getSibling();
}
NodeId DN = DA.Addr->getReachedDef();
while (DN != 0) {
NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
// Must traverse the reached-def chain. Consider:
// def(D0) -> def(R0) -> def(R0) -> use(D0)
// The reachable use of D0 passes through a def of R0.
if (!(Flags & NodeAttrs::PhiRef))
DefQ.insert(T.Id);
}
DN = A.Addr->getSibling();
}
}
// Filter out these uses that appear to be reachable, but really
// are not. For example:
//
// R1:0 = d1
// = R1:0 u2 Reached by d1.
// R0 = d3
// = R1:0 u4 Still reached by d1: indirectly through
// the def d3.
// R1 = d5
// = R1:0 u6 Not reached by d1 (covered collectively
// by d3 and d5), but following reached
// defs and uses from d1 will lead here.
auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool {
return PhiDefs.count(DA.Id);
};
for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
// For each reached register UI->first, there is a set UI->second, of
// uses of it. For each such use, check if it is reached by this phi,
// i.e. check if the set of its reaching uses intersects the set of
// this phi's defs.
auto &Uses = UI->second;
for (auto I = Uses.begin(), E = Uses.end(); I != E; ) {
auto UA = DFG.addr<UseNode*>(*I);
NodeList RDs = getAllReachingDefs(UI->first, UA);
if (std::any_of(RDs.begin(), RDs.end(), HasDef))
++I;
else
I = Uses.erase(I);
}
if (Uses.empty())
UI = RealUses.erase(UI);
else
++UI;
}
// If this phi reaches some "real" uses, add it to the queue for upward
// propagation.
if (!RealUses.empty())
PhiUQ.push_back(PhiA.Id);
// Go over all phi uses and check if the reaching def is another phi.
// Collect the phis that are among the reaching defs of these uses.
// While traversing the list of reaching defs for each phi use, collect
// the set of registers defined between this phi (Phi) and the owner phi
// of the reaching def.
for (auto I : PhiRefs) {
if (!DFG.IsRef<NodeAttrs::Use>(I))
continue;
NodeAddr<UseNode*> UA = I;
auto &UpMap = PhiUp[UA.Id];
RegisterSet DefRRs;
for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) {
if (DA.Addr->getFlags() & NodeAttrs::PhiRef)
UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs;
else
DefRRs.insert(DA.Addr->getRegRef());
}
}
}
if (Trace) {
dbgs() << "Phi-up-to-phi map:\n";
for (auto I : PhiUp) {
dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
for (auto R : I.second)
dbgs() << ' ' << Print<NodeId>(R.first, DFG)
<< Print<RegisterSet>(R.second, DFG);
dbgs() << " }\n";
}
}
// Propagate the reached registers up in the phi chain.
//
// The following type of situation needs careful handling:
//
// phi d1<R1:0> (1)
// |
// ... d2<R1>
// |
// phi u3<R1:0> (2)
// |
// ... u4<R1>
//
// The phi node (2) defines a register pair R1:0, and reaches a "real"
// use u4 of just R1. The same phi node is also known to reach (upwards)
// the phi node (1). However, the use u4 is not reached by phi (1),
// because of the intervening definition d2 of R1. The data flow between
// phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
//
// When propagating uses up the phi chains, get the all reaching defs
// for a given phi use, and traverse the list until the propagated ref
// is covered, or until or until reaching the final phi. Only assume
// that the reference reaches the phi in the latter case.
for (unsigned i = 0; i < PhiUQ.size(); ++i) {
auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
auto &RealUses = RealUseMap[PA.Id];
for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
NodeAddr<UseNode*> UA = U;
auto &UpPhis = PhiUp[UA.Id];
for (auto UP : UpPhis) {
bool Changed = false;
auto &MidDefs = UP.second;
// Collect the set UpReached of uses that are reached by the current
// phi PA, and are not covered by any intervening def between PA and
// the upward phi UP.
RegisterSet UpReached;
for (auto T : RealUses) {
if (!isRestricted(PA, UA, T.first))
continue;
if (!RAI.covers(MidDefs, T.first))
UpReached.insert(T.first);
}
if (UpReached.empty())
continue;
// Update the set PRUs of real uses reached by the upward phi UP with
// the actual set of uses (UpReached) that the UP phi reaches.
auto &PRUs = RealUseMap[UP.first];
for (auto R : UpReached) {
unsigned Z = PRUs[R].size();
PRUs[R].insert(RealUses[R].begin(), RealUses[R].end());
Changed |= (PRUs[R].size() != Z);
}
if (Changed)
PhiUQ.push_back(UP.first);
}
}
}
if (Trace) {
dbgs() << "Real use map:\n";
for (auto I : RealUseMap) {
dbgs() << "phi " << Print<NodeId>(I.first, DFG);
NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
if (!Ds.empty()) {
RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef();
dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
} else {
dbgs() << "<noreg>";
}
dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
}
}
}
void Liveness::computeLiveIns() {
// Populate the node-to-block map. This speeds up the calculations
// significantly.
NBMap.clear();
for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
MachineBasicBlock *BB = BA.Addr->getCode();
for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
NBMap.insert(std::make_pair(RA.Id, BB));
NBMap.insert(std::make_pair(IA.Id, BB));
}
}
MachineFunction &MF = DFG.getMF();
// Compute IDF first, then the inverse.
decltype(IIDF) IDF;
for (auto &B : MF) {
auto F1 = MDF.find(&B);
if (F1 == MDF.end())
continue;
SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
for (unsigned i = 0; i < IDFB.size(); ++i) {
auto F2 = MDF.find(IDFB[i]);
if (F2 != MDF.end())
IDFB.insert(F2->second.begin(), F2->second.end());
}
// Add B to the IDF(B). This will put B in the IIDF(B).
IDFB.insert(&B);
IDF[&B].insert(IDFB.begin(), IDFB.end());
}
for (auto I : IDF)
for (auto S : I.second)
IIDF[S].insert(I.first);
computePhiInfo();
NodeAddr<FuncNode*> FA = DFG.getFunc();
auto Blocks = FA.Addr->members(DFG);
// Build the phi live-on-entry map.
for (NodeAddr<BlockNode*> BA : Blocks) {
MachineBasicBlock *MB = BA.Addr->getCode();
auto &LON = PhiLON[MB];
for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
for (auto S : RealUseMap[P.Id])
LON[S.first].insert(S.second.begin(), S.second.end());
}
if (Trace) {
dbgs() << "Phi live-on-entry map:\n";
for (auto I : PhiLON)
dbgs() << "block #" << I.first->getNumber() << " -> "
<< Print<RefMap>(I.second, DFG) << '\n';
}
// Build the phi live-on-exit map. Each phi node has some set of reached
// "real" uses. Propagate this set backwards into the block predecessors
// through the reaching defs of the corresponding phi uses.
for (NodeAddr<BlockNode*> BA : Blocks) {
auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
for (NodeAddr<PhiNode*> PA : Phis) {
auto &RUs = RealUseMap[PA.Id];
if (RUs.empty())
continue;
for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
NodeAddr<PhiUseNode*> UA = U;
if (UA.Addr->getReachingDef() == 0)
continue;
// Mark all reached "real" uses of P as live on exit in the
// predecessor.
// Remap all the RUs so that they have a correct reaching def.
auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor());
auto &LOX = PhiLOX[PrA.Addr->getCode()];
for (auto R : RUs) {
RegisterRef RR = R.first;
if (!isRestricted(PA, UA, RR))
RR = getRestrictedRegRef(UA);
// The restricted ref may be different from the ref that was
// accessed in the "real use". This means that this phi use
// is not the one that carries this reference, so skip it.
if (!RAI.alias(R.first, RR))
continue;
for (auto D : getAllReachingDefs(RR, UA))
LOX[RR].insert(D.Id);
}
} // for U : phi uses
} // for P : Phis
} // for B : Blocks
if (Trace) {
dbgs() << "Phi live-on-exit map:\n";
for (auto I : PhiLOX)
dbgs() << "block #" << I.first->getNumber() << " -> "
<< Print<RefMap>(I.second, DFG) << '\n';
}
RefMap LiveIn;
traverse(&MF.front(), LiveIn);
// Add function live-ins to the live-in set of the function entry block.
auto &EntryIn = LiveMap[&MF.front()];
for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I)
EntryIn.insert({I->first,0});
if (Trace) {
// Dump the liveness map
for (auto &B : MF) {
BitVector LV(TRI.getNumRegs());
for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
LV.set(I->PhysReg);
dbgs() << "BB#" << B.getNumber() << "\t rec = {";
for (int x = LV.find_first(); x >= 0; x = LV.find_next(x))
dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG);
dbgs() << " }\n";
dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n';
}
}
}
void Liveness::resetLiveIns() {
for (auto &B : DFG.getMF()) {
// Remove all live-ins.
std::vector<unsigned> T;
for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
T.push_back(I->PhysReg);
for (auto I : T)
B.removeLiveIn(I);
// Add the newly computed live-ins.
auto &LiveIns = LiveMap[&B];
for (auto I : LiveIns) {
assert(I.Sub == 0);
B.addLiveIn(I.Reg);
}
}
}
void Liveness::resetKills() {
for (auto &B : DFG.getMF())
resetKills(&B);
}
void Liveness::resetKills(MachineBasicBlock *B) {
auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void {
for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I)
LV.set(I->PhysReg);
};
BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
CopyLiveIns(B, LiveIn);
for (auto SI : B->successors())
CopyLiveIns(SI, Live);
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
MachineInstr *MI = &*I;
if (MI->isDebugValue())
continue;
MI->clearKillInfo();
for (auto &Op : MI->operands()) {
// An implicit def of a super-register may not necessarily start a
// live range of it, since an implicit use could be used to keep parts
// of it live. Instead of analyzing the implicit operands, ignore
// implicit defs.
if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
continue;
unsigned R = Op.getReg();
if (!TargetRegisterInfo::isPhysicalRegister(R))
continue;
for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
Live.reset(*SR);
}
for (auto &Op : MI->operands()) {
if (!Op.isReg() || !Op.isUse())
continue;
unsigned R = Op.getReg();
if (!TargetRegisterInfo::isPhysicalRegister(R))
continue;
bool IsLive = false;
for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
if (!Live[*AR])
continue;
IsLive = true;
break;
}
if (IsLive)
continue;
Op.setIsKill(true);
for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
Live.set(*SR);
}
}
}
// For shadows, determine if RR is aliased to a reaching def of any other
// shadow associated with RA. If it is not, then RR is "restricted" to RA,
// and so it can be considered a value specific to RA. This is important
// for accurately determining values associated with phi uses.
// For non-shadows, this function returns "true".
bool Liveness::isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
RegisterRef RR) const {
NodeId Start = RA.Id;
for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA);
TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) {
NodeId RD = TA.Addr->getReachingDef();
if (RD == 0)
continue;
if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef()))
return false;
}
return true;
}
RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const {
assert(DFG.IsRef<NodeAttrs::Use>(RA));
if (RA.Addr->getFlags() & NodeAttrs::Shadow) {
NodeId RD = RA.Addr->getReachingDef();
assert(RD);
RA = DFG.addr<DefNode*>(RD);
}
return RA.Addr->getRegRef();
}
unsigned Liveness::getPhysReg(RegisterRef RR) const {
if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg))
return 0;
return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg;
}
// Helper function to obtain the basic block containing the reaching def
// of the given use.
MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
auto F = NBMap.find(RN);
if (F != NBMap.end())
return F->second;
llvm_unreachable("Node id not in map");
}
void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
// The LiveIn map, for each (physical) register, contains the set of live
// reaching defs of that register that are live on entry to the associated
// block.
// The summary of the traversal algorithm:
//
// R is live-in in B, if there exists a U(R), such that rdef(R) dom B
// and (U \in IDF(B) or B dom U).
//
// for (C : children) {
// LU = {}
// traverse(C, LU)
// LiveUses += LU
// }
//
// LiveUses -= Defs(B);
// LiveUses += UpwardExposedUses(B);
// for (C : IIDF[B])
// for (U : LiveUses)
// if (Rdef(U) dom C)
// C.addLiveIn(U)
//
// Go up the dominator tree (depth-first).
MachineDomTreeNode *N = MDT.getNode(B);
for (auto I : *N) {
RefMap L;
MachineBasicBlock *SB = I->getBlock();
traverse(SB, L);
for (auto S : L)
LiveIn[S.first].insert(S.second.begin(), S.second.end());
}
if (Trace) {
dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber()
<< " after recursion into";
for (auto I : *N)
dbgs() << ' ' << I->getBlock()->getNumber();
dbgs() << "\n LiveIn: " << Print<RefMap>(LiveIn, DFG);
dbgs() << "\n Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
}
// Add phi uses that are live on exit from this block.
RefMap &PUs = PhiLOX[B];
for (auto S : PUs)
LiveIn[S.first].insert(S.second.begin(), S.second.end());
if (Trace) {
dbgs() << "after LOX\n";
dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
}
// Stop tracking all uses defined in this block: erase those records
// where the reaching def is located in B and which cover all reached
// uses.
auto Copy = LiveIn;
LiveIn.clear();
for (auto I : Copy) {
auto &Defs = LiveIn[I.first];
NodeSet Rest;
for (auto R : I.second) {
auto DA = DFG.addr<DefNode*>(R);
RegisterRef DDR = DA.Addr->getRegRef();
NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
// Defs from a different block need to be preserved. Defs from this
// block will need to be processed further, except for phi defs, the
// liveness of which is handled through the PhiLON/PhiLOX maps.
if (B != BA.Addr->getCode())
Defs.insert(R);
else {
bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving;
if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) {
bool Covering = RAI.covers(DDR, I.first);
NodeId U = DA.Addr->getReachedUse();
while (U && Covering) {
auto DUA = DFG.addr<UseNode*>(U);
RegisterRef Q = DUA.Addr->getRegRef();
Covering = RAI.covers(DA.Addr->getRegRef(), Q);
U = DUA.Addr->getSibling();
}
if (!Covering)
Rest.insert(R);
}
}
}
// Non-covering defs from B.
for (auto R : Rest) {
auto DA = DFG.addr<DefNode*>(R);
RegisterRef DRR = DA.Addr->getRegRef();
RegisterSet RRs;
for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
// Preserving defs do not count towards covering.
if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
RRs.insert(TA.Addr->getRegRef());
if (BA.Addr->getCode() == B)
continue;
if (RAI.covers(RRs, DRR))
break;
Defs.insert(TA.Id);
}
}
}
emptify(LiveIn);
if (Trace) {
dbgs() << "after defs in block\n";
dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
}
// Scan the block for upward-exposed uses and add them to the tracking set.
for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
NodeAddr<InstrNode*> IA = I;
if (IA.Addr->getKind() != NodeAttrs::Stmt)
continue;
for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
RegisterRef RR = UA.Addr->getRegRef();
for (auto D : getAllReachingDefs(UA))
if (getBlockWithRef(D.Id) != B)
LiveIn[RR].insert(D.Id);
}
}
if (Trace) {
dbgs() << "after uses in block\n";
dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
}
// Phi uses should not be propagated up the dominator tree, since they
// are not dominated by their corresponding reaching defs.
auto &Local = LiveMap[B];
auto &LON = PhiLON[B];
for (auto R : LON)
Local.insert(R.first);
if (Trace) {
dbgs() << "after phi uses in block\n";
dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
dbgs() << " Local: " << Print<RegisterSet>(Local, DFG) << '\n';
}
for (auto C : IIDF[B]) {
auto &LiveC = LiveMap[C];
for (auto S : LiveIn)
for (auto R : S.second)
if (MDT.properlyDominates(getBlockWithRef(R), C))
LiveC.insert(S.first);
}
}
void Liveness::emptify(RefMap &M) {
for (auto I = M.begin(), E = M.end(); I != E; )
I = I->second.empty() ? M.erase(I) : std::next(I);
}
|